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Abstract

Purpose—A calibrationless parallel imaging reconstruction method, termed simultaneous auto-

calibrating and k-space estimation (SAKE), is presented. It is a data-driven, coil-by-coil

reconstruction method that does not require a separate calibration step for estimating coil

sensitivity information.

Methods—In SAKE, an under-sampled multi-channel dataset is structured into a single data

matrix. Then the reconstruction is formulated as a structured low-rank matrix completion problem.

An iterative solution that implements a projection-onto-sets algorithm with singular value

thresholding is described.

Results—Reconstruction results are demonstrated for retrospectively and prospectively under-

sampled, multi-channel Cartesian data having no calibration signals. Additionally, non-Cartesian

data reconstruction is presented. Finally, improved image quality is demonstrated by combining

SAKE with wavelet-based compressed sensing.

Conclusion—As estimation of coil sensitivity information is not needed, the proposed method

could potentially benefit MR applications where acquiring accurate calibration data is limiting or

not possible at all.
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INTRODUCTION

Parallel imaging is a powerful method that utilizes multiple receiver elements for reduced

scanning time in magnetic resonance imaging (MRI) (1). In this scheme, simultaneous

signal receptions through spatially distributed coils provide data redundancy by means of

sensitivity encoding. When the sensitivity encoding is applied in conjunction with gradient

encoding, the amount of data necessary for proper image reconstruction is greatly reduced.

This enables accelerated data acquisition, specifically, under-sampling of k-space data

below the apparent Nyquist rate.

The various parallel imaging methods developed so far differ in the way they use sensitivity

information to remove aliasing artifacts resulting from the under-sampling. Reconstruction

techniques such as SMASH (2) and SENSE (3) expect that the reception profiles from each

coil element are known beforehand. However, explicit coil sensitivity measurements often

require separate calibration scans, which increases the overall acquisition time. Moreover,

any inconsistency due to motion or small errors in the sensitivity estimation manifest as

significant visual artifacts in reconstructed images (4).

Auto-calibrating methods avoid the difficulties and inaccuracy associated with explicit

estimations by deriving sensitivity information from auto-calibration signals (ACS). In

general, ACS are embedded in acquired data as fully sampled center together with under-

sampled higher frequency k-space regions. Self-calibrating methods (5, 6, 19) extract

sensitivity images from ACS and use the information to reconstruct aliasing artifact free

images. Joint estimation techniques, such as JSENSE (7) or the non-linear inversion method

(8), attempt to iteratively estimate both the coil sensitivities and image contents while

imposing some smoothness constraints on the sensitivity profiles. Data driven auto-

calibrating methods, such as GRAPPA (9) and SPIRiT (10), estimate linear relationships

within the ACS data (i.e. kernel calibration) and enforce that relationship to synthesize data

values in place of unacquired samples (i.e. data reconstruction).

However, in some MR applications, acquiring sufficient ACS for accurate calibration can be

limiting or not possible at all. For example, in spectroscopic imaging, matrix sizes in spatial

dimensions are relatively small and ACS acquisitions can take up a large portion of total

imaging time. In the case of dynamic MRI, repeatedly acquiring ACS over time is also time

consuming. For non-Cartesian imaging, such as spirals, acquiring sufficient ACS requires

longer readouts, which can result in artifacts due to off-resonance.

In this work, we developed a calibrationless parallel imaging reconstruction framework

called SAKE (simultaneous auto-calibrating and k-space estimation). Without performing a

separate sensitivity calibration step, the proposed method reconstructs a full k-space from an

under-sampled, multi-channel dataset that lacks ACS data. The method jointly manipulates
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multi-channel data by organizing acquired data into a single, structured matrix. In addition

to the structure, this matrix also has low rank due to the linear dependency residing in multi-

coil data (11, 12, 13). Therefore, the reconstruction is cast into a structured low-rank matrix

completion problem and is formulated as a constraint optimization. Low-rank matrix

completion is an active area of research and has much similarity to compressed sensing

theory (14, 15). We adopted a projection-onto-sets type algorithm with singular value

thresholding (16) to solve the problem iteratively. SAKE can easily incorporate additional a

priori information related to underlying MR images, such as sparsity (17), for improved

reconstruction performance, and can also be applied on non-Cartesian sampled data.

Theory

In the following, we first define an enhanced data structure called data matrix and describe

its structured, low-rank property. Then, GRAPPA-like auto-calibrating methods are

discussed in terms of the data matrix. Finally, our proposed method SAKE is explained.

Structured Low-rank Data Matrix—Underlying our approach is a specific data structure

that exploits and manifests the correlations within multi-channel MRI k-space data. We

structure multi-channel data altogether into a single data matrix of which columns are

vectorized blocks selected by sliding a (multi-channel) window across the entire data. A

pictorial description of constructing such a matrix with an exemplary 3 × 3 window is shown

in Fig. 1. From Nx × Ny sized data with Nc number of coils, we can generate a data matrix

having the size of w2Nc × (Nx − w + 1)(Ny − w + 1) by sliding a w × w × Nc window across

the entire k-space. Note that due to the nature of the sliding-window operation, the data

matrix will have a stacked, block-wise Hankel structure with many of its entries from

identical k-space locations being repeated in anti-diagonal directions (emphasized by

colored samples in Fig. 1).

In general, block Hankel matrices are known to possess well-defined subspaces (18). In the

Appendix section, under the reasonable assumption that coil sensitivities have compact k-

space support, we show that a data matrix in block Hankel form can be structured to become

a rank deficient matrix for an appropriately chosen window size w × w. It can be further

shown that the rank is bound by rank (A) ≤ (w + s −1)2, where A is a data matrix and s is the

coil bandwidth measured in k-space pixels. Once we have a rank deficient data matrix, then

we can apply a singular value decomposition (SVD) based subspace analysis technique (30)

on multi-channel MR data (11, 23) to break the information down into signal and noise

subspaces, which are spanned by singular vectors corresponding to dominant singular values

and non-dominant ones, respectively. An interesting observation to follow is that the upper

bound on rank normalized by the window size (w + s −1)2/w2 will approach 1 with

increasing window size. For smaller window sizes, the normalized rank will be larger than 1.

From a subspace point of view, this means that by using larger windows, we could confine

signal components in a relatively compact subspace.

There are several other factors that could lower the rank of the data matrix (11, 23). These

include actual values of sensitivity spectrums in k-space, the portion of size of the object

within field of views (FOV) and the portion of blank signal within the object (18, 20, 21). A

Shin et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



detailed theoretical analysis of the rank behavior, however, is beyond the scope of this

manuscript. In the Results, we show empirical evidence that relates rank value with varying

window sizes and object supports in the image domain. These results provide a way to

estimate the rank for a given coil configuration and window size.

k-Space Based Parallel Imaging Reconstructions—In this section, we discuss a

subspace-based view of GRAPPA-like methods based on the structured low-rank data

matrix from the previous section. Auto-calibrating, k-space based methods such as

GRAPPA or SPIRiT estimate linear dependencies between k-space samples by fitting so-

called GRAPPA kernel weights. In the reconstruction step, assuming that the dependencies

are the same everywhere in k-space, unacquired data samples are synthesized by applying

the linear weights to their nearby k-space points across all coils. The linear weights of

GRAPPA/SPIRiT kernels can be easily estimated by organizing multi-channel ACS data

into a data matrix (or sometimes referred to as calibration matrix) as shown in Fig. 1.

Hereafter, we assume that we have acquired enough auto-calibrating signals. Let AACS be

the calibration matrix. Then, we can formulate the GRAPPA calibration process of

estimating the linear weights into the following equation (9).

[1]

Here,  is a GRAPPA kernel for ith channel that contains linear weights and zeros in

appropriate positions. These kernels are also determined by a specific sampling pattern

indexed by r. The vector ei is a vector from the canonical basis that simply selects a row in

AACS of which linear combinations of neighboring data are being fitted to. We use the

notation  to denote the complex-transpose of gir. In the case of SPIRiT (10), linear

coefficients for all surrounding samples are found regardless of the sampling pattern, and

hence, the index r can be omitted from Eq. 1 to form a SPIRiT kernel . By rearranging

Eq. 1, we get

[2]

In other words, GRAPPA/SPIRiT kernels (after subtracting out the vector ei) are left null

vectors of the calibration matrix. Thus, we can view the calibration step as the process of

finding a set of representative nulling vectors in the noise subspace (left null space) of AACS.

As discussed previously, if the kernel window size is chosen appropriately, then AACS is low

rank and hence always has a non-trivial left null space.

The GRAPPA assumption (9, 10) is that the linear dependencies estimated from the ACS

should hold throughout the entire k-space. We can formulate this statement into the

following linear equations by extending Eq. 2 to

[3]
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where A now denotes a data matrix that consists of the entire k-space. Eq. 3 constitutes the

most fundamental mechanism in GRAPPA/SPIRiT and provides the foundation for

reconstructing unacquired data. It means that any (vectorized) data block in the k-space is

nulled by the vector (gir − ei)H through the inner-product operation and any missing data

points should be synthesized in such a way that fulfills this requirement (i.e. calibration

consistency condition). In PRUNO (11), the idea of estimating a set of vectors in the noise

subspace is extended to identifying a basis that spans the noise subspace itself by performing

a SVD on the calibration matrix. Then, missing data samples are synthesized so that k-space

data blocks are jointly orthogonal to every element of the basis set. In this perspective,

GRAPPA (9), SPIRiT (10) and PRUNO (11) methods can all be viewed as (left) null space

formulations. Instead of estimating the noise subspace, ESPIRiT (23) identifies its

orthogonal complement, the signal subspace (column space or range) of the calibration

matrix and reconstructs data by enforcing each data block to lie in that subspace. It was

further shown in (23) that restricting reconstructed data to lie in the signal subspace is

implicitly related to making use of coil sensitivities for data reconstruction similar to the

SENSE method (3).

Parallel Imaging Reconstruction as Structured Low-rank Matrix Completion—
The previously discussed methods all assumed that we have auto-calibration signal to

extract subspace information from. However, when the under-sampled dataset does not have

ACS, then we cannot estimate the subspaces of the calibration matrix. Consequently, the

subspace-based calibration consistency condition cannot be formulated. Instead, we turn to

the a priori information that the data matrix is a low-rank matrix. Thus, our approach in

formulating SAKE is to recover the structured low-rank data matrix A when only a subset of

its entries are given due to under-sampling in k-space.

We first define the following linear operator that generates a data matrix from a multi-

channel dataset concatenated in a vector form (Fig. 1).

[4]

Then, a reverse operator that generates a corresponding k-space dataset from a data matrix

(possibly without the block-Hankel structure) would be

[5]

where † denotes a pseudo-inverse operator. In words, the role of H† is to first enforce the

block-wise Hankel structure by averaging the multiple anti-diagonal entries that would have

originated from the same k-space locations. Once the data matrix has this structure, H†

stores the averaged values in the appropriate k-space locations (Fig. 1). A detailed

discussion on how to implement the linear operators H and H† in a matrix form is outlined

in (16). In practice, due to the large data size and the complexity involved in computing the

pseudo-inverse operator, it is recommended to avoid implementing the matrices explicitly.

Instead, we implement the pseudo-inverse as an operator that accomplishes the same
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computation more efficiently. An example is provided in our accompanying source code

(see website below).

With Eq. 5, the parallel imaging reconstruction can be formulated into a structured, low-rank

matrix completion problem (14, 15).

[6]

Here, D is a linear operator that relates reconstructed k-space data x to acquired data y, and ε

is a bound on noise. For convenience, we assume the data has been pre-whitened. In other

words, we search for a low rank data matrix A (low-rankness), which, when transformed into

a k-space data x (structural consistency), is consistent with the acquired data y in relation to

sampling mechanism defined by D (data consistency). This formulation is general in the

sense that the data consistency constraint applies to both Cartesian and non-Cartesian

sampling (see Appendix). It is worthwhile noting that the formulation in Eq. 6 is a variant of

the more general low-rank matrix completion setup (14) in the sense that, other than low-

rankness and data consistency, we additionally enforce the block Hankel structure (H†) in

the matrix (15).

When the rank of the matrix A is known beforehand, Eq. 6 can be recast into the following

formulation (24, 25).

[7]

In this initial work, we assume that we have an estimate of the rank value (k) of the data

matrix and adopt the well-known Cadzow algorithm (16, 26) to solve the problem stated in

Eq. 7. The Cadzow algorithm is a simple and intuitive projection-onto-sets type approach in

which desired properties of some signal are sequentially enforced within iterations. It is

known to produce a quasi-optimal solution that resides in an intersection of composite

properties.

In implementing the algorithm, we define the following projection operators that correspond

to each of the constraints in Eq. 7:

• Low-rankness projection: hard-threshold singular values of the data matrix

constructed from the current estimate of k-space data.

• Structural consistency projection: project the data matrix onto the space of block-

wise Hankel matrices. Note that this operation is done implicitly by applying H† to

the data matrix.

• Data consistency projection: project the current estimate of k-space data onto the

set of least-squares solutions for the problem Dx = y. See Appendix for details on
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how this projection is implemented for both Cartesian and non-Cartesian sampling

cases.

In every loop, these projections are sequentially applied and the iteration is repeated until

some convergence criteria are met. For example, the iteration persists until maximum

number of repetition is reached or update made on reconstructed data is within a tolerance

bound. An intuitive illustration for the algorithm is given in Fig. 2 with pseudo-code in

Table 1.

METHODS

All our investigations were based on 3D acquisitions from eight-channel coil arrays in which

under-sampling is done simultaneously in two phase-encoding directions (kx − ky) with

through-slice direction (kz) being the readout. For simplicity, square-shaped windows are

assumed.

Hardware and Software

We used Matlab (MathWorks, Inc) to implement SAKE. In the spirit of reproducible

research, we provide implementations of the algorithms and examples demonstrating its use.

These can be found at (http://www.eecs.berkeley.edu/~mlustig/Software.html). All the

programs were run on a Linux machine equipped with an Intel i7-2600K, 3.40GHz CPU and

12 gigabytes of memory.

Structured Low-rank Data Matrix

First, we show the singular value distributions of data matrices generated from a number of

simulated and acquired multi-channel data. To generate the simulated data, sensitivity

profiles of an eight-channel, circular coil array were calculated based on the principle of

reciprocity and the Biot-Savart law in the quasi-static regime (22). Two rectangular

phantoms differing in their size relative to the imaging FOV were also generated. To

simulate finite extent sampling in k-space, the phantoms and sensitivities were first

generated in 1024 × 1024 grid, multiplied pixel-wise in image domain, Fourier transformed

to k-space and, finally, cropped to 256 × 256 matrix size.

In addition to the simulated data, two in vivo datasets were used. A brain image of a healthy

volunteer was acquired with a T1-weighted, 3D spoiled gradient echo (SPGR) sequence.

Scan parameters were set to TE = 8 ms, TR = 17.6 ms, and flip angle = 20°. Imaging

parameters were chosen such that FOV = 20 cm × 20 cm × 20 cm with a matrix size of 200

× 200 × 200 for an isotropic 1 mm3 resolution. A single axial slice was selected from this

data set and was used through out the experiments. The scan was performed on a 1.5T MRI

scanner (GE, Waukesha, WI) using an eight-channel receive-only head coil. Also, an eight

channel, knee image was acquired using a 3D fast spin-echo (FSE) sequence with echo train

length 40, first TE = 25.6 ms, and TR = 1.5 s. FOV was set to 15.4 cm × 16 cm × 16 cm

with a matrix size of 256 × 320 × 320. In-plane resolution was 0.6 mm × 0.5 mm with a

slice thickness of 0.5 mm. A single axial slice from the dataset was selected for our

experiment. The scan was performed on a 3T MRI scanner (GE, Waukesha, WI).
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For each of the multi-channel datasets, data matrices were constructed from center 80 × 80

part of the data using varying window sizes from 2 × 2 to 15 × 15. Then, SVD on each of

the matrices were performed to extract the singular value distributions. The center cropping

to 80 × 80 was done to reduce the SVD computation and guarantee that we have fat data

matrices for the large window sizes up to 15 × 15.

Calibrationless Parallel Imaging Reconstruction – Retrospective Subsampling

In this experiment, the above head and knee datasets were used. First, to show that

calibration and data matrices of real MR data have low rank with compact column space, we

extracted center 30 × 30 ACS from each of the Cartesian dataset we acquired, structured

them into calibration matrices (Eq. 4), and performed SVD. We also constructed full data

matrices for each of the dataset and performed SVD for comparison. We used window size

of 6 × 6 in constructing the calibration and data matrices.

To demonstrate the reconstruction capability of SAKE, we under-sampled each Cartesian

dataset by a factor of three. A great body of work in matrix completion focuses on sampling

the entries of the data matrix randomly (14). To mimic this condition, we have confined all

of our experiments to adopt random under-sampling in k-space with elliptical, variable-

density (VD) Poisson disk patterns (27). Performing random under-sampling has an

additional benefit of having incoherent, noise-like artifacts, as opposed to having coherent

aliased objects in the final reconstructed images resulting from uniform under-sampling.

This is similar to the case of compressed sensing (17) where random sampling causes very

incoherent aliasing that spreads uniformly to other image pixels. For SAKE, the datasets

were under-sampled keeping 0 × 0 and 4 × 4 fully sampled center and a 6 × 6 window was

used for reconstruction. Iterations in SAKE reconstruction looped until updates made on the

k-space data estimate was less than 0.5%. The number of iterations and reconstruction time

spent was measured. For comparison, a dataset with 30 × 30 fully sampled center was

reconstructed using an auto-calibrating method SPIRiT (10). Additionally, to compare with

the reconstructed results, the under-sampled datasets have been density compensated and

then Fourier transformed into images.

SAKE Reconstruction on Prospectively Under-sampled Dataset

A prospectively under-sampled, eight-channel phantom dataset with an acceleration factor

of three was acquired using a 3D sequence on the 3T scanner. In this case, we chose a

transparent commercial MR phantom as the imaging object so that we would have an

accurate expectation of exactly how the reconstructed images should appear. This phantom

experiment also ruled out motion artifacts. A similar elliptical variable density Possion-disk

sampling pattern was adopted. FOV was set to 24 cm × 24 cm × 24 cm with a matrix size of

200 × 240 × 144. As the kz direction (readout) was fully sampled, Fourier transform in that

direction was performed and two slices from kx − ky − z data were selected for our

experiment.

As object support of the phantom data within its FOV was set similar to the knee data,

singular value distributions of the knee data were used to estimate the rank value in this
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experiment. A threshold of 1.4 and 1.25 of window-normalized rank has been used for the 6

× 6 and 8 × 8 window sizes, respectively.

Combination with Compressed Sensing

It is well known that MR images have sparse representation (17) in some transform domain

(e.g. wavelet). In order to demonstrate the regularization capability of SAKE, we adopted

the joint sparsity model (27), an assumption that multi-channel images are jointly sparse,

and added a generalized ℓ1-norm penalty term into the optimization in Eq. 8.

[11]

Here, Ψ denotes a wavelet transform of an MR image with r and c indexing the spatial and

coil dimensions, respectively. λ is a parameter that creates a balance between the data

consistency and the a priori penalty. In the iterative reconstruction, the aforementioned

penalty has been implemented as iterative soft-thresholding on the transform coefficients

(10, 17, 27).

Non-Cartesian Multi-channel Reconstruction

To demonstrate non-Cartesian reconstruction capability, we used phantom data acquired

with a spiral gradient echo sequence using an 8-channel cardiac coil. The spiral trajectory

consists of 60 interleaves for 0.75 mm in-plane resolution over a 30 cm × 30 cm FOV. We

have retrospectively under-sampled the spiral dataset by a factor of three to have 20 equally

spaced interleaves. The under-sampled dataset was reconstructed using gridding with

density compensation, non-Cartesian SPIRiT and SAKE reconstruction for comparison. The

SAKE reconstruction ran over 30 iterations resulting in a 260 × 360 sized final image. The

window-normalized rank value for the reconstruction was set to 1.3 for a 6 × 6 window.

Results

Structured Low-rank Data Matrix

Fig. 3 shows a set of square root of sum of squared (SSoS) images (80 × 80) of the

simulated and in vivo objects together with reduced single channel images on their side.

Corresponding singular value distributions of data matrices and their semi-log versions are

also shown. Graphs of varied window sizes from 2 × 2 (blue) to 15 × 15 (red) have been

plotted. Each x-axis represents window-normalized singular vector numbers (WNSVN) and

y-axes are all in arbitrary units (AU). First and foremost, the data shows that the data

matrices have decreasing window-normalized rank with increasing window sizes. If the

window size gets larger than a certain value, than the data matrices start possessing compact

column spaces. The window-normalized rank shows convergence to 1 or less (depending on

length of object support) with increasing window sizes as anticipated. Note from our

previous discussion that, only when we have a compact column space for a data matrix (i.e.

the left null space exists), can we do stable GRAPPA calibration. Next, the results from the
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square phantoms show that, under the same coil configuration, object support has effect on

rank values. More specifically, smaller objects tend to have lower rank. Also, the head and

knee data together show that while specific singular values from different image contents

might differ, the rank values are nearly the same as long as they have similar length of

image support and similar coil geometry. Based on this experiment, we conjecture that a

rank value from one object can be adopted to estimate rank for a different imaging subject if

they share similar length of image support. We tested this assumption by extracting the rank

value from a fully sampled knee data and applying it to prospectively under-sampled

phantom data (see below), which does not have calibration data to extract subspace

information from. Estimation of the image support can be done at a pre-scan stage.

Calibrationless Parallel Imaging Reconstruction – Retrospective Subsampling

SSoS images and their corresponding singular value distributions of the calibration matrices

(solid line) and the data matrices (dashed line) are shown in Fig. 4a and 4c for brain and

knee data, respectively. First, it can be observed that the two matrices share similar number

of dominant singular values. However, there is a point where deviations are observed in

between the singular value distributions of the calibration matrix and the data matrix. This

deviation exists because the data matrix has lifted singular values due to noise (28, 29, 30).

We estimated window-normalized rank values to be 1.5 for the brain data and 1.4 for the

knee data. The estimated ranks were used in the SAKE reconstruction.

Data under-sampled by 3-fold, SAKE reconstruction results and error images (×10

windowed) are shown in Fig. 4b and 4d for brain and knee data, respectively. The number of

iterations and the reconstruction time needed for all three experiments are listed in Table 2.

The reconstruction results of SAKE with 0 × 0 and 4 × 4 fully sampled center show similar

performance and they are comparable to the result acquired with auto-calibrating

reconstruction method SPIRiT for both the brain and knee data. When the 4 × 4 center k-

space data is given, however, SAKE reconstruction time decreases showing faster

convergence.

SAKE Reconstruction on Prospectively Under-sampled Dataset

Reconstruction results for the prospectively under-sampled phantom data are shown in Fig.

5. The number of iterations and time spent in performing SAKE reconstruction for each slice

and different window sizes are listed in Table 3. As the phantom data were acquired with

similar object support length comparable to the knee data, the dominant window-normalized

singular values estimated from the knee data for 6 × 6 and 8 × 8 windows were used for this

experiment, which were 1.4 and 1.25, respectively. Two reconstruction results based on 6 ×

6 and 8 × 8 windows show excellent quality with no visible residual aliasing. However, in

the case of 8 × 8 window, reconstruction time increases. This is mainly due to the larger data

matrix size resulting from adopting larger window size.

Combination with Compressed Sensing

Fig. 6a and 6d shows SAKE reconstruction results without and with the ℓ1-norm penalty,

respectively, from the 3-fold accelerated sampling pattern. The zoomed images (Fig. 6b and

6c) clearly show the effect of applying an additional sparsity constraint, which suppresses
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the over-fitting to noise and generates higher signal-to-noise images. The data was

normalized to set the maximum image intensity equal to 1 and the regularization parameter

λ was set to 0.007. In general, choosing smaller λ values in regularization would result in

images with more noise and applying large λ values might destroy fine structures in

reconstructed images (17, 27). The regularization parameter should also be adjusted if

images are normalized in different scales.

Non-Cartesian Multi-channel Reconstruction

Fig. 7 shows a) fully sampled spiral acquisition image, b) 3-fold under-sampled gridding

reconstructed image, c) non-Cartesian SPIRiT reconstruction, and d) SAKE reconstructed

image. By comparing b) and d), we can clearly see that aliasing artifacts have been removed

by SAKE reconstruction. The result d) is also comparable to that of auto-calibrating

reconstruction shown in c).

Discussion

In general, auto-calibrating parallel imaging reconstructions are done in two steps: a

calibration process followed by data interpolation. The calibration step is where either linear

weights relating blocks of k-space data or explicit sensitivity estimation is done using ACS

in the center of acquired k-space data. Once the calibration information is extracted, it is

used in the data reconstruction step where missing k-space samples are interpolated. In the

SAKE method developed in this project, calibration is done implicitly by enforcing the data

matrix to be a structured low rank matrix. As a result of sensitivity encoding, any

(vectorized) blocks of k-space data lie in a low dimensional subspace. Here, we have shown

that calibration can be done without explicitly extracting the subspace information by

exploiting the low dimensionality of the signal subspace.

As the overall mathematical formulation of restricting the rank of data matrix is not convex

(24), it is crucial that we start the reconstruction with an initial estimate (usually, this is the

under-sampled data itself) that lies close to the global optimum to ensure a fast convergence.

In our approach, we adopted random under-sampling pattern to ensure this condition.

Uniformly under-sampled datasets did not show reliable convergence behavior. A

theoretical work relating the sampling pattern to convergence condition is beyond the scope

of this paper.

In this work, we have adopted a simple thresholding scheme (Cadzow’s algorithm) to

estimate the dominant singular values for a number of datasets. We also showed empirical

results that support theoretical bounds on the rank of a data matrix and that window-

normalized rank value is closely related to object support in image domain. These findings

can be used to estimate thresholding parameters. For example, here we used estimates from

other scans to predict the rank value for prospectively under-sampled dataset. Although our

approach for estimating the rank seems sufficient for practical purposes, we believe that

further research on the exact behavior of the rank in relation to changes of imaging subject,

coil geometries, and other factors in data acquisition are important and, together with more

in vivo studies, are worthy goals for future research. Most of the reconstruction time in

SAKE is spent in performing SVD on the large data matrix in every single loop. The

Shin et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



computational complexity will increase with a higher rank value, larger window size, and

larger image size (28, 29). To reduce the computational load, one could adopt faster SVD

implementations such as PROPACK (31) that computes a few singular values and

corresponding singular vectors based on Lanczos bidiagonalization. Adopting GPU-based

computing (32) is also a possibility. Other approaches in reducing the reconstruction time

include using SAKE to reconstruct only a portion of k-space as a synthesized calibration

data. Once the calibration data is at hand, many other auto-calibrating methods can be

adopted for full data reconstruction.

In some ways, the iterative iGRAPPA algorithm (33) is similar to SAKE. In iGRAPPA, a

new GRAPPA kernel is calibrated every iteration from the reconstructed data and then

applied to obtain a better approximation. Calibrating a new kernel is similar to learning the

low dimensional signal subspace. Our approach is more general as it captures the entire

signal subspace using SVD.

Conclusions

In this work, we have presented a calibration data-free parallel imaging reconstruction

method called SAKE. The proposed method formulates the parallel imaging reconstruction

as a structured low-rank matrix completion problem and solves it by iteratively enforcing

multiple consistencies (which can include sparsity). We have shown that SAKE produces

reliable reconstruction results in terms of accurate de-aliasing and noise performance.

Lastly, the reconstruction with non-Cartesian data shows the flexibility of SAKE.
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Appendix

Upper Bound on Rank of Data Matrix

Here, we give an upper bound on the rank value of a data matrix. We consider a multi-

channel acquisition case in which image size is set to Nx × Ny with Nc number of coils and

further assume that coil sensitivity profiles have compact support of s × s pixels in k-space.

For simplicity, we have chosen a square window. Under this condition, multi-channel

parallel acquisition can be formulated into a linear equation,

[A.1]

where a is a vectorized k-space data block across all coils (Fig. 1), E is a sensitivity

encoding matrix that implements multiple convolution operations for each channel, and m is

a column vector representing a block of corresponding source MR signal in k-space. If we

choose the block window size of a to be w × w, the size of the encoding matrix E becomes

w2Nc × (w+ s − 1)2. As sensitivity encoding is essentially a shift-invariant operation in k-

space, Eq. A.1 holds for any data block within the acquired multi-channel data. Thus, we

can extend Eq. A.1 into

[A.2]

where A is a data matrix of which every column represents a distinct data block satisfying

Eq. A.1 and M is a source signal matrix constructed in a block Hankel form. The size of A

and M is given by w2Nc × (Nx − w + 1) (Ny − w + 1) and (w + s − 1)2 × (Nx − w + 1) (Ny − w

+ 1), respectively.

From Eq. A.2, rank(A) is bound by the following equation (29),

[A.3]

For a given number of channels Nc and a large enough image size Nx × Ny, we can freely set

the value of w so that the following relations hold.
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Note that this effectively makes E a tall matrix and M a fat one. Altogether with Eq. A.3,

rank of the data matrix A is bound by

[A.4]

Thus, the data matrix A is always rank deficient for an appropriately chosen block window

size w × w and has a non-trivial left null space, which, in turn, guarantees the GRAPPA

calibration (Eq. 3) to hold.

Implementation of Data Consistency Condition

We rewrite Eq. 7 for convenience.

[A.5]

This section defines the projection operator that corresponds to the data consistency (||Dx −

y||2) in Eq. A.5 and discusses the actual implementation for both Cartesian and non-

Cartesian cases.

Given the current estimate xn, the projection operator onto the set of least-squares solutions

for the problem Dx = y is given by the following equation (34).

[A.6]

In the case of Cartesian sampling, y is acquired data concatenated into a vector form, and D

is a matrix that selects sampled locations from the full k-space grid. Note that D is a fat

matrix due to under-sampling and consists of linearly independent rows of which are vectors

from the canonical basis. Under this definition, DH becomes an operator that generates a

zero-filled full k-space (in a vector form) from the acquired data. It is easy to see that DDH =

I, and, since D has full row rank, D† reduces to D† = DH (DDH)−1 = DH (28, 29). Let Dc be

an operator that selects non-acquired locations in k-space. Then, Eq. A.6 reduces to

[A.7]

This update rule is equivalent to replacing estimates of k-space samples with the acquired

data at the sampled locations (10).
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For the non-Cartesian sampling (e.g. spiral), D is an interpolator that interpolates

reconstructed Cartesian data onto non-uniformly sampled k-space locations (35, 36). In this

case, computing D† in Eq. A.6 becomes a non-trivial task. As an alternative, we replace the

pseudo-inverse with the adjoint operator DH and take a gradient descent step.

[A.8]

In other words, the update rule in Eq. A.8 is to 1) inversely grid the current estimate of k-

space data, 2) calculate residual between the acquired data and the inversely-gridded

estimate, 3) grid the residual back to Cartesian grid, and 4) add the result from 3) to the

current estimate. This process can be repeated a few times to take more than one gradient

descent step. For the spiral data used in this work, we empirically found out that taking two

gradient steps produced good results. We adopted the non-uniform fast Fourier transform

(NUFFT, 36) for efficient implementation of the gridding process D and DH Also, the LSQR

package was used to calculate the update rule in Eq. A.8 (37). Of course, an appropriate

form of density compensation (38) can be adopted in formulating the data consistency

constraint as a weighted, least-squares problem that would result in a faster convergence. A

detailed discussion on the subject, however, is beyond the scope of this paper.
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Figure 1.
Constructing a data matrix from a multi-channel k-space dataset (H) and vice versa (H†). A

single data block in the k-space is vectorized into a column in the data matrix. Note that the

data matrix will have a block-wise Hankel matrix structure. When reversely forming a k-

space dataset from a data matrix, multiple anti-diagonal entries are averaged and stored at

appropriate k-space locations.
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Figure 2.
Diagram of iterative reconstruction in SAKE. Within a single iteration, multiple

consistencies are enforced on current estimate of the k-space data. As under-sampling is

done the same for all channels, a pseudo-random sampling pattern (white circles) appears

repeatedly in the zero-filled data matrix.
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Figure 3.
Singular value distributions of data matrices generated from different imaging objects. SSoS

together with single channel images are shown in the left columns. Corresponding singular

value distributions (middle column) and their logarithms (right column) are also plotted. The

x-axes represent window-normalized singular vector number (WNSVN) and y-axes are in

arbitrary units (AU). Singular value distributions of the data matrix were constructed using

window sizes between 2 × 2 (blue) and 15 × 15 (red). All graphs share the same color bar

representing the window sizes. Note that as window size gets larger, the window-normalized

rank approaches one.
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Figure 4.
SAKE reconstruction results and comparison to SPIRiT. a, c) Top: SSoS combined fully

sampled images (brain and knee). Middle: singular value plots for the calibration matrices

(solid line) and the data matrices (dashed line). The inset shows a part from the graph

magnified. Bottom: 3× elliptical, variable-density Possion disk random sampling pattern. b,

d) Top row: SAKE reconstruction results with no fully sampled center k-space. Middle row:

SAKE reconstruction results with 4 × 4 fully sampled center k-space. Bottom row: SPIRiT

reconstruction results with 30 × 30 fully sampled calibration area.
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Figure 5.
SAKE reconstruction results for prospectively under-sampled phantom data. Zero-filled and

density compensated reconstruction (left column) and reconstruction results from two

different window sizes (middle, right column) are shown for two different slices (top,

bottom rows). The singular values used for the reconstruction are written in the figures. Note

that SAKE reconstruction results show no visual artifacts.
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Figure 6.
Regularization using ℓ1-wavelet spatial sparsity with 3-fold acceleration. a) SSoS combined

image with no regularization. b) and c) are magnified versions of square boxes in a) and d),

respectively. d) SSoS combined image with ℓ1-wavelet (Daubechies 4) regularization. Note

that the images without regularization are much more grainy, while fine spatial features are

well preserved with regularization.
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Figure 7.
SAKE reconstruction result for non-Cartesian parallel imaging. a) Fully sampled, and b) 3-

fold under-sampled spiral phantom images gridded and SSoS combined. Note the aliasing

artifacts. c) and d) show reconstruction results from SPIRiT and SAKE, respectively. The

SAKE reconstruction shows good result with removed artifacts and is comparable to that of

SPIRiT shown in c).
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Table 1

Pseudo-code for SAKE

Inputs: y - acquired (Cartesian/non-Cartesian) data from all channels

D/D† - operators relating reconstructed data to the acquired data y, and vice versa

H/H† - operators that construct the data matrix from k-space values, and vice versa

k - rank of the data matrix

Tol - tolerance on error

Outputs: xn - reconstructed data for all channels

Algorithm: x0 = D†y, n = 0

do {

 n = n + 1

 An = H(xn−1)% construct data matrix

 [U Σ V] = svd(An) % perform SVD

 An = U|| Σk V||
H % hard-threshold singular values (low-rankness projection)

 xn = H†(An) % transform data matrix back to k-space data (structural consistency projection)

 xn = (I − D†D) xn + D†y % data consistency projection (see Appendix for details)

 err = ||xn − xn−1||

} while err > Tol
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Table 3

Number of iterations and time spent in prospective reconstruction

Data Type Slice 1 Slice 2

Window Size 6 × 6 8 × 8 6 × 6 8 × 8

# of Iter. 29 32 33 36

Recon. Time (sec) 370 805 420 911
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