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Abstract

This paper is concerned with the selection and estimation of fixed and random effects in linear

mixed effects models. We propose a class of nonconcave penalized profile likelihood methods for

selecting and estimating important fixed effects. To overcome the difficulty of unknown

covariance matrix of random effects, we propose to use a proxy matrix in the penalized profile

likelihood. We establish conditions on the choice of the proxy matrix and show that the proposed

procedure enjoys the model selection consistency where the number of fixed effects is allowed to

grow exponentially with the sample size. We further propose a group variable selection strategy to

simultaneously select and estimate important random effects, where the unknown covariance

matrix of random effects is replaced with a proxy matrix. We prove that, with the proxy matrix

appropriately chosen, the proposed procedure can identify all true random effects with asymptotic

probability one, where the dimension of random effects vector is allowed to increase exponentially

with the sample size. Monte Carlo simulation studies are conducted to examine the finite-sample

performance of the proposed procedures. We further illustrate the proposed procedures via a real

data example.
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1. Introduction

During the last two decades, linear mixed effects models (Laird and Ware, 1982; Longford,

1993) have been widely used to model longitudinal and repeated measurements data, and

have received a considerable amount of attention in the fields of agriculture, biology,
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economics, medicine, and sociology. See Verbeke and Molenberghs (2000) and references

therein. With the advent of data collection technology, many variables can be easily

collected in a scientific study, and it is typical to include many of them in the full model at

the initial stage of modeling in order to reduce model approximation error. Due to the

complexity of the mixed effects models, the inferences and interpretation of estimated

models become challenging as the dimension of fixed or random components increases.

Thus, the selection of important fixed effect covariates or random components becomes a

fundamental problem in the analysis of longitudinal data or repeated measurements data

using mixed effects models.

Variable selection for mixed effects models has become an active research topic in the

literature. Lin (1997) considers testing a hypothesis on the variance component. The testing

procedures can be used to detect whether an individual random component is significant or

not. Based on these testing procedures, a stepwise procedure can be constructed for selecting

important random effects. Vaida and Blanchard (2005) propose the conditional AIC, an

extension of the AIC (Akaike, 1973), for mixed effects models with detailed discussion on

how to define degrees of freedom in the presence of random effects. The conditional AIC

has further been discussed in Liang et al. (2008). Chen and Dunson (2003) develop a

Bayesian variable selection procedure for selecting important random effects in the linear

mixed effects model using the Cholesky decomposition of the covariance matrix of random

effects, and specify a prior distribution on the standard deviation of random effects with a

positive mass at zero to achieve the sparsity of random components. Pu and Niu (2006)

extend the generalized information criterion to select linear mixed effects models and study

the asymptotic behavior of the proposed method for selecting fixed effects. Bondell et al.

(2010) propose a joint variable selection method for fixed and random effects in the linear

mixed effects model using a modified Cholesky decomposition in the setting of fixed

dimensionality for both fixed effects and random effects. Ibrahim et al. (2011) propose to

select fixed and random effects in a general class of mixed effects models with fixed

dimensions of both fixed and random effects using maximum penalized likelihood method

with the SCAD penalty and the adaptive least absolute shrinkage and selection operator

penalty.

In this paper, we develop a class of variable selection procedures for both fixed effects and

random effects in linear mixed effects models by incorporating the recent advances in

variable selection for linear regression models. We propose to use the regularization

methods to select and estimate fixed and random effects. As advocated by Fan and Li

(2001), regularization methods can avoid the stochastic error of variable selection in

stepwise procedures, and can significantly reduce computational cost compared with the

best subset selection procedure and Bayesian procedures. Our proposal differs from existing

ones in the literature mainly in two aspects. First, we consider the high-dimensional setting

and allow dimensions of fixed and random effects to grow exponentially with the sample

size. Second, our proposed procedures can estimate the fixed effects vector without knowing

or estimating the random effects vector and vice versa.

We first propose a class of variable selection methods for the fixed effects using penalized

profile likelihood method. To overcome the difficulty of unknown covariance matrix of
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random effects, we propose to replace it with a suitably chosen proxy matrix. The penalized

profile likelihood is equivalent to a penalized quadratic loss function of the fixed effects.

Thus, the proposed approach can take advantage of the recent developments in the

computation of the penalized least-squares methods (Efron et al., 2004; Zou and Li, 2008).

The optimization of the penalized likelihood can be solved by the LARS algorithm without

extra effort. We further systematically study the sampling properties of the resulting

estimate of fixed effects. We establish conditions on the proxy matrix and show that the

resulting estimate enjoys model selection oracle property under such conditions. In our

theoretical investigation, the number of fixed effects is allowed to grow exponentially with

the total sample size, provided that the covariance matrix of random effects is nonsingular.

In the case of singular covariance matrix for random effects, one can use our proposed

method in Section 3 to first select important random effects and then conduct variable

selection for fixed effects. In this case, the number of fixed effects needs to be smaller than

the total sample size.

Since the random effects vector is random, our main interest is in the selection of true

random effects. Observe that if a random effect covariateis a noise variable, then the

corresponding realizations of this random effect should all be zero and thus the random

effects vector is sparse. So we propose to first estimate the realization of random effects

vector using a group regularization method and then identify the important ones based on

the estimated random effects vector. More specifically, under the Bayesian framework, we

show that the restricted posterior distribution of the random effects vector is independent of

the fixed effects coefficient vector. Thus, we propose a random effect selection procedure

via penalizing the restricted posterior mode. The proposed procedure reduces the impact of

error caused by the fixed effects selection and estimation. The unknown covariance matrix is

replaced with a suitably chosen proxy matrix. In the proposed procedure, random effects

selection is carried out with group variable selection techniques (Yuan and Lin, 2006). The

optimization of the penalized restricted posterior mode is equivalent to the minimization of

the penalized quadratic function of random effects. In particular, the form of the penalized

quadratic function is similar to that in the adaptive elastic net (Zou and Hastie, 2005; Zou

and Zhang, 2009), which allows us to minimize the penalized quadratic function using

existing algorithms. We further study the theoretical properties of the proposed procedure

and establish conditions on the proxy matrix for ensuring the model selection consistency of

the resulting estimate. We show that, with probability tending to one, the proposed

procedure can select all true random effects. In our theoretical study, the dimensionality of

random effects vector is allowed to grow exponentially with the sample size as long as the

number of fixed effects is less than the total sample size.

The rest of this paper is organized as follows. Section 2 introduces the penalized profile

likelihood method for the estimation of fixed effects and establishes its oracle property. We

consider the estimation of random effects and prove the model selection consistency of the

resulting estimator in Section 3. Section 4 provides two simulation studies and a real data

example. Some discussion is given in Section 5. All proofs are presented in Section 6.
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2. Penalized profile likelihood for fixed effects

Suppose that we have a sample of N subjects. For the i-th subject, we collect the response

variable yij, the d × 1 covariate vector xij, and q × 1 covariate vector zij, for j = 1, … , ni,

where ni is the number of observations on the i-th subject. Let

, and . We consider the case where

, i.e., the sample sizes for N subjects are balanced. For succinct

presentation, we use matrix notation and write yi = (yi1, yi2, … , yini)
T, Xi = (xi1, xi2, … ,

xini)
T, and Zi = (zi1, zi2, … , zini)

T In linear mixed effects models, the vector of repeated

measurements yi on the i-th subject is assumed to follow the linear regression model

(1)

where β is the d × 1 population-specific fixed effects coefficient vector, γi represents the q

× 1 subject-specific random effects with γi ~ N(0, G), εi is the random error vector with

components independent and identically distributed as N(0, σ2), and γ1, …, γN, ε1, …, εN

are independent. Here, G is the covariance matrix of random effects and may be different

from the identity matrix. So the random effects can be correlated with each other.

Let vectors y, γ, and ε, and matrix X be obtained by stacking vectors yi, γi, and εi, and

matrices Xi, respectively, underneath each other, and let Z = diag{Z1, …, ZN} and

 be block diagonal matrices. We further standardize the design matrix X

such that each column has norm . The linear mixed effects model (1) can be rewritten as

(2)

2.1. Selection of important fixed-effects

In this subsection, we assume that there are no noise random effects and  is positive

definite. In the case where noise random effects exist, one can use the method in Section 3 to

select the true ones. The joint density is

(3)

Given β, the maximum likelihood estimate (MLE) for γ is

where . Plugging  into f(y, γ) and dropping the constant

term yield the following profile likelihood function
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(4)

where  with I being the identity matrix. By

Lemma 3 in Section 6, Pz can be rewritten as . To select the

important x-variables, we propose to maximize the following penalized profile log-

likelihood function

(5)

where pλn(x) is a penalty function with regularization parameter λn ≥ 0. Here, the number of

fixed effects dn may increase with sample size n.

Maximizing (5) is equivalent to minimizing

(6)

Since Pz depends on the unknown covariance matrix  and σ2, we propose to use a proxy

 to replace Pz, where  is a pre-specified matrix. Denote by  the

corresponding objective function when  is used. We will discuss in the next section on

how to choose .

We note that (6) does not depend on the inverse of . So although we started this section

with the non-singularity assumption of , in practice our method can be directly applied

even when noise random effects exist, as will be illustrated in simulation studies of Section

4.

Many authors have studied the selection of the penalty function to achieve the purpose of

variable selection for the linear regression model. Tibshirani (1996) proposes the Lasso

method by the use of L1 penalty. Fan and Li (2001) advocate the use of nonconvex penalties.

In particular, they suggest the use of the SCAD penalty. Zou (2006) proposes the adaptive

Lasso by using adaptive L1 penalty, Zhang (2010) proposes the minimax concave penalty

(MCP), Liu and Wu (2007) propose to linearly combine L0 and L1 penalties, and Lv and Fan

(2009) introduce a unified approach to sparse recovery and model selection using general

concave penalties. In this paper, we use concave penalty function to conduct variable

selection. We make the following assumption on the penalty function.

CONDITION 1. For each λ > 0, the penalty function pλ(t) with t ∈ [0, ∞) is increasing and

concave with pλ(0) = 0, its second order derivative exists and is continuous, and

. Further, assume that  as λ → 0.

Condition 1 is commonly assumed in studying regularization methods with concave

penalties. Similar conditions can be found in Fan and Li (2001) and Lv and Fan (2009).

Although it is assumed that  exists and is continuous, it can be relaxed to the case
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where only  exists and is continuous. All theoretical results presented in later sections

can be generalized by imposing conditions on the local concavity of pλ(t), as done in Lv and

Fan (2009).

2.2. Model selection consistency

Although the proxy matrix  may be different from the true one Pz, solving the

regularization problem (6) may still yield correct model selection results at the cost of some

additional bias. We next establish conditions on  to ensure the model selection oracle

property of the proposed method.

Let β0 be the true coefficient vector. Suppose that β0 is sparse and denote s1n = ||β0||0 i.e.,

the number of nonzero elements in β0. Write

where β1,0 is an s1n-vector and β2,0 is a (dn – s1n)-vector. Without loss of generality, we

assume that β2,0 = 0, that is, the nonzero elements of β0 locate at the first s1n coordinates.

With a slight abuse of notation, we write X = (X1,X2) with X1 being a submatrix formed by

the first s1n columns of X and X2 being formed by the remaining columns. For a matrix B,

let Λmin(B) and Λmax(B) be its minimum and maximum eigenvalues, respectively. We make

a few assumptions on the penalty function pλn(t) and the design matrices X and Z.

CONDITION 2.

(A) Letan = min1≤j≤s1n |β0, j|. It holds that annT (log n)−3/2 → ∞ with τ ∈ (0, ) being some

positive constant, and .

(B) There exists a constant c1 > 0 such that  and

 (C) The minimum and maximum eigenvalues of

matrices  and  are both bounded from below and above by c0

and c0
−1 respectively, where θ ∈ (2τ, 1] and c0 > 0 is a constant. Further, it holds that

(7)

(8)

where || · ||∞ denotes the matrix infinity norm.

Condition 2(A) is on the minimum signal strength an. We allow the minimum signal

strength to decay with sample size n. When concave penalties such as SCAD (Fan and Li,
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2001) or SICA (Lv and Fan, 2009) are used, this condition can be easily satisfied with λn

appropriately chosen. Conditions 2(B) and (C) put constraints on the proxy . Condition

2(C) is about the design matrices X and Z. Inequality (8) requires noise variables and signal

variables not highly correlated. The upper bound of (8) depends on the ratio

. Thus, concave penalty functions relax this condition when compared

to convex penalty functions. We will further discuss constraints (7) and (8) in Lemma 1.

If the above conditions on the proxy matrix are satisfied then the bias caused by using  is

small enough and the resulting estimate still enjoys the model selection oracle property

described in the following theorem.

THEOREM 1. Assume that  as n → ∞ and . Then under Conditions

1 and 2, with probability tending to 1 as n → ∞, there exists a local minimizer

 which satisfies

(9)

Theorem 1 presents the weak oracle property in the sense of Lv and Fan (2009) on the local

minimizer of . Due to the high dimensionality and the concavity of pλ(·), the

characterization of the global minimizer of  is a challenging open question. As will be

shown in the simulation and real data analysis, the concave function  will be iteratively

minimized by the local linear approximation method (Zou and Li, 2008). Following the

same idea as in Zou and Li (2008), it can be shown that the resulting estimate poesses the

properties in Theorem 1 under some conditions.

2.3. Choice of proxy matrix 

It is difficult to see from (7) and (8) on how restrictive the conditions on the proxy matrix

 are. So we further discuss these conditions in the lemma below. We introduce the

notation  and  with .

Correspondingly, when the proxy matrix  is used, define  and

. We use || · ||2 to denote the matrix 2-norm, that is, ||A||2 = {Λmax(AAT)}½.

LEMMA 1. Assume that  and

(10)

Then (7) holds.

Similarly, assume that , and there

exists a constant c2 > 0 such that
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(11)

(12)

then (8) holds.

Equations (10), (11) and (12) show conditions on the proxy matrix . Note that if penalty

function used is flat outside of a neighborhood of zero, then  with

appropriately chosen regularization parameter λn, and conditions (10) and (12) respectively

reduce to

(13)

Furthermore, since Z is a block diagonal matrix, if the maximum eigenvalue of ZT−1ZT is of

the order o(n1−θ), then condition (11) reduces to

(14)

Conditions (13) and (14) are equivalent to assuming that  and 

have eigenvalues bounded between 0 and 2. By linear algebra, they can further be reduced to

 and . It is seen from the definitions of T, , E and  that if

eigenvalues of ZPxZT and ZZT dominate those of  by a larger order of magnitude,

then these conditions are not difficult to be satisfied. In fact, note that both ZPxZT and ZZT

have components with magnitudes increasing with n, while the eigenvalues of  are

independent of n. Thus as long as both matrices ZPxZT and ZZT are non-singular, these

conditions should easily be satisfied with the choice  when n is large enough.

3. Identifying important random effects

In this section, we allow the number of random effects q to increase with sample size n and

write it as qn to emphasize its dependency on n. We focus on the case where the number of

fixed effects dn is smaller than the total sample size . We discuss the dn ≥ n case

in the discussion Section 5. The major goal of this section is to select important random

effects.

3.1. Regularized posterior mode estimate

The estimation of random effects is different from the estimation of fixed effects, as the

vector γ is random. The empirical Bayes method has been used to estimate the random

effects vector γ in the literature. See, for example, Box and Tiao (1973), Gelman et al.

(1995), and Verbeke and Molenberghs (2000). Although the empirical Bayes method is

successful in estimating random effects in many situations, it cannot be used to select

important random effects. Moreover, the performance of empirical Bayes estimate largely
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depends on the accuracy of estimated fixed effects. These difficulties call for a new proposal

for random effects selection.

Patterson and Thompson (1971) propose the error contrast method to obtain the restricted

maximum likelihood of a linear model. Following their notation, define the n×(n–d) matrix

A by the conditions AAT = Px and ATA = I, where Px = I − X(XTX)−1XT. Then the vector

AT ε provides a particular set of n – d linearly independent error contrasts. Let w1 = AT y.

The following proposition characterizes the conditional distribution of w1:

Proposition 1. Given γ, the density function of w1 takes the form

(15)

The above conditional probability is independent of the fixed effects vector β and the error

contrast matrix A, which allows us to obtain a posterior mode estimate of γ without

estimating β and calculating A.

Let  be the index set of the true random effects. Define

and denote by . Then  is the index set of nonzero random effects

coefficients in the vector γ, and  is the index set of the zero ones. Let  be the

number of true random effects. Then . We allow Ns2n to diverge with sample

size n, which covers both the case where the number of subjects N diverges with n alone and

the case where N and s2n diverge with n simultaneously.

For any  we use  to denote the (qnN)×| | submatrix of Z formed by

columns with indices in  and  to denote the subvector of γ formed by components with

indices in . Then  with  a submatrix formed by entries of  with row and

column indices in .

In view of (15), the restricted posterior density of  can be derived as

Therefore, the restricted posterior mode estimate of  is the solution to the following

minimization problem:

(16)
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In practice, since the true random effects  are unknown, the formulation (16) does not

help us estimate γ. To overcome this difficulty, note that  and

 with  the Moore-Penrose generalized inverse of . Thus, the

objective function in (16) is rewritten as

which no longer depends on the unknown . Observe that if the k-th random effect is a

noise one, then the corresponding standard deviation is 0 and the coefficients γik for all

subjects i = 1, … ,N should equal to 0. This leads us to consider group variable selection

strategy to identify true random effects. Define  and

consider the following regularization problem

(17)

where pλn(·) is the penalty function with regularization parameter λn ≥ 0. The penalty

function here may be different from the one in Section 2. However, to ease the presentation,

we use the same notation.

There are several advantages to estimating the random effects vector γ using the above

proposed method (17). First, this method does not require knowing or estimating the fixed

effects vector β, so it is easy to implement, and the estimation error of β has no impact on

the estimation of γ. In addition, by using the group variable selection technique, the true

random effects can be simultaneously selected and estimated.

In practice, the covariance matrix  and the variance σ2 are both unknown. Thus, we

replace  with , where  with M a proxy of G, yielding the

following regularization problem

(18)

It is interesting to observe that the form of regularization in (18) includes the elastic net (Zou

and Hastie, 2005) and the adaptive elastic net (Zou and Zhang, 2009) as special cases.

Furthermore, the optimization algorithm for adaptive elastic net can be modified for

minimizing (18).

3.2. Asymptotic properties

Minimizing (18) yields an estimate of γ, denoted by  . In this subsection, we study the

asymptotic property of . Because γ is random rather than a deterministic parameter vector,

the existing formulation for the asymptotic analysis of a regularization problem is

inapplicable to our setting. Thus, asymptotic analysis of  is challenging.
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Let  and . Denote by ,

, and . Similarly, we can define submatrices , , and

 by replacing  with . Then it is easy to see that . Notice that if the

oracle information of set  is available and  and σ2 are known, then the Bayes estimate of

the true random effects coefficient vector  has the form . Define

 with  for j = 1, … ,N as the oracle-assisted

Bayes estimate of the random effects vector. Then  and .

Correspondingly, define  as the oracle Bayses estimate with proxy matrix, i.e.,  and

(19)

For k = 1, … , qn, let . Throughout we condition on the event

(20)

with  and . The above event Ω* is to ensure that the oracle-

assisted estimator  of σk is not too negatively biased. We will need the following

assumptions.

CONDITION 3. (A) The maximum eigenvalues satisfy  for all i = 1,

… ,N, and the minimum and maximum eigenvalues of  and  are bounded

from below and above by c3 and c3
−1 respectively with mn = max1≤i≤N ni, where c3 is a

positive constant. Further, assume that for some δ ∈ (0, ½),

(21)

(22)

where  is the submatrix formed by the N columns of Z corresponding to the j-th random

effect.

(B) It holds that .

(C) The proxy matrix satisfies that .
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Condition 3(A) is about the design matrices X, Z, and covariance matrix . Since  is a

block diagonal matrix and , the components of  have

magnitude of the order mn = O(n/N). Thus, it is not very restrictive to assume that the

minimum and maximum eigenvalues of  are both of the order mn. Condition (22)

puts an upper bound on the correlation between noise covariates and true covariates. The

upper bound of (22) depends on the penalty function. Note that for concave penalty we have

, whereas for L1 penalty . Thus,

concave penalty relaxes (22) when compared with the L1 penalty. Condition 3(B) is satisfied

by many commonly used penalties with appropriately chosen λn, for example, L1 penalty,

SCAD penaty, and SICA penalty with small a. Condition 3(C) is a restriction on the proxy

matrix , which will be further discussed in the next subsection.

Let  with γj = (γj1, … , γjqn)T being an arbitrary (Nqn)-vector. Define

 for each k = 1, … , qn. Let

(23)

Theorem 2 below shows that there exists a local minimizer of  defined in (18) whose

support is the same as the true one  and that this local minimizer is close to the estimator

.

THEOREM 2. Assume that Conditions 1 and 3 hold, ,

, and  as n → ∞. Then, with

probability tending to 1, there exists a strict local minimizer  of  such that

where δ is defined in (21).

Using similar argument to that for Theorem 1, we can obtain that the dimensionality Nqn is

also allowed to grow exponentially with sample size n under some growth conditions and

with appropriately chosen λn. In fact, note that if the sample sizes n1 = … N ≡ mn/N, then

the growth condition in Theorem 2 becomes . Since the lowest

signal level in this case is , if  is a constant, a reasonable choice of tuning parameter

would be of the order  with some κ ∈ (0, ½). For s2n = O(nν) with ν ∈ [0, ½) and

Nn1–2κ–ν → ∞, we obtain that Nqn can grow with rate exp(Nn1−2κ−ν).
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3.3. Choice of proxy matrix 

Similarly as for the fixed effects selection and estimation, we discuss (21) and (22) in the

following lemma.

LEMMA 2. Assume that  and

(24)

Then (21) holds.

Similarly, assume that  with  defined in

(22) and

(25)

Then (22) holds.

Conditions (24) and (25) put restrictions on the proxy matrix . Similarly to the

discussions after Lemma 1, if , then these conditions become

. If  dominates  by a larger magnitude, then conditions

(24) and (25) are not restrictive, and choosing  should make these conditions

as well as Condition 3(C) satisfied for large enough n.

We remark that using the proxy matrix  is equivalent to ignoring correlations

among random effects. The idea of using diagonal matrix as a proxy of covariance matrix

has been proposed in other settings of high dimensional statistical inference. For instance,

the naive Bayes rule (or independence rule), which replaces the full covariance matrix in

Fisher’s discriminant analysis with a diagonal matrix, has been demonstrated to be

advantageous for high dimensional classifications both theoretically (Bickel and Levina,

2004; Fan and Fan, 2008) and empirically (Dudoit et al., 2002). The intuition is that

although ignoring correlations gives only a biased estimate of covariance matrix, it avoids

the errors caused by estimating a large amount of parameters in covariance matrix in high

dimensions. Since the accumulated estimation error can be much larger than the bias, using

diagonal proxy matrix indeed produces better results.

4. Simulation and application

In this section, we investigate the finite-sample performance of the proposed procedures by

Monte Carlo simulations and an empirical analysis of a real data set. Throughout, the SCAD

penalty with α = 3.7 (Fan and Li, 2001) is used. For each simulation study, we randomly

simulate 200 data sets. Tuning parameter selection plays an important role in regularized

methods. For fixed effect selection, both AIC and BIC-selectors (Zhang, Li and Tsai, 2010)
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are used to select the regularization parameter λn in (6). Our simulation results clearly

indicate that the BIC-selector performs better than the AIC-selector for both the SCAD and

the LASSO penalties. This is consistent with the theoretical analysis in Wang, Li and Tsai

(2007). To save space, we report the results with the BIC-selector. Furthermore the BIC-

selector is used for fixed effect selection throughout this section. For random effect

selection, both AIC- and BIC-selectors are also used to select the regularization parameter

λn in (18). Our simulation results imply that the BIC-selector outperforms the AIC-selector

for the LASSO penalty, while the SCAD with AIC-selector performs better than the SCAD

with BIC-selector. As a result, we use AIC-selector for the SCAD and BIC-selector for the

LASSO random effect selection throughout this section.

Example 1. We compare our method with some existing ones in the literature under the

same model setting as that in Bondell et al. (2010), where a joint variable selection method

for fixed and random effects in linear mixed effects models is proposed. The underlying true

model takes the following form with q = 4 random effects and d = 9 fixed effects

(26)

where the true parameter vector β0 = (1, 1, 0, … , 0)T , the true covariance matrix for

random effects

and the covariates xijk for k = 1, … , 9 zijl for l = 1, 2, 3 are generated independently from a

uniform distribution over the interval [−2, 2]. So there are three true random effects and two

true fixed effects. Following Bondell et al. (2010), we consider two different sample sizes N

= 30 subjects and ni = 5 observations per subject, and N = 60 and ni = 10. Under this model

setting, Bondell et al. (2010) compared their method with various methods in the literature,

and simulations therein demonstrate that their method outperforms the competing ones. So

we will only compare our methods with the one in Bondell et al. (2010).

In implementation, the proxy matrix is chosen as . We then estimate the

fixed effects vector β by minimizing , and the random effects vector γ by minimizing

(18). To understand the effects of using proxy matrix  on the estimated random effects

and fixed effects, we compare our estimates with the ones obtained by solving regularization

problems (6) and (17) with the true value .

Table 1 summarizes the results by using our method with the proxy matrix  and SCAD

penalty (SCAD-P), our method with proxy matrix  and Lasso penalty (Lasso-P), our

method with true  and SCAD penalty (SCAD-T). When SCAD penalty is used, the

local linear approximation (LLA) method proposed by Zou and Li (2008) is employed to

solve these regularization problems. The rows “M-ALASSO” in Table 1 correspond to the

joint estimation method by Bondell et al. (2010) using BIC to select the tuning parameter.

As demonstrated in Bondell et al. (2010), the BICselector outperforms the AIC selector for
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M-ALASSO. We compare these methods by calculating the percentage of times the correct

fixed effects are selected (%CF), and the percentage of times the correct random effects are

selected (%CR). Since these two measures were also used in Bondell et al. (2010), for

simplicity and fairness of comparison, the results for M-ALASSO in Table 1 are copied

from Bondell et al. (2010).

It is seen from Table 1 that SCAD-P greatly outperforms the method with Lasso penalty as

well as the M-ALASSO method. We also see that when the true covariance matrix  is

used, SCAD-T has almost perfect variable selection results. Using the proxy matrix 

makes the results slightly inferior, but the difference vanishes when the sample size is large,

i.e., N = 60, ni = 10.

Example 2. In this example, we consider the case where the design matrices for fixed and

random effects overlap. The sample size is fixed at ni = 8 and N = 30, and the numbers for

fixed and random effects are chosen to be d = 100 and q = 10, respectively. To generate the

fixed effects design matrix, we first independently generate  from Nd(0, Σ), where Σ =
(σst) with σst = ρ|s–t| and ρ ∈ (−1, 1). Then for the j-th observation of the i-th subject, we set

 for covariates k = 1 and d, and set  for all other values of k. Thus,

2 out of d covriates are discrete ones and the rest are continuous ones. Moreover, all

covariates are correlated with each other. The covariates for random effects are the same as

the corresponding ones for fixed effects, i.e., for the j-th observation of the i-th subject, we

set zijk = xijk for k = 1, … , q = 10. Then the random effect covariates form a subset of fixed

effect covariates.

The first six elements of fixed effects vector β0 are (2, 0, 1.5, 0, 0, 1)T and the remaining

elements are all zero. The random effects vector γ is generated in the same way as in

Example 1. So the first covariate is discrete and has both fixed effect and random effect. We

consider different values of correlation level ρ, as shown in Table 2.

Since the dimension of random effects vector γ is much larger than the total sample size, as

suggested at the beginning of Subsection 2.1, we start with the random effects selection by

first choosing a relatively small tuning parameter λ and use our method in Section 3 to

select important random effects. Then with the selected random effects, we apply our

method in Section 2 to select fixed effects. To improve the selection results for random

effects, we further use our method in Section 2 with the newly selected fixed effects to

reselect random effects. This iterative procedure is applied to both Lasso-P and SCAD-P

methods. For SCAD-T, since the true  is used, it is unnecessary to use the iterative

procedure and we apply our methods only once for both fixed and random effects selection

and estimation.

We evaluate our new method by calculating the relative L2 estimation loss, which is defined

as
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where  is an estimate of the fixed effects vector β0. Similarly, the relative L1 estimation

error of  , denoted by , can be calculated by replacing the L2-norm with the L1-

norm. For the random effects estimation, we define  and  in a similar way by

replacing β0 with the true γ in each simulation. We calculate the mean values of RL2 and

RL1 in the simulations and denote them by MRL2 and MRL1 in Table 2. In addition to

mean relative losses, we also calculate the percentages of missed true covaritates (FNR), as

well as the percentages of falsely selected noise covariates (FPR), to evaluate the

performance of proposed methods

From Table 2 we see that SCAD with the true covariance matrix has almost perfect variable

selection results for fixed effects, while SCAD-P has highly comparable performance, for all

three values of correlation level ρ. Both methods greatly outperform the Lasso-P method.

For the random effects selection, both SCAD-P and SCAD-T perform very well with

SCAD-T having slightly larger false negative rates. We remark that the superior

performance of SCAD-P is partially because of the iterative procedure. In these high-

dimensional settings, directly applying our random effects selection method in Section 3

produces slightly inferior results to the ones for SCAD-T in Table 2, but iterating once

improves the results. We also see that as the correlation level increases, the performance of

all methods become worse, but the SCAD-P is still comparable to SCAD-T and both

perform very well in all settings.

Example 3. We illustrate our new procedures through an empirical analysis of a subset of

data collected in the Multi-center AIDs Cohort Study. Details of the study design, method,

and medical implications have been given by Kalsow et al. (1987). This data set comprises

the human immunodeficiency virus (HIV) status of 284 homosexual men who were infected

with HIV during the follow-up period between 1984 and 1991. All patients are scheduled to

take measurements semiannually. However, due to the missing of scheduled visits and the

random occurrence of HIV infections, there are an unequal number of measurements and

different measurement times for each patients. The total number of observations is 1765.

Of interest is to investigate the relation between the mean CD4 percentage after the infection

(y) and predictors smoking status (x1, 1 for smoker and 0 for non-smoker), age at infection

(x2), and pre-HIV infection CD4 percentage (Pre-CD4 for short, x3). To account for the

effect of time, we use a five dimensional cubic spline b(t) = (b1(t), b2(t), … , b5(t))T . We

take into account the two-way interactions b(tij)xi3, xi1xi2, xi1xi3, and xi2xi3. These eight

interactions together with variables b(tij ), xi1, xi2, and xi3 give us 16 variables in total. We

use these 16 variables together with an intercept to fit a mixed effects model with

dimensions for fixed and random effects d = q = 17. The estimation results are listed in

Table 3 with rows “Fixed” showing the estimated βj’s for fixed effects, and rows “Random”

showing the estimates . The standard error for the null model is 11.45, and it

reduces to 3.76 for the selected model. From Table 3, it can be seen that the baseline has

time-variant fixed effect and Pre-CD4 has time-variant random effect. Smoking has fixed

effect while age and Pre-CD4 have no fixed effects. The interactions smoking×Pre-CD4 and

age×Pre-CD4 have random effects with smallest standard deviations among selected random

effects. The boxplot of the selected random effects is shown in Figure 1.
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Our results have close connections with the ones in Huang et al (2002) and Qu and Li

(2006), where the former used bootstrap approach to test the significance of variables and

the later proposed hypothesis test based on penalized spline and quadratic inference function

approaches, for varying-coefficient models. Both papers revealed significant evidence for

time-varying baseline, which is consistent with our discovery that basis functions bj(t)’s

have nonzero fixed effect coefficients. At 5% level, Huang et al (2002) failed to reject the

hypothesis of constant Pre-CD4 effect (p-value 0.059), while Qu and Li (2006)’s test was

weakly significant with p-value 0.045. Our results show that Pre-CD4 has constant fixed

effect and time-varying random effect, which may provide an explanation on the small

difference of p-values in Huang et al (2002) and Qu and Li (2006).

To further access the significance of selected fixed effects, we refit the linear mixed effects

model with selected fixed and random effects using the Matlab function “nlmefit”. Based on

the t-statistics from the refitted model, the intercept, the baseline functions b1(t) and b2(t) are

all highly significant with t-statistics much larger than 7, while the t-statistics for b4(t) and x1

(smoking) are −1.026 and 2.216, respectively. This indicates that b4(t) is insignificant and

smoking is only weakly significant at 5% significance level. This result is different from

those in Huang et al (2002) and Qu and Li (2006), where neither paper found significant

evidence for smoking. A possible explanation is that by taking into account random effects

and variable selection, our method has better discovery power.

5. Discussion

We have discussed the selection and estimation of fixed effects in Section 2, providing that

the random effects vector has nonsingular covariance matrix, while we have discussed the

selection and estimation of random effects in Section 3, providing that the dimension of

fixed effects vector is smaller than the sample size. We have also illustrated our methods

with numerical studies. In practical implementation, the dimensions of the random effects

vector and fixed effects vector can be both much larger than the total sample size. In such

case, we suggest an iterative way to select and estimate the fixed and random effects.

Specifically, we can first start with the fixed effects selection using the penalized least

squares by ignoring all random effects to reduce the number of fixed effects to below sample

size. Then in the second step, with the selected fixed effects, we can apply our new method

in Section 3 to select important random effects. Thirdly, with the selected random effects

from the second step, we can use our method in Section 2 to further select important fixed

effects. We can also iterate the second and third steps several times to improve the model

selection and estimation results.

6. Proofs

Lemma 3 is proved in the online supplemental file.

LEMMA 3. It holds that 
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6.1. Proof of Theorem 1

Let . We are

going to show that under conditions 1 and 2, there exists a local minimizer

 with asymptotic probability one.

For a vector  be a vector of the same length whose j-th

component is . By Lv and Fan (2009), the sufficient

conditions for  with  being a strict local minimizer of 

are

(27)

(28)

(29)

where . So we only need to show that with probability tending to 1,

there exists a  satisfying conditions (27) – (29).

We first consider (27). Since y = X1β0,1 + Zγ + ε, equation (27) can be rewritten as

(30)

Define a vector-valued continuous function

 with β1 ∈

Rs1n. It suffices to show that with probability tending to 1, there exists 

such that . To this end, first note that

By Condition 2(B), the matrix , where

A ≥ 0 means the matrix A is positive semi-definite. Therefore,

(31)
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Thus, the j-th diagonal component of matrix V in (31) is bounded from above by the j-th

diagonal component of . Further note that by Condition 2(B),

. Recall that by linear algebra, if

two positive definite matrices A and B satisfy A ≥ B, then it follows from the Woodbury

formula that A−1 ≤ B−1. Thus,  and

. So by Condition 2(C), the diagonal

components of V in (31) are bounded from above by O(n−θ(log n)). This indicates that the

variance of each component of the normal random vector  is

bounded from above by O(n−θ(log n)). Hence, by Condition 2(C),

(32)

Next, by Condition 2(A), for any  and large enough n, we can

obtain that

(33)

Since  is a decreasing function in (0, ∞), we have

. This together with Condition 2(C) ensures that

(34)

Combining (32) and (34) ensures that with probability tending to 1, if n is large enough,

Applying the Miranda’s existence theorem (Vrahatis, 1989) to the function g(β1) ensures

that there exists a vector  satisfying  such that

.

Now we prove that the solution to (27) satisfies (28). Plugging y = X1β0,1 + Zγ + ε into v in

(28) and by (30), we obtain that
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where  and

. Since , it is easy to see that v2,1

has normal distribution with mean 0 and variance

(35)

Since ,  is a projection matrix, and  has

eigenvalues less than 1, it follows that for the unit vector ek,

where the last step is because each column of X is standardized to have L2-norm . Thus,

the diagonal elements of the covariance matrix of v1,2 are bounded from above by c1n.

Therefore, for some large enough constant C > 0,

Thus, it follows from the assumption  that

. Moreover, by Condition 2(B) and (C),

Therefore, the inequality (28) holds with probability tending to 1 as n → ∞.

Finally we prove that  satisfying (27) and (28) also makes (29) hold with probability

tending to 1. By (33) and Condition 2(A),

On the other hand, by condition 2(C), . Since θ > 2τ , the

inequality (34) holds with probability tending to 1 as n → ∞.

Combing the above results, we have shown that with probability tending to 1 as n → ∞,

there exists  which is a strict local minimizer of . This concludes the proof.
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6.2. Proof of Theorem 2

Let  with  a RNqn-vector satisfying .

Define  with uj = (uj1, … , ujqn)T , where for j = 1, … ,N,

(36)

and λnujk = 0 if . Here, . Let  be the Bayes estimate defined

in (19). By Lv and Fan (2009), the sufficient conditions for γ ∈ RqnN with  being a

strict local minimizer of (18) are

(37)

(38)

(39)

where  with wj = (wj1, … , wjqn)T , and

(40)

We will show that, under Conditions 1 and 3, the above (37) – (39) are satisfied with

probability tending to 1 in a small neighborhood of .

In general, it is not always guaranteed that (37) has a solution. We first show that under

Condition 3, there exists a vector  with  such that  makes (37) hold. To this

end, we constrain the objective function  defined in (18) on the (Nsn2)-dimensional

subspace . Next define

For any  and each , we have
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(41)

Note that by Condition 3(C), we have . Thus it can be derived using linear

algebra and the definitions of  and  that . Since we condition on the event Ω*

in (20), it is seen that for large enough n,

(42)

for  and . Thus, in view of the definition of u(γ) in (36), for , we have

where the last step is because  is decreasing in t ∈ (0, ∞) due to the concavity of

pλn(t). This together with (21) in Condition 3 ensures

(43)

Now define the vector-valued continuous function , with ξ a

RNs2n-vector. Combining (41) and (43) and applying Miranda’s existence theorem

(Vrahatis, 1989) to the function Ψ(ξ), we conclude that there exists  such that  is

a solution to equation (37).

We next show that  defined above indeed satisfies (39). Since , by (42) we have

 for . Since pλn(t) is concave in t ∈ [0, ∞), we know that  is

negative and increasing in (0, ∞). Note that for any vector x,

(44)

Thus,

This together with (20) indicates that with probability tending to 1, the maximum eigenvalue

of the matrix  is less than
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Further, by Condition 3 (A) and (B), . Thus,

the maximum eigenvalue of the matrix  is less than

 with asymptotic probability 1, and (39) holds for 

It remains to show that  satisfies (38). Let . Since  is a solution to (37), we

have . In view of (40), we have

(45)

Since , we obtain that  with

. Note that  is a block

diagonal matrix and the i-th block matrix has size ni×(qn–s2n). By Condition 3(A), it is easy

to see that . Thus,

. Further, it follows

from  and  that

Thus, the i-th diagonal element of H is bounded from above by the i-th diagonal element of

, and thus bounded by  with  some positive constant.

Therefore by the normality of  we have

Therefore,  and
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(46)

where  is the ((j – 1)qn + k)-th element of Nqn-vector .

Now we consider . Define  as the submatrix of Z formed by columns corresponding to

the j-th random effect. Then, for each j = s2n +1, … , qn, by Condition 3(A) we obtain that

where  is the ((j – 1)qn + k)-th element of Nqn-vector . Since , by (36), (42)

and the decreasing property of  we have . By (22)

in Condition 3(A),

Combing the above result for  with (45) and (46), we have shown that (38) holds with

asymptotic probability one. This completes the proof.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Boxplots of selected random effects. From left to right: bi(t)x3, i = 1, 2, … , 5, x1x3, x2x3,

where x1 is the smoking status, x2 is the age at infection, x3 is Pre-CD4 level, and bi(t)’s are

cubic spline basis functions of time.
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Table 1
Fixed and random effects selection in Example 1 when d = 9 and q = 4

Setting Method %CF %CR

N = 30 Lasso-P 51 19.5

Hi = 5 SCAD-P 90 86

SCAD-T 93.5 99

M-ALASSO 73 79

N = 60 Lasso-P 52 50.5

ni = 10 SCAD-P 100 100

SCAD-T 100 100

M-ALASSO 83 89
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