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Abstract

We report a novel method of DNA array formation that is electrochemically formed and addressed

with a two-electrode platform. Electrochemical activation of a copper catalyst, patterned with one

electrode, enables precise placement of multiple sequences of DNA onto a second electrode

surface. The two-electrode patterning and detection platform allows for both spatial resolution of

the patterned DNA array and optimization of detection through DNA-mediated charge transport

with electrocatalysis. This two-electrode platform has been used to form arrays that enable

differentiation between well-matched and mismatched sequences, the detection of TATA-binding

protein, and sequence-selective DNA hybridization.

Nucleic acid sensors are critical for the detection of many biological markers of disease.

Although fluorescence-based hybridization arrays have proven useful for high-throughput

screening applications,1,2 they have not shown utility for bench-top clinical diagnostics.

Electrochemical assays based on DNA-mediated charge transport (DNA CT) are well suited

for point-of-care applications; they require only simple electronic instrumentation and do not

require stringent hybridization procedures to report on mutations, protein binding, as well as

other π-stack perturbations.3–5

In conventional analytical platforms, electrochemical read-out occurs at the surface onto

which the DNA monolayers are assembled. As a result, these assays report on bulk changes

that occur over the entire electrode area. Multiplexing has enabled multiple experimental

conditions to be run in parallel,7–10 yet these platforms still yield only average changes that

occur over the entire surface. Comparing individual electrodes can be misleading, as small

variations in monolayer composition can lead to substantial differences in electrochemical

responses.

Alternatively, two-electrode detection systems can provide spatial resolution over

specifically defined regions on a single electrode surface. The most widely used two-
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electrode technique is scanning electrochemical microscopy (SECM).11–14 This technique

has been used to detect oligonucleotide hybridization events on DNA-modified

surfaces.15–18 Here, we report a simplified, macroscopic SECM-like system for both

addressing and analyzing DNA arrays composed of different sequences grafted onto a single

surface. This platform requires no specialized equipment, only a standard bipotentiostat,

microelectrode, and x,y,z-stage. Electrochemical readout is accomplished via amperometric

detection at a probe electrode positioned above the substrate surface. As multiple DNA

sequences are patterned onto the same surface, different sequences can be examined under

identical conditions with redundancy and internal controls.

Our strategy for grafting DNA arrays is shown in Figure 1. Surfaces are prepared by vapor-

depositing gold films onto glass microscope slides, forming both square substrate electrodes

and a patterning electrode that features interdigitated patterning lines spaced 2-mm apart.19

Next, mixed monolayers are self-assembled onto the substrate electrodes from an ethanolic

solution of 12-azidododecane-1-thiol and 11-mercaptoundecylphosphoric acid, producing a

surface passivated against ferricyanide and methylene blue, electrochemical reporters of

DNA CT. Duplex DNAs20 are then grafted onto the substrate electrodes by sandwiching an

aqueous solution of [Cu(phendione)2][SO4] and an alkyne-labeled DNA sequence between

the substrate and patterning pads separated by a thin (200 μm) Teflon spacer.

Electrochemical reduction of Cu(phendione)2
2+ at specific working electrodes on the

patterning pad yields spatially isolated DNA duplexes covalently bound to the substrate via

Cu(I)-catalyzed azide/alkyne coupling (Figure 1B). Using this method, multiple DNA

sequences can be grafted onto the same substrate by rinsing the surface following Cu(I)

activation, then repeating the procedure with a different DNA sequence.21 While click

chemistry has been used previously to prepare DNA-modified electrodes, this has not been

accomplished with two-electrode electrochemical activation.22,23 The electrochemical

control of the copper catalyst from a secondary electrode offers a unique route to

functionalize the surface with DNA under spatial control.

We confirmed attachment of DNA onto the mixed monolayer by recording a cyclic

voltammogram (CV) at the substrate pad in the presence of 200 μM ferricyanide and 2 μM

methylene blue (MB) (Figure 2). The CV displays a large, irreversible reduction at ~ −0.4 V,

characteristic of DNA-mediated electrocatalytic reduction of ferricyanide by methylene blue

(Figure 2C).24,25 Although this experiment confirms that DNA is present on the surface, it

provides no information on either the homogeneity or the types of DNA present.

Indeed, the bulk response shown in Figure 2 was obtained from a surface patterned with two

strips of well-matched DNA and two strips of DNA containing a single-base mismatch.

To interrogate the substrate more closely, a 100-μm gold electrode positioned above the

substrate electrode using an x,y,z-stage was employed as a secondary electrode to create a

detection system that enables spatial resolution in the x-y plane.26 DNA-mediated reduction

of ferricyanide (via methylene blue electrocatalysis) occurs only at locations on the substrate

electrode addressed with well-matched DNA. As a consequence, amperometric detection of

ferrocyanide at the probe electrode signals the presence of intact DNA duplexes at proximal

locations on the underlying pad. As shown in Figure 2D, only Watson-Crick paired DNA
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(black arrows) is detected using this method; sequences containing a mismatch (red arrows)

yield no signals, owing to the attenuation of DNA CT by a disruption in the π-stack.27,28

Thus measuring ferrocyanide oxidation at the microelectrode tip as a function of position on

the surface allows for spatial differentiation between the passivating layer and regions

containing DNA on the substrate. The utilization of a separate top probe electrode,

moreover, ensures that the current flow is DNA-mediated and amplified through

electrocatalysis. Notably, this method provides reproducible current outputs for multiple

strips of a single DNA sequence (Figure S1), demonstrating a high level of reproducibility;

the standard deviation for peak currents of DNA of the same sequence is 95 pA, or 1.5%. It

should be noted that the full width half max of the DNA peaks is ~1 mm, the width of the

patterning electrodes, indicating minimal diffusive spreading of the catalyst upon

activation.29

Protein binding was also tested on this platform using the eukaryotic TFIID transcription

factor TBP.30 We have shown previously that TBP binding leads to attenuated CT in

duplexes containing a TATA-binding sequence but does not affect duplexes lacking the

binding site.31 We therefore patterned alternating strips of TBP-binding sequences and non-

binding sequences on a substrate surface.32 As shown in Figure 3, in the absence of TBP,

four strips of well-matched DNA are detected. When TBP is titrated in, however, a loss of

electrochemical signal occurs only at the location of the TBP sequences. At 15 nM, an

almost complete signal loss is observed, indicating specific and sensitive protein detection

with spatial resolution on this two-electrode platform.

This same strategy can be employed also to detect selective DNA hybridization. Alternating

strips of well-matched DNA and DNA containing a CA mismatch were patterned onto the

electrode surface. Imaging the substrate from the top of the monolayer yields the expected

pattern of alternating high and low currents at the probe tip (Figure 4). The DNA on the

electrode was then dehybridized by heating the substrate pad in 65°C buffer for fifteen

minutes. A strand of DNA fully complementary to the alkynyl strand that was originally

mismatched was subsequently incubated on the surface for one hour, resulting in the

formerly mismatched sequences being well-matched and vice-versa.33 Rescanning the

substrate electrode revealed almost complete reversal of signal locations, indicating that the

majority of the DNA helices on the surface were dehybridized and rehybridized to an

alternate complement. Our platform effectively differentiates between fully complementary

duplexes versus those that contain single-base mismatches, making it ideally suited for

assays based on hybridization. Because DNA CT-based assays rely on π-stacking

interactions within fully annealed duplexes, they do not require stringent hybridization

conditions.

Incorporating selective DNA patterning into a two-electrode platform thus enables sensitive

detection of protein binding to DNA, as well as specific hybridization events with spatial

resolution on a single surface. Multiple DNA probe sequences can be accurately grafted

using readily available alkyne-labeled duplexes and an electrochemically-activated copper

complex to initiate click coupling. DNA CT-based electrochemical assays are inherently

more sensitive and selective than other DNA-based platforms, and as readout is

accomplished at a secondary electrode, bulk surface defects that would otherwise complicate
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single-electrode measurements are readily detected. Moreover, detection at the secondary

electrode insures that the signal is both DNA-mediated and electrocatalytically enhanced,

yielding high differential sensitivity, indeed higher than that seen previously. The

electrochemical DNA-grafting method reported here is well suited for preparing densely

packed arrays of DNA sequences for use in multiple analyte detection on a single surface.
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32. TATA-Binding Protein (TBP) was purchased from ProteinOne and stored at −80 C until use.
MicroBiospin 6 columns (BioRad) were used to exchange the shipping buffer for Tris buffer (10
mM Tris, 100 mM KCl, 2.5 mM MgCl2, 1 mM CaCl2, pH 7.6). Prior to electrochemical
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Figure 1.
Selective activation for specific covalent attachment of DNA to particular locations. (A) An

inert Cu(II) catalyst is electrochemically activated to an active Cu(I) species capable of

catalyzing the [3+2] azide-alkyne cycloaddition between alkyne-modified DNA and an

azide-terminated thiol monolayer. (B) Four different sequences of DNA are patterned onto a

single substrate pad through sequential catalyst activations. (C) Design for patterning

electrodes and substrate electrode. The patterning pad (left) contains four working electrodes

that are individually addressable interspersed with three reference electrodes. The substrate

pad (right) contains a single, large gold pad and a working electrode contact to the pad.
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FIGURE 2.
Comparison between bulk versus spatially resolved electrochemical readout. (A)

Conventional detection involves measuring electrocatalytic currents at the substrate

electrode: (i) intercalated methylene blue (MB) is reduced to leucomethylene blue (LB)

through well-matched DNA duplexes; (ii) LB dissociates from the duplex and reduces ferri-

to ferrocyanide, and (iii) the resulting MB intercalates back into the DNA duplex to restart

the cycle. (B) Two-electrode electrocatalysis. The same chemistry occurs at the substrate

electrode, but a probe microelectrode reduces electrochemically-produced ferrocyanide back

to ferricyanide, providing amperometric readout via a secondary electrode. (C)

Electrocatalytic signal recorded at a substrate pad modified with two strips of well matched

and two strips of mismatched DNA (see supporting information for sequences). The bulk

electrochemical signal from the substrate pad shows a classic electrocatalytic peak,

indicating the presence of some well-matched DNA on the electrode surface. (D)

Electrochemical response of the probe electrode as a function of its position over the same

substrate surface in (C) using the two-electrode detection method. Here, the existence of two
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different sequences of DNA: matched (black arrows) and mismatched (red arrows) becomes

apparent. The surface was scanned at ~0.6 mm/sec with a 100 μm gold microelectrode.

(Analyte solutions contained 2 μM MB and 200 μM ferricyanide in 10 mM Tris buffer with

100 mM KCl, 2.5 mM MgCl2, and 1 mM CaCl2, pH 7.6.)
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Figure 3.
TBP detection on a patterned surface. Current increases negatively down the y-axis. The

surface was patterned with four alternating strips of DNA that either lack or contain a TBP

binding site. The blue trace is a scan in 2 μM methylene blue and 200 μM ferricyanide

before the addition of TBP but after a 30 minute incubation in 100 μM BSA, which controls

for non-specific protein binding. The red trace is after a 15-minute incubation with 15 nM

TBP protein; the current corresponding to the TBP-binding sequences was diminished,

while the current at locations without the protein binding site were unaffected.
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Figure 4.
Oligonucleotide detection through dehybridization and hybridization. Current increases

negatively down the y-axis. The surface was patterned with two strips of well-matched DNA

and two strips that contain a mismatch. The blue trace is a preliminary scan in 2μM

methylene blue and 200μM ferricyanide before dehybridization. The surface was

subsequently soaked in phosphate buffer (5 mM phosphate, 50 mM NaCl, pH 7) at 65°C for

15 minutes. Single stranded oligonucleotides complementary to the formerly mismatched

sequence heated to 65°C were added and allowed to cool to room temperature over 1 hour.

The red trace shows the post-rehybridization data, where the mismatched sequences are now

well matched and the formerly well matched, now mismatched.
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