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Abstract

The development of screening instruments for psychiatric disorders involves item selection from a

pool of items in existing questionnaires assessing clinical and behavioral phenotypes. A screening

instrument should consist of only a few items and have good accuracy in classifying cases and

non-cases. Variable/item selection methods such as Least Absolute Shrinkage and Selection

Operator (LASSO), Elastic Net, Classification and Regression Tree, Random Forest, and the two-

sample t-test can be used in such context. Unlike situations where variable selection methods are

most commonly applied (e.g., ultra high-dimensional genetic or imaging data), psychiatric data

usually have lower dimensions and are characterized by the following factors: correlations and

possible interactions among predictors, unobservability of important variables (i.e., true variables

not measured by available questionnaires), amount and pattern of missing values in the predictors,

and prevalence of cases in the training data. We investigate how these factors affect the

performance of several variable selection methods and compare them with respect to selection

performance and prediction error rate via simulations. Our results demonstrated that: (1) for

complete data, LASSO and Elastic Net outperformed other methods with respect to variable

selection and future data prediction, and (2) for certain types of incomplete data, Random Forest

induced bias in imputation, leading to incorrect ranking of variable importance.We propose the

Imputed-LASSO combining Random Forest imputation and LASSO; this approach offsets the bias

in Random Forest and offers a simple yet efficient item selection approach for missing data. As an

illustration, we apply the methods to items from the standard Autism Diagnostic Interview-

Revised version.
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1. Introduction

In psychiatry, where there are no blood tests or other biological measures for diagnosing

illness, diagnosis is based on questionnaires consisting of items that probe subjects’

behaviors and feelings. For most psychiatric conditions, typically there exist one or more

standardized diagnostic instruments. For example, Autism Spectrum Disorder (ASD) can be

diagnosed with the interview-based Autism Diagnostic Interview-Revised (ADI-R) [1], the

self-report Social Communication Questionnaire (SCQ) [2], or the Autism Diagnostic

Observation Schedule (ADOS) [3], which is based on clinical observations. These

instruments consist of numerous items, are time-consuming, and often require trained
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persons to administer them. For these reasons, they are not appropriate for screening

purposes.

Researchers are often interested in the development of brief screening tools based on

questions or items from existing diagnostic instruments (see, e.g., [4] using various machine

learning classifiers). The purpose of such tools could be, for example, to rapidly identify

potential participants for research studies, to be included as a subsection in a national

survey, or to offer a screening instrument to be used universally in general clinical practice.

Therefore, only a few items need to be selected from existing questionnaires for inclusion in

a brief screening instrument.

Multiple statistical methods can be used for item selection. In this paper, we focus on the

following five commonly used feature selection methods: (1) two-sample t-test [5], (2)

Classification and Regression Tree (CART) [6]; (3) Random Forest [7]; (4) Least Absolute

Shrinkage and Selection Operator (LASSO) [8]; and (5) Elastic Net [9]. The first method is

a typical item selection method in psychometric research. The latter four methods are widely

applied in genetic research, imaging studies, and other high-dimensional feature selection

setups [10, 11], and a tremendous amount of research has been carried out to assess their

performance in cases where the number of variables is exponentially higher than the number

of subjects, that is, the large-p-small-n problem (or n ≪ p), [12–14]. In addition to those five

methods, we propose a new method called Imputed-LASSO, which combines imputation

based on Random Forest and LASSO, as a sixth method targeting variable selection on data

with missing values in the predictors.

Here, we are interested in the performance of those methods in a typical situation of

developing screening instruments in psychiatric research: the data sets usually consist of

around a hundred items (often coded as 0, 1, 2, 3, etc) and tens to hundreds of subjects; the

number of items p is typically smaller than the number of subjects n. However, the

characteristics of the data in this situation could be quite different from those in genomic

studies and present distinct challenges. First, subjects often omit one or more of the items in

a questionnaire – this could create problems with methods that require complete

observations, such as LASSO and Elastic Net. Second, often sets of items can be highly

correlated because of attempting to measure the same aspects of a psychiatric condition. For

example, the diagnostic instruments in autism try to assess two major aspects typical for this

condition – social interactions/communications and repetitive/odd behaviors. Finally,

although in many cases the more items in a diagnostic instrument, the higher the accuracy of

the instrument, the final decision of the number of variables to be selected should be

appropriate for inclusion in the screening tool under development, particularly depending on

the purpose and the application of the individual instrument. For example, in order to

develop a 5-min telephone-based screener for autism, approximately 10 items would be

ideal to select from existing questionnaires (e.g., ADI-R, SCQ, etc).

In this paper, we investigate the performance of the abovementioned variable selection

methods for the purposes of developing psychiatric screening instruments using simulations.

Let Y denote the diagnostic status (Y = 1 for cases, and Y = 0 for non-cases), and let X be the
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vector of p observed predictors (i.e., the set of items to select from). We assume that the

data-generating model is a logistic regression:

(1)

where Z indicates the set of true predictors, which might be a subset or a function of a subset

of X, or it might contain variables that are not part of X.

It would appear that when attempting to shorten a diagnostic instrument, the target should be

prediction accuracy, and thus, no subjective judgement should play a role in selecting the

items that optimize these criteria. However, incorporation of expert knowledge, which

cannot always be formally included in the analysis, is essential in developing such

diagnostic tools, and therefore, we also focus on variable selection. We further explain the

role of substantive area experts in Section 5. We compare the variable selection methods

with respect to selection of true predictors and test classification errors, under different

scenarios for Z from Equation (1), missing data patterns, and prevalence of cases in the

training data.

We organize the paper as follows. Section 2 contains a brief summary of the five common

variable selection methods listed previously. There we also introduce the proposed method

of combining Random Forest and LASSO when there are missing values in the predictors.

In Section 3, we present the simulation design for assessing the effect of various factors

typically characterizing the data available for development of a screener. This section also

gives the algorithm and criteria for comparing the methods. In Section 4, we show the

simulation results and conduct a comparison between the methods. Section 5 reports the

results from the application of the variable selection methods on real data from individuals

with and without ASD diagnosis, who were interviewed with a full diagnostic instrument,

and illustrates how the results from the simulation studies informed the process of

shortening the measure. The paper concludes with a discussion in Section 6.

2. Variables selection methods

We first give a brief introduction of each of the five commonly used feature selection

methods. In our context, a feature refers to an item from the questionnaires and we use these

terms interchangeably.

Two-sample t-test is a classic method for prioritizing variables based on their importance in

distinguishing between two groups. It tests how different two groups of subjects (e.g., cases

and non-cases) are on an individual item, and items with the least significant differences can

be eliminated. In psychometric studies, it is applied as a standard item selection method for

the purpose of constructing tests for classifying groups of subjects, such as the criterion-

keyed test [5]. Note that for other high-dimensional feature selection problems, it is not

usually employed as a variable selection method but rather as a prescreener (e.g., [15]) with

Sure Independence Screening property (i.e., in cases when p ≫n, it can reduce high

dimensionality p to a scale p* < n, while all important variables still remain with an

overwhelming probability [16]). In terms of predicting the outcomes, a common way is to

calculate a score based on the average or sum of the selected variables and to classify as
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cases subjects with scores higher than a certain cutoff point. The cutoff is usually

determined by sensitivity/specificity analysis.

CART [6] is a nonparametric technique that selects variables parsimoniously by building a

series of logical questions, in order to separate subjects into subsets and then classify (in

classification) or predict (in regression) subjects’ outcomes within each subset. At each

node, it recursively partitions the predictor space, searches for all possible partitions among

those based on all possible features, and chooses the one that gives maximum reduction in

‘impurity’ for a new split at that node. There are different types of impurity measures, and

the most commonly used ones are Gini index and cross entropy, which are defined by 2π(1

− π) and − π logπ − (1 − π) log(1 − π), respectively, for two-class classification problems,

where π is the proportion of one of the classes. Different definitions of impurity in the sets

yield different optimization criteria. An important benefit of the CART methodology is that

it can detect interactions among features, as well as non-monotonic relations in predicting

the outcome. In addition, the CART algorithm can handle missing values in a principled

way by surrogate splits.

Random Forest [7] is based on CART, but rather than one tree, it grows a large number of

trees (usually hundreds) to build a forest. It is random in two aspects: First, it takes a number

of bootstrap samples from the original data and grows one tree on each sample; second, at

each node within each tree, it randomly chooses a set of the candidate variables to split a

new branch. The overall prediction/classification of the forest is derived by averaging the

predictions/votes from the individual trees. The accuracy of prediction/classification can be

estimated from the so-called out-of-bag (OOB) sample, which comprised observations that

are in the original data but are not used when building one individual tree. The OOB error is

the mean square error (for prediction) or misclassification error (for classification) averaged

over observations from all trees for which they have been OOB. Random Forest often yields

a favorable error rate, and it can assess variable importance by some internal measurements

(e.g., [7, 17, 18]). Studies have illustrated that there is bias in Random Forest variable

importance measures in situations where potential predictors vary in their scale of

measurement or their number of categories [18]. Although this is not an issue in the current

context, because items within a questionnaire are typically measured on the same scale, in

cases where items have widely different number of categories, it is recommended ([18]) that

the conditional framework of [19] be used instead. Finally, when there are missing data,

Random Forest imputes the missing observations by a weighted average of the non-missing

observations, where the weights are calculated by proximity, which measures the similarity

between two subjects by the proportion of times they end up in a same final leaf [20].

LASSO [8] is a regularized regression method with L1 penalty and is frequently used to

handle largep-small-n problems. In addition to the restriction of the ordinary least squares, it

adds constrains to the coefficient parameters, which shrinks the coefficients and sets some of

them to be zero. In particular, it minimizes the residual sum of squares subject to an L1

penalty term:

(2)
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where λ in Equation (2) is called tuning parameter and is often selected by cross-validation.

This method has lower variance than regular regression models but is biased, and in order to

compensate for the bias, when the shrinkage parameter is selected by a data-driven rule,

LASSO tends to result in a more complex model then necessary; that is, it selects more

‘false positive’ variables [21]. LASSO is sign consistent if and (almost) only if an

irrepresentable condition is satisfied; that is, LASSO consistently selects the true model with

correct signs if and (almost) only if the ‘fake’ predictors that are not in the true model are

irrepresentable by the true predictors [22]. LASSO has selection inconsistency if there is a

group of highly correlated true variables; that is, LASSO tends to arbitrarily select only one

correlated variable from the group [9, 23]. Finally, this method requires complete data, and

in the case when some subjects are missing some of the predictors, LASSO works with the

subset of cases that have no missing values. In the case of shortening a psychiatric

diagnostic questionnaires, this is a serious disadvantage, as data used for such purposes

rarely contain complete observations on all subjects.

Elastic Net [9] is similar to LASSO but is a subject to a weighted sum of L1 and L2

penalties; that is, it solves the following optimization problem:

(3)

Denoting  and λ = λ1 + λ2, Equation (3) is equivalent to

(4)

This method is less aggressive in reducing the number of selected correlated variables than

LASSO and thus might include more variables in the model. It also encourages some

grouping effects, meaning that strongly correlated predictors tend to be selected or not

selected together. In the context of shortening a psychiatric diagnostic instrument, on the one

hand, including more variables might be considered a disadvantage. On the other hand,

because diagnostic instruments typically use many items to assess one or just a few latent

constructs, items are expected to be correlated, and selecting a small number of correlated

items together might be beneficial in the sense of improving reliability. Like LASSO, this

method requires complete data on all subjects.

Imputed-LASSO is a method that we propose to address the shortcomings of LASSO in

situations where large proportion of units have incomplete data, such as those typical in

psychiatric research. This approach utilizes Random Forest to impute the missing data and

obtains complete data on all units (subjects) [20]. It then uses LASSO to select variables

based on the imputed (complete) data set.

3. Simulations design

In the context of developing screening instruments, the major questions of interest are the

following. First, which method selects variables correctly (i.e., selects more true variables

that are in the data-generating process, as well as fewer false positives). Second, which
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method predicts future data accurately (i.e., results in lower misclassification rate, and

higher sensitivity and specificity, or area under the receiver operating characteristic curve

(AUC)). In addition, various factors characterizing typical psychiatric data used for

developing screening instruments may affect the selection of features and prediction

performance of a variable selection method. Such factors are the following: (i) the

correlation among predictors; (ii) possible interactions between the predictors in determining

the outcome; (iii) unobservability of important variables (i.e., some true variables are not

measured by available instruments); (iv) the amount and pattern of missing data in the

predictors; and (v) the prevalence of cases in the data. We performed a simulation study to

assess how the feature selection methods perform depending on the factors characterizing

the available data.

3.1. Generating the predictors

Informed by research on mental disorders such as autism, we simulated a training data set (n

= 400) and a test data set (n = 200). Let Xij, i = 1, …, n subjects and j = 1, …, p (for p = 60

or 70) be the pool of predictor variables from which we want to select a subset. For all i = 1,

…, n, and all j = 1, …, p, Xij = 0, 1, 2 with probabilities π0, π1, π2, respectively,

. Of the p predictor variables, the first 10, X1, …, X10, are true predictors, and

X11, …, X50 are noises (also refer to as ‘fake’ predictors); these 60 variables are presumed

observed when we fit the models. X61, …, X70 are additional predictors that might be a part

of the data-generating process in some scenarios (to be further explained later); these

variables are true predictors but are not observed. That is, they are omitted when we apply

the variable selection methods. We consider six scenarios for the predictors X (see Table I

for summary).

C1. Independent: X1, …, X10 are true predictors; X11, …, X60 are noises; all variables

are independent of each other.

C2. Correlated (True, Noise): X1, …, X10 are true predictors and are independent of

each other ; X11, …, X60 are noises that are independent of each other, but X11, …, X20

are pairwisely correlated with X1, …, X10, that is, Corr(X1, X11) = … = Corr.X10, X20) =

ρ (ρ = 0.8).

C3. Correlated (True, True): X1, …, X10 are true predictors, of which X1, …, X5 are

mutually correlated (ρ = 0.75), X6, …, X10 are mutually correlated (ρ = 0.75), and the

two blocks of items are independent; X11, …, X60 are independent noises.

C4. Omitted interactions: As C1, but all two-way interactions of the 10 true predictors

X1, …, X10 are added to the model generating the outcomes; the interactions are omitted

when applying all methods.

C5. Unobserved true predictors: As C1, but 10 additional independent true variables,

X61, …, X70, are included in the model to generate the outcomes; these variables are

assumed to be unobserved and thus omitted when applying all methods.

C6. Complex: All of the previously mentioned scenarios are combined in this scenario.

X1, …, X10, X61, …, X70, are true predictors, of which (X1, X2, X61, X62), (X3, X4, X63,
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X64), …, (X9, X10, X69, X70) are within-block correlated (ρ = 0.7), and X61, …, X70 are

unobserved; X11, …, X50 are noises, of which (X11, X12), …, (X19, X20) are pairwisely

correlated, and they are also highly correlated with (X1, X2), …, (X9, X10), respectively,

(ρ = 0.7); (X21, X22), …, (X29, X30) are pairwisely correlated (ρ = 0.7), and they are also

slightly correlated with (X1, X2), …, (X9, X10).ρ = 0.3); all two-way and three-way

interactions of X1, …, X10 are included in the outcome-generating model but omitted

when applying the selection methods; X31, …, X60 are independent noises.

3.2. Generating the outcome

We generated the outcome variable Y (Y = 1 if a case and Y = 0 if a non-case) based on the

logistic regression model in Equation (1) in the following three steps:

Step 1.Generate a predictor matrix Xn×p(n = 400 or 200, p = 60 or 70);

Step 2.Generate Pi = Pr (subject i is a case) by equation

where Zi is the vector of true predictors for subject i, which is a subset of all generated

predictors X (or, as in the scenario C4, contains interactions between variables in X), f

is some function of Z (see Table I for details), and εi ~ (0; 0:001), i = 1, …, n, where

 denotes the Gaussian distribution;

Step 3.Generate 1000 replications of the response variable Yi by Yi ~ Bernoulli(Pi),

keeping Xi and Pi fixed, i = 1, …, n. By doing so, each subject (i) has 1000 simulated

outcomes Yi (derived from their true predictor vector Zi, which will be predicted later

by all observed predictors X1, …, X60.

3.3. Missing data pattern and case prevalence

For all six predictor scenarios in Section 3.1, we consider the effect of missing values and

case prevalence. In particular, in addition to the complete data cases, we introduced missing

values among the predictors in the training data. Overall, 5% of observations in the

predictors is missing, and 50% of the rows (i.e., half of the subjects) has at least one missing

observation. The missingness is formed in two patterns: (M1) all 60 potential predictor

variables have equal probability of missing observations, and (M2) some predictors are four

times more likely to be missing than the rest (these variables are X, X6, X11, X16, …, X56).

Missingness is independent of the outcome variable and is random across predictors. Also,

we considered two case prevalence levels, that is, the proportion of cases, in the training

data set: 0.5 and 0.3. Therefore, we simulated six scenarios for predictors, three types of

missingness, and two prevalence levels, resulting in altogether 36 situations.

3.4. Models to be fitted on the data

To compare the variables selection methods, we fitted the following list of models to the

simulated data:
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Generalized linear model (GLM): We first apply a regular logistic regression on the

simulated data, modeling the outcome as a function of all 60 observed predictors, and

we select predictors with p-values less than 0.05. This is as a reference model for

scenarios C1–C3, where all true predictors are among the observed ones, while in

scenarios C4–C6, the GLM is the correct model form, but it omits some true predictors.

Two-sample t-test: For each predictor Xj, j = 1, …, 60, perform two-sample t-test, and

calculate t-statistic adjusted by sample size:

where n1 and n2 are the sample sizes for the groups of cases and non-cases,

respectively, and tj is the usual t -statistic. This modification to the usual t-test statistic

is necessary to account for varying sample sizes because of missing predictors. We sort

the predictors by |tj,adj| from largest to smallest and select the top 10 variables. As for

prediction, we calculate the average of the selected 10 variables for all subjects and

transform them into the range of [0,1] via dividing by the maximum of the means. We

treat these scores as predicted probabilities of being a case and used a cutoff point of 0.5

to classify the subjects.

CART: We apply CART on the training data and find the variables that appear in the

tree as selected variables (multiple occurrence for one variable is considered being

selected only once). The tree is pruned based on the criterion of Cp = 0:01. We predict

the test data based on the tree obtained on the training data.

Random Forest: Sort the variables by Mean Decrease Accuracy from largest to

smallest, and select the top 10 variables. Here, Mean Decrease Accuracy is a

permutation-based internal measure that can assess variable importance and works as

follows: For a specific predictor Xj, for each tree in the forest, calculate the difference

between the OOB errors with Xj randomly permuted and that on the original data (i.e.,

without Xj permuted), and average the differences over the entire forest [20]. Notice that

although Random Forest can assess variable importance, its prediction is based on the

entire variable space, that is, all predictors in X. Thus, in order to investigate the

prediction performance of the selected variables, we use normalized scores based on the

average of the top 10 variables, just like for the two-sample t-test (again, the cutoff

point is set at 0.5.).We also show the Random Forest prediction based on all variables to

provide a benchmark of how low the prediction error can be. The prediction using all

variables is not to be compared with prediction from the other methods.

LASSO: Apply LASSO and select variables on the training data. Use cross-validation to

find the optimal tuning parameter λ defined in Equation (2). Predict test data by the

selected model. Note that when there are missing predictors, LASSO uses only units

(i.e., subjects) with complete data.

Elastic Net: Similar to LASSO, but use cross-validation to find λ, fixing α at 0.5 to

save computational time (λ and α are defined in Equation (4)).
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Imputed-LASSO: This is the method we propose for situations with missing

observations, such as M1 and M2. The method consists of utilizing Random Forest to

perform missing data imputation before applying a variable selection method. The

imputation procedure is iterative and works as follows: For the initial iteration, median

imputation is applied, and a forest is built based on the imputed data, for which

proximities (defined in Section 2) are calculated and new imputations are obtained by

the average or vote weighted by these proximities; for each of the rest iterations, a new

forest is built on the data imputed in the previous iteration, and proximities and

imputations are updated accordingly. For our study, we used four iterations. We apply

LASSO to select variables based on the imputed training data set.

3.5. The algorithm for fitting and the criteria for comparing the methods

The algorithm to fit each model and the criteria to compare the methods with regard to

selection and prediction performances are as follows. For each of the 36 situations and for

each of the 1000 repetitions of the outcome variable Y :

1. Apply the methods for variable selection by predicting the outcome from the

observed first 60 predictors X1, …, X60 in the training data set, and select a subset

of the predictors; calculate the number of times each predictor is selected out of the

1000 repetitions, and obtain the average number of true and false variables selected

by each method;

2. Predict the outcome in the test set by the model selected on the training data; obtain

test error (i.e., misclassification error) and receiver operating characteristic (ROC)

curve, more specifically, the area under the ROC curve (AUC).

We utilized the following R packages in the simulations: rpart, Random Forest, and glmnet.

We also used Efron’s R function stat.stanford.edu/~;omkar/monograph/simz.R to simulate

block-wisely correlated continuous variables with pre-assigned correlation coefficients.We

then categorize the continuous variables by desired probabilities to create correlated

categorical variables with levels 0, 1, and 2. The change in correlation between variables

after categorization is minor.

4. Simulation results

We discuss some interesting results in this section. A more detailed report is available in the

supporting material available online.‡

4.1. Complete data and equal prevalence

Starting from the simplest situation with complete data and equal prevalence of cases and

non-cases in the training data set, Figure 1 shows the variable selection performance for all

methods (row) for all scenarios (column). For each plot, on the horizontal axis is the index

of the first 60 observed predictors X1, …, X60, and on the vertical axis is the number of times

each of the 60 variables is selected out of the 1000 fits; horizontal lines show the maximum

and minimum number of times the variables are selected.
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Under C1 Independent, the reference GLM, which is the model under which the outcomes

are generated, seemed to be the best in selecting the true variables (all true variables were

selected with over 90% probability), as well as reducing false positives (all noises were

selected with less than 10% probability).

Under C2 Correlated (True, Noise), GLM seemed to have multicollinearity problem,

although false positives were kept low. Two-sample t -test, CART, and Random Forest were

also problematic: They selected the true variables with much less probability and included

many fake predictors. LASSO and Elastic Net selected true variables accurately, just as the

result under the independent situation C1; nevertheless, they also included some false

positive variables, especially Elastic Net (Elastic Net and LASSO selected approximately 3–

4 and 2–3 noises that are correlated with the true predictors, respectively.). This is likely due

to the fact that Elastic Net has grouping effect when selecting correlated variables (as was

discussed in Section 2).

Under C3 Correlated (True, True), GLM suffers even more severe multicollinearity. LASSO

seemed to be too aggressive in excluding correlated true predictors (approximately only six

true variables were selected), although false positive was desirably low. This illustrates the

potential limitation of LASSO to simultaneously select a group of highly correlated true

variables (as was discussed in Section 2). Elastic Net, in contrast, was less aggressive than

LASSO and selected true variables well, again because of its grouping effect. Under this

scenario, however, the grouping effect is credited as a benefit (as opposed to as a

disadvantage in C2). Interestingly, two-sample t-test and Random Forest selected the true

predictors perfectly – all 10 true variables were never missed. This is because Y, generated

by the linear model in Equation (1), is related to the sum of the true predictors (see Table I

for details). Thus, when the true predictors are positively correlated with each other as in

scenario C3, the correlation between this sum and an individual true predictor is much larger

than the correlation between the outcome (Y) and a noise variable, and as a result, the t-test

picks all 10 true variables. Compared with scenario C1, where the true predictors are

independent of each other, the correlation between an individual true predictor and the sum

of all true predictors under C3 is larger, which explains why the t-test does better in C3 than

in C1.

Under C4 Omitted Interactions, interactions had little effect on selecting important main

effects – except for CART, all methods selected the true main effects and reduced the noise

terms satisfactorily.

Under C5 Unobserved True Predictors, where the additional 10 variables X61, …, X70 are

true but unobserved, all methods became worse in selecting true variables – larger than 30%

probability that important observed variables would be missed. Moreover, false positives

were also greater than under previous scenarios. GLM, t -test, LASSO, and Elastic Net

performed somewhat better than CART and Random Forest.

Under the last scenario C6 Complex, where all factors (correlations, interactions, and

unobservability) are included, all models became worse in selecting true variables and

reducing the selection of noise variables. The first 10 noises that are highly correlated with
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the 10 true variables were selected with high probability. Compared to other methods, both

LASSO and Elastic Net selected true predictors better and simultaneously selected fewer

noises.

Across all six scenarios for the relationships between the predictors, LASSO and Elastic Net

seemed to outperform other methods in selecting true variables. While there are strong

effects of the between-predictor relationships on the selection performance of all methods,

these regularized regression methods consistently selected true variables with large

probability (84% on average) and selected fewer fake predictors. Given that in psychiatric

research, CART is used quite often (e.g., [24–26]), for understanding the mechanisms of

action of treatments or to identify factors that contribute to the heterogeneity in the

presentation of various mental illnesses, it is instructive to notice CART’s poor performance

in this regard, not only when the outcome and the covariates of interest have the association

in a linear form but also when the true model contains interactions between the observed

predictors.

Similarly, for prediction performance, LASSO and Elastic Net did not differ much, and best

prediction (i.e., lowest test error and highest AUC) is achieved with either one of them under

most scenarios. As mentioned earlier, in the situation of shortening a psychiatric instrument

(where items are typically highly correlated and more items usually lead to more reliable

total score), it is not immediately clear whether the inclusion of several correlated items by

Elastic Net, or the selection of only one from a set of correlated predictors by LASSO would

be better. Two-sample t-test and Random Forest using top 10 variables outperformed other

methods under C3 condition, where true variables are correlated within groups and noise

terms are independent. This is consistent with the selection performance of these two

methods under this scenario: they selected all 10 true variables and no other noise terms.

Figure 2 shows the boxplots of test errors and test AUC’s for all scenarios for all methods.

Dotted red lines in the plots show the prevalence of cases (here 0.5).

4.2. Missing observation (M1 & M2) and equal prevalence

When some of the observations are missing, linear models (GLM, LASSO, and Elastic Net)

use only observations on subjects with complete data (here, this is a half of the observations

in the training and test data sets); CART uses surrogates splits to assign subjects to branches

when the splitting variable is missing at a certain node; Random Forest and Imputed-LASSO

impute missing data by proximity before selecting variables.

We consider two situations, where the probabilities of missing observations are equal (M1)

and unequal (M2) across the predictors and do not depend on the outcome. Under both

situations, linear models (GLM, LASSO, and Elastic Net) ignored subjects with incomplete

data and performed similarly – the performance was worse compared to the complete data

case (Section 4.1) because of smaller sample size. Here, we are more interested in the other

methods that include mechanisms for dealing with missing data or sample size changes and

that may behave differently between the two missing patterns of the data. Figures 3 and 4

show the selection performance under M1 and M2 (for M2, the selection results for GLM,

LASSO, and Elastic Net are similar to M1 and thus not shown).
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4.2.1. Robustness to sample size decrease of the two-sample t-test and CART
—The two-sample t-test and CART were not affected by missingness in the predictors under

either M1 or M2. For two-sample t-test, the resistance to the decrease of the sample sizes in

the two groups for both equal and unequal missingness across the predictors is due to the

fact that it is sample-size adjusted and does not rely on sampling scheme if the missingness

in the predictors is independent of the outcome. For CART, the selection of a variable to

split at a node is based on the reduction in impurity (in particular, we used Gini index in the

simulation study), which only depends on the proportion of each class (group) at each level

of the variable, rather than the sample size in that class [6]. Because the probability of

missingness is the same for cases and non-cases, the proportions of the two classes remained

unchanged, and the trees that CART built on incomplete data were similar to those on

complete data.

4.2.2. The bias of random forest imputation—Under M1 situation, for both Random

Forest and Imputed- LASSO, the selection results were very similar to those on complete

data, showing the benefit of Random Forest imputation on equal-probability missingness. In

fact, studies have suggested that because the Random Forest imputation uses proximity-

based nearest neighbor approach, it will be valid under missing completely at random

mechanism [27].

However, for M2, where variables X1, X6, X11, …, X56 are four times more likely to be

missing than other variables, after imputation, Random Forest tended to select more often

the noise variables with large probability of missingness (i.e., X11, X16, …, X56). We found

that this is due to the bias of Random Forest imputation when there is a difference in the

prevalence of missing values among the predictors. To impute one missing observation for a

specific variable, Random Forest utilizes proximities, which count the number of times two

subjects end up in a same final leaf, as the weights to sum over other non-missing

observations on that variable. Although in general the covariances among predictors and

between predictors and the outcome are preserved by the Random Forest imputation, for

variables that have higher probability of missingness, the correlations with the outcome tend

to increase as iteration goes on. For this reason, in the M2 case, Random Forest selected the

variables with higher proportion of missingness most often. One exception is scenario C3,

where the true predictors are correlated among each other but not with the noise variables:

Here, Random Forest selected the noises with higher missing proportions, but at much lower

rate than it selected the true predictors. In this case, of the true predictors X1, …, X10, the

most often selected are X1 and X6, showing again the imputation bias in favor of variables

with more missingness.

4.2.3. Imputed-LASSO: LASSO offsets the problem of random forest
imputation—Surprisingly, Imputed- LASSO was only slightly affected by the unequal

missingness in the predictors – it still excelled in selecting true variables and was relatively

good in reducing the noise variables, especially under the complex scenario C6. In Section

2, we have seen that LASSO selected noise variables that are correlated with true predictors

with 20%–30% probability (in C2), and was aggressive in reducing correlated true

predictors (in C3) on the complete data. However, for M2, LASSO seemed to offset the bias
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of Random Forest imputation, and it prevented the noise terms with large missingness from

appearing important. For variables that have more missing observations, after Random

Forest imputation, the correlation between them and the outcome variable increased more

than those with less missingness (see the previous text). However, this increment had limited

effect on the variable selection of LASSO. Moreover, the Imputed- LASSO performed

better than regular LASSO in terms of selecting the true variables, likely because more

information was used. This suggests the merit of Imputed-LASSO on data similar to M2.

The only exceptional case is C3 Correlated (True, True) scenario, where the Imputed-

LASSO was much more likely to select the true variables with larger missingness only (i.e.,

X1 and X6). In other words, the increment in correlation between predictors and response due

to Random Forest imputation illustrates the inconsistency in selecting correlated true

variables that characterizes LASSO.

For prediction performance, under M1, best prediction was achieved most of the time with

two-sample t-test or Imputed-LASSO, and in the scenario of correlated true predictors C3,

by Random Forest based on the 10 most important variables. Under M2, however, because

of the bias of Random Forest imputation, the prediction by the 10 Random Forest selected

variables was not as successful. This shows that when sample size is reduced because of

missingness in the data like those in M1 and M2, two-sample t-test is a good back-up

method even for prediction and Imputed-LASSO works well (especially for more

complicated situations such as C6). Figure 5 shows the prediction performance for M1 with

equal prevalence of cases and non-cases (the plot for M2 is provided in web-based

supporting material).

4.3. Unequal prevalence of cases and non-cases

In many studies, the data sets used for developing screening instruments would not have

equal prevalence of cases and non-cases, with non-cases typically constituting a higher

proportion of the data. We considered a prevalence level of cases 0.3 with complete data,

equal missingness (M1) and unequal missingness (M2) in the predictors (results are the

same for prevalence of cases equal to .7 = 1– .3). The results from the simulations showed

that the prevalence of cases in the training data can have strong effect on most methods:

Linear models (GLM, LASSO, and Elastic Net) selected true variables with approximately

20% less probability than in the equal prevalence situations; CART almost completely failed

to select any variables; Random Forest imputation was, again, problematic in the case of

unequal-probability missingness (M2). The exceptions were two-sample t-test and Imputed-

LASSO. Under scenario C5 where half of the true predictors are unobserved and cannot be

represented by any other observed variables, penalized regression methods (i.e., LASSO,

Elastic Net, and Imputed-LASSO) selected only a few variables in the unbalanced data case,

although they did well under balanced data. Two-sample t-test, however, is not affected by

prevalence and still selected seven (of the 10) true variables on average, suggesting, again, a

good back-up method. On the other hand, if the data are unbalanced in prevalence and if

penalized regression methods result in tiny models that contain few predictors, this might

suggest that there are missing true predictors whose information cannot be obtained through

observed data. Except for C5, Imputed-LASSO worked well across different scenarios for

both M1 and M2, showing that it was not affected by either prevalence or missingness for
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most scenarios, and was thus quite stable. Figure 6 shows the variable selection charts for

M2 with 30% case prevalence (for complete data and M1 with unequal prevalence, see

supplementary document online).

With respect to prediction, the results are quite similar for complete data, M1 and M2
situations: Prevalence had strong effect in that further reduction in error rate (from 30%

false negative without any predictors) was limited. For most scenarios, median test error was

slightly below the prevalence level of 0.3, except for scenario C3, where approximately 5%–

10% reduction could be made. Test AUC, on the other hand, could be quite high with t-test

and Imputed-LASSO, showing again the benefit of Imputed-LASSO and the back-up

property for t-test in predicting future data. Figure 7 shows the boxplots of predictive errors

and AUC’s for M2 with unequal prevalence of cases and non-cases (plots for complete data

and M1 with unequal prevalence are provided in the web-based supporting material).

4.4. Summary of simulation results

In summary, for complete data, both LASSO and Elastic Net seemed to be performing the

best in selecting important variables. As discussed in Section 2, in the context of shortening

psychiatric instruments, there is a tension between selecting ‘important’ correlated items,

which would potentially increase the reliability of the measure, and selecting only

‘important’ items that contribute independent information, which would result in a shorter

instrument. Because of its constraints on the coefficients with both L1 and L2 norms, Elastic

Net tends to select more variables than LASSO, and thus, it includes more noise terms when

those terms are correlated with the true predictors, giving an advantage to LASSO.

However, Elastic Net’s grouping effect could be viewed as an advantage when true

predictors are in fact correlated, which is a common situation in designing psychiatric

questionnaires, thus giving an advantage to Elastic net in such cases. When there are missing

values in the predictors, Imputed-LASSO selected true variables most efficiently and

consistently. It eliminates the problem of Random Forest imputation on data with unequal

probability of missingness.

Moreover, in data configurations when most methods were not able to select variables such

as scenario C5 with unequal prevalence, where the data are unbalanced and some

information is completely unavailable (in contrast with C6, where the lost information

contained in X61, …, X70 can still be recovered by correlated variables available in the data

sets), two-sample t-test was not severely affected by the lost information and could still

select the observed true variables relatively well. Table II shows the comparison with

respect to variable selection among the methods for all scenarios, missing data patterns, and

prevalence levels.

For prediction performance, we found that Elastic Net and LASSO worked the best in

predicting future data in the situations of complete data. As is expected under incomplete

data situation, Imputed- LASSO was superior to the other methods. Two-sample t-test

prediction based on average of selected variables also performed well under certain cases

(e.g., correlated true predictors). Tables III and IV show the prediction results.
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5. Autism Diagnostic Interview-Revised example

We illustrate the benefits and drawbacks of the previously discussed variable selection

methods in developing psychiatric diagnostic instruments by a real example. The ADI-R [1]

is a well-known instrument that is widely used for autism diagnosis. This interview-based

questionnaire is typically used with parents and consists of 93 items, some of which are

relevant only for certain children’s age groups and language ability levels. The authors were

involved in the work of experts in ASD on shortening and modifying ADI-R for the purpose

of developing a brief interview over the phone, appropriate for screening subjects for

research studies. Separate interviews were to be developed for different age groups and

levels of language abilities. A large database of responses to ADI-R questions from

individuals with diagnosis made on the basis of an array of questionnaires, including the

gold standard for ASD diagnosis ADOS [3], was available to the authors. Individuals were

classified as either having or not having ASD diagnosis; about half of the later class

consisted of subjects with no diagnosis, and the rest had some other developmental

diagnosis but not ASD. The adopted strategy was to use the available data as a ‘selection’

sample and by applying some variable selection methods to identify a handful of items

(around 10) that provide a reasonable predictive accuracy. Thus selected items would then

be vetted by experts, modified (if necessary) for the purposes of administering them over the

phone as opposed to in person, and used to develop a telephone screen. This telephone

screen would then be applied to a new sample of individuals, that is, a ‘validation’ sample,

which would also undergo the entire battery of tests for obtaining accurate diagnosis. The

quality of the new telephone screen would be based on results from the validation sample.

Here, we illustrate how one might approach the question of selecting a subset of a few items

for the purposes of rapid screening. This is the first stage of the previous strategy, using the

available data as a ‘selection’ sample. Suppose one is interested in developing a telephone-

based 5-min screening tool for a specific group of children from age 2 to 4 years and 11

months and with language ability level less than five words, based on a portion of current

version items in the original ADI-R questionnaire. For this specific age and language group,

we have data on n = 475 subjects and 44 items of interest, from which around 10 items are

expected to be selected to form the screening tool. For the purpose of comparing the

applications of all six methods on real data, we randomly separated the ‘selection’ sample

into a training set (n1 = 316, n1,case = 221, n1,control = 95) and a test set (n2 = 159, n2,case =

103, n2,control = 56). The proportion of subjects who have at least one missing observation

on the 44 items are quite high (over 80%), and the missing probability is uneven across

items (from 0% to 39%, median=1.5%). The prevalence of ASD cases is around 0.7 for both

data sets.

On average, the six methods selected 11 variables. Table V later shows the results from

selection and prediction for the analytic methods applied to the ADI-R data. For two-sample

t-test and Random Forest, we selected the top 10 variables according to the rules in the

simulation study. CART selected the fewest items (eight variables), and Elastic Net selected

the most (14 variables). The 10 items selected most frequently included child’s age when

parents were first concerned (ACON), showing and directing attention (CSHOW),

stereotyped utterances and delayed echolalia (CSTEREO), reciprocal conversation
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(CCONVER), and a few others. Elastic Net selected all of them. Ranked second were

Imputed-LASSO and two-sample t-test, which selected 8 of the 10 most frequently selected

items. GLM did not select any variables in that the number of predictors was large relative

to the number of complete cases and a linear separation occurred.

Using insights from the simulation study about the performance of the variable selection

methods in similar situations, we gave to the experts for vetting the list of variables selected

by the Imputed-LASSO plus the two variables from the 10 most frequently selected that

were not picked by the Imputed-LASSO (CUATT) and (CINSGES). The validation sample is

currently collected, and results are not yet available.

6. Discussion

We compared five variable selection methods (two-sample t-test, CART, Random Forest,

LASSO, and Elastic Net) with respect to their performance in shortening psychiatric

diagnostic instruments. In addition, we proposed the Imputed-LASSO, a method designed to

deal with situations when large number of the units contain missing data. The Imputed-

LASSO used Random Forest to impute the missing observations and form a set of complete

data; for feature selection, we apply LASSO on the imputed data. We performed the

comparison via a simulation study to investigate how those methods would perform in the

selection of items from data typically available for this purpose. Psychiatric diagnosis is

based on questionnaires consisting of 20 to 100 items, characterized by correlations between

them, frequently missing data on at least a few items for each individual and varying

prevalence of cases and non-cases in the data set available for analysis.

From the simulations, we found that there were several advantages and disadvantages for

certain methods in variable selection. LASSO, which has a lot of good properties in variable

selection and is one of the most often used approaches for feature selection, is known to

aggressively reject predictors correlated with already selected ones. In some situations, this

is considered as a disadvantage, and alternative approaches have been developed to deal

with it, such as Elastic Net and regularized methods with grouped property. In the particular

case discussed here, it is not obvious if this property of LASSO is a strength or a weakness.

Elastic Net seemed to do better under correlated true variables situations, did worse in the

case of correlated true and noise predictors, and performed similar to LASSO in both

selecting important variables and predicting future data when there were no missing data in

the training data set.

For missing data, Random Forest, after the imputation, was biased in calculating variable

importance, which resulted in high selection of noise variables (i.e., false positives) when

the probabilities of missing observations were different across the predictors. Nevertheless,

the Imputed-LASSO, combining Random Forest imputation with LASSO, was shown to be

an easy, efficient, and stable method that was not affected by probability of missingness in

predictors or prevalence of cases in the data. We also found that the two-sample t-test is a

good back-up method even under some extreme situations when most other methods did not

work.

Several issues need attention:
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α in Elastic Net, see Equation (4): For Elastic Net, we fixed α at 0.5 to save

computation time, although, in some other cases, it might be more appropriate to use

certain algorithms (e.g., cross-validation) to select this parameter.

Imputed-GLM and imputed-Elastic Net:For incomplete data cases, after Random Forest

imputations, one can also apply GLM or Elastic Net on the imputed data. The choice of

presenting only the results from imputed-LASSO was based first on the observation that

the comparisons between LASSO, GLM, and Elastic Net from the complete cases were

carried over their imputed versions, and second, as discussed earlier in Sections 2 and

4.4, at least in the case of shortening psychiatric questionnaires, the advantage of

choosing several correlated items together versus only one item from a group of

correlated items is not clear. The imputed versions of these regularized regression

methods compare similarly to their performance on complete data. In the online

supplementary material, we show the results of a small simulation study comparing

Imputed-GLM, Imputed-Elastic Net, and Imputed-LASSO in the case of equal case

prevalence and M2 missingness with respect to variables selection and prediction. In

general, linear models with shrinkage or sparsity constraints tend to eliminate the

problem of Random Forest imputation, which selects fake variables with high

missingness.

Single versus multiple imputation: The results for Imputed-LASSO presented here are

based on a single imputation, which was chosen for its simplicity. However, to evaluate

the effect of this decision on the variability of the results, we performed a small

simulation study, in which we used 10 imputed data sets. For each of the scenarios C1

to C6, the proportion of times a variable was selected was obtained also by averaging

over the 10 imputed data sets. Aside from random variation, we observed no systematic

effect. We conclude that there is no evidence for the benefit of multiple imputation over

a single one in the setup considered here.

Cost of false negative and false positive: We assumed equal cost of false negative and

positive. If this is not the case, one might change the priors for tree-based methods or

the cutoffs in the linear models. However, the question remains what criteria one wants

to optimize. The case when the goal is to maximize the AUC is considered in [28].

More unbalanced prevalences: We also tried more unbalanced prevalences of cases

(e.g., 10%) in the training data set, and the performance of most methods became quite

unsatisfactory, suggesting that sufficient balance of cases and non-cases in the training

data is required for a good performance of variable selection methods.

Selection versus prediction: As is known, the criteria to select the right variables and to

perform good prediction sometimes may conflict. Because prior information of which

variables are true is usually unavailable, the typical way to select variables by LASSO

and Elastic Net is through cross-validation, which is based on future prediction, rather

than the accuracy of variable selection. This might lead to mistakes in some situations.

However, through our simulation results, we observed that the effect was not very

significant and that using cross-validation in LASSO or Elastic Net was a feasible way

for item selection, at least on psychiatric data similar to the ones we generated.
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Negative correlation: In our simulation, the correlations among variables in the

generated data were all positive, and negative correlations were not considered as a

factor to affect method performance. This might not be problematic for psychiatry type

of variable selection because all items are usually pre-processed into the same direction

with regard to their scientific meaning and their association with the corresponding

disorder (e.g., typically in a questionnaire for all items, the higher the score, the more

serious the disease). For other analysis (e.g., genetic research), however, the effects of

negative correlations need to be considered.

Inconsistency of test error and AUC: Frequently, the test error and test AUC are

consistent in the sense that minimizing the error rate maximizes AUC. However, this is

not always the case (e.g., [28, 29]), and it might be better to use both measures instead

of just one.

Varying number of categories in the items: In this paper, we considered the case of

categorical predictors with the same number of categories, which were treated as

continuous variables. This special case is likely to be appropriate in many similar

situations of shortening psychiatric instruments. In cases where the diagnostic tool

consists of items measured on different scales, having different number of categories, or

some being nominal and other ordinal, care needs to be taken to accommodate this

variation. For example, variants of LASSO algorithm for ordinal and nominal predictors

should be used that have been developed especially for such cases, for example, [30,

31].

We derive all the results and conclusions in the paper through a simulation study, and

theoretical proofs of the merits and drawbacks of the variable selection methods need further

pursuit.

Finally, although only mentioned here in passing, the importance of involving substantive

area experts in the process of shortening diagnostic instruments cannot be overemphasized.

The real challenge is to incorporate human judgement without letting human bias influence

the statistical analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Complete data and equal prevalence of cases and non-cases in the training data set:

performance of the methods with respect to selecting correct variables under the six

scenarios C1 to C6.
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Figure 2.
Complete data and equal prevalence of cases and non-cases in the training data set:

performance of the methods with respect to misclassification error and area under the

receiver operating characteristic curve (AUC) in the test data set under the six scenarios C1

to C6. RF refers to Random Forest; RF10 refers to Random Forest with 10 variables

selected; ElNet refers to Elastic Net. Note: Random Forest should not be compared with

other methods.
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Figure 3.
Equal proportion of missing data in all predictors M1 and equal prevalence of cases and

non-cases in the training data set: performance of the methods with respect to selecting

correct variables under the six scenarios C1 to C6.
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Figure 4.
Unequal proportion of missing data in predictors M2 and equal prevalence of cases and non-

cases in the training data set: performance of the methods with respect to selecting correct

variables under the six scenarios C1 to C6.
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Figure 5.
Equal proportion of missing data in predictors M1 and equal prevalence of cases and non-

cases in the training data set: performance of the methods with respect to misclassification

error and area under the receiver operating characteristic curve (AUC) in the test data set

under the six scenarios C1 to C6. RF refers to Random Forest; RF10 refers to Random

Forest with 10 variables selected; ElNet refers to Elastic Net; ImpLas refers to Imputed-

LASSO. Note: Random Forest should not be compared with other methods.
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Figure 6.
Unequal proportion of missing data in predictors M2 and prevalence of cases 30% in the

training data set: performance of the methods with respect to selecting correct variables

under the six scenarios C1 to C6.
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Figure 7.
Unequal proportion of missing data in predictors M2 and unequal prevalence of cases and

non-cases in the training data set: performance of the methods with respect to

misclassification error and area under the receiver operating characteristic curve (AUC) in

the test data set under the six scenarios C1 to C6. RF refers to Random Forest; RF10 refers

to Random Forest with 10 variables selected; ElNet refers to Elastic Net. Note: Random

Forest should not be compared with other methods.
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