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Abstract

Many biological, geophysical and technological systems involve the transport of resource over a

network. In this paper we present an algorithm for calculating the exact concentration of resource

at any point in space or time, given that the resource in the network is lost or delivered out of the

network at a given rate, while being subject to advection and diffusion. We consider the

implications of advection, diffusion and delivery for simple models of glucose delivery through a

vascular network, and conclude that in certain circumstances, increasing the volume of blood and

the number of glucose transporters can actually decrease the total rate of glucose delivery. We also

consider the case of empirically determined fungal networks, and analyze the distribution of

resource that emerges as such networks grow over time. Fungal growth involves the expansion of

fluid filled vessels, which necessarily involves the movement of fluid. In three empirically

determined fungal networks we found that the minimum currents consistent with the observed

growth would effectively transport resource throughout the network over the time-scale of growth.

This suggests that in foraging fungi, the active transport mechanisms observed in the growing tips

may not be required for long range transport.

I. INTRODUCTION

Many biological, geophysical and technological systems involve the transport of material

over a network by advection and diffusion [1–5]. Indeed, fluid transport systems are found

in the vast majority of multicellular organisms, as the component cells of such organisms
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require resources for metabolism and growth, and diffusion alone is only an effective means

of exchange at microscopic length scales [6]. Molecules of interest are carried by advection

and diffusion through the cardio-vascular networks of animals [5, 7–14], the mycelial

networks of fungi [15, 16], the xylem and phloem elements of tracheophytes (vascular

plants) [17–19], and various body cavities of many different animals. For example, oxygen

is transported through the lungs of mammals and the trachea of insects, while suspension

feeding animals (including sponges, clams, brachiopods, many arthropods, fish, ascidians

and baleen whales) pass water through various chambers of their bodies, capturing the

organic particles that are needed for survival [6]. Similar mechanisms of transport are also

found in geological and technological systems, such as rivers and drainage networks [20],

gas pipelines, sewer systems and ventilation systems [7, 21].

In all of these cases the particles of interest diffuse within a moving fluid, which is

constrained to flow within a given network. The bulk movement of fluid is referred to as

advection, convection or mass flow, and in general the fluid in question travels with a mean

velocity that varies over the network. The mean velocity of fluid flow may vary by several

orders of magnitude, as, for example, the velocity of human blood drops from 1m s−1 in the

aorta to around 1mm s−1 in the capillaries [22, 23]. Given a network and a distribution of

velocities, we may wish to calculate how an initial distribution of resource changes over

time. For example, we might want to know how a patch of pollutant will spread within a

drainage network [2–4], how a drug will spread within the cardiovascular system [7–13], or

how nutrients will be translocated within a fungal network [15, 16]. In this paper, we

consider the particular cases of modelling the delivery of glucose via a vascular network,

and modelling the translocation of nutrients in a fungal network.

Koplik et. al. [24] describe an effective method for calculating the exact moments of the

transit times for a neutral tracer across an arbitrary network that contains a flowing medium,

but which initially contains no tracer. We have advanced their methods to handle resources

that may be consumed or delivered out of the network, while the resource that remains in the

network moves by advection and diffusion. More specifically, we suppose that each edge in

the network has a local delivery rate Rij, which represents the probability per unit time that

any given unit of resource will be consumed, lost or delivered out of the network. The effect

of including a delivery term can be significant and somewhat counter-intuitive: we will see,

for example, that there are circumstances in which increasing the number of blood vessels in

a region can actually decrease the amount of glucose that is delivered to that region (Section

VI). This problem is of particular bio-medical interest, as glucose delivery is essential to the

survival of tumours and healthy tissue [5, 7, 10, 25, 26]. As we shall see, to appreciate how

the number of blood vessels in a region effects the total rate of glucose delivery, it is

essential that we consider both the rate of delivery of resource out of the network and the

topology of the transport network itself.

To enable the assessment of the transport characteristics of arbitrary networks, with

velocities that may vary over several orders of magnitude, we have developed a

mathematical methodology that operates in Laplace space. We were initially motivated to

develop this algorithm by our interest in fungal networks. Peculiarly, the translocation of

resource within fungal networks is much less well studied than transport in the other major

Heaton et al. Page 2

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 May 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



multicellular kingdoms of life, but the ability of fungal colonies to translocate resources is

ecologically critical [27]. The relative roles of mass-flows (advection), diffusion and active

transport are very poorly understood. Independent of exclusively fungal questions, fungal

systems have the benefit that the network is accessible, and development can be readily

followed through a sequence of images.

The outline of this paper is as follows: Preliminary assumptions and the fundamental

equations governing advection, diffusion and delivery are discussed (Sections II A and II B),

and we stress the importance of the relevant time scales for advection, diffusion and delivery

(Section II C). Readers who are interested in the fundamental principles and their biological

implications should read Sections II, VI and VII. For readers who are interested in the

mathematics of the problem, alternative methods for solving the fundamental equations are

outlined in Section II D, followed by a presentation of the convenience of solving these

equations in Laplace space. The solution of the fundamental equation governing a single

edge is then presented, for the case of zero initial conditions (Section III A). This method of

solution is then applied to a network with multiple edges (Section III B), and we outline the

Gaver-Stehfest algorithm for inverting such solutions from Laplace space into the time

domain (Section III C). We then consider the case of nonzero initial conditions (Sections IV

A and IV B), and use that analysis to develop an algorithm for updating the exact quantity of

resource in each segment of a network as these quantities vary over time, subject to

advection, diffusion and local resource delivery (Section V).

Finally, we analyze a number of test cases, including a model of glucose transport in an

idealized vascular network (Section VI). We also employ the algorithms we have developed

as part of a model of resource translocation across empirically determined, growing fungal

networks (Section VII). We note that changes in fungal volume requires the movement of

fluid: for example, the cytoplasm in a growing hyphal tube moves forward with the growing

tip [28]. In Section VII we investigate whether these growth induced currents are sufficient

to supply the tips with the resources they require. In three empirically determined fungal

networks we found that the minimum currents consistent with the observed growth would

effectively transport resource from the inoculum to the growing tips over the time-scale of

growth. This suggests that the active transport mechanisms observed in the growing tips of

fungal networks may not be required for long range transport.

II. FURTHER DETAILS

A. Preliminary assumptions

We are interested in calculating the distribution of resource across a network of tubes, where

the resource in question has a molecular diffusion coefficient Dm, and where we are given

four essential properties for each edge in the network. The edge connecting nodes i and j

has:

1. A cross-sectional area, denoted Sij(t). We assume that Sij(t) is piece-wise constant,

though in the Supplementary Information (SI) we consider the more complex case

where Sij(t) varies continuously.
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2. A length, denoted lij. As the location of the nodes does not vary over time, lij is

constant.

3. A mean velocity, denoted uij(t). This represents the mean velocity of the fluid in the

edge, and we say that uij(t) is positive if and only if the current flows from node i to

node j (so uij(t) = −uji(t)). By assumption, for each edge ij, uij(t) is piece-wise

constant.

4. Finally, we suppose that resource in edge ij is delivered out of the network at a rate

Rij, so if a particle is in ij for a short period of time Δt, the probability that it is

delivered out of the network in that time is RijΔt.

While there is a single value for the molecular diffusion coefficient Dm, the dispersion

coefficient Dij(t) may be different for each edge. The value of Dij(t) reflects the tendency of

adjacent particles to spread out within ij: they not only diffuse along the length of the

transport vessels that comprise the edge ij, but also diffuse between the slow moving fluid

by the edge of the vessels, and the relatively fast moving fluid in the centre of each vessel.

If we consider the case where each edge ij is composed of some number of cylindrical tubes

of radius rij (see Fig. 2), and if the Reynold’s number is small, we can calculate Dij(t) by

using Taylor’s dispersion coefficient for laminar flow in a cylindrical tube [29]. This

formula tells us that

(1)

In the case of a vascular network rij is simply the lumen radius of the edge ij, so we have

. In plants, fungi or neural tissue each edge in the transport network can be

modelled as a bundle of cylindrical tubes; in which case rij is the characteristic radius of the

component transport vessels, and Sij is the total cross-sectional area of the transport vessels.

B. Fundamental equations

We suppose that resource decays while it moves across the network by advection and

diffusion, resulting in changing concentrations at every point. We will only consider

longitudinal coordinates along the edge ij, using real numbers x to denote distances from

node i, where 0 ≤ x ≤ lij. Each edge contains a quantity of resource, which must satisfy the

one-dimensional advection-diffusion-delivery equation

(2)

where qij is the quantity of resource per unit length, uij is the mean velocity, Dij is the

dispersion coefficient and Rij is the rate at which a unit of resource is lost, or delivered out of

the network. In other words, at time t and location x, the amount of resource in a Δx long

slice of the edge is qij(x, t)Δx. The distribution of resource within each edge will vary over

space and time, but if there is no direct link between the nodes i and j, we let Sij(t) = 0 and
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qij(x, t) = 0. This ensures that the sums in the following equations are properly defined for all

pairs of nodes i and j.

Crucially, the concentration at node i must be consistent across the edges ij, ik, etc, and we

let ci(t) denote the concentration at node i at time t (amount of resource per unit volume).

For each edge ij we have

(3)

where Sij(t) denotes the cross-sectional area at time t. We also assume that there is perfect

mixing at the nodes, and that the nodes have an infinitesimal volume. In other words, the

edge ij is only affected by the rest of the network via the concentrations at nodes i and j.

It follows from our assumptions that the concentration profile in edge ij is completely

determined by Equation (2) together with the initial condition qij(x, 0) and the boundary

conditions Sij(t)ci(t) and Sij(t)cj(t). By Fick’s Law the rate at which resource leaves node i

along edge ij is given by

(4)

Our framework can accommodate the case where resource is introduced at node i at some

given rate Ii(t) > 0. If node i is not an inlet node (that is, a point where resource enters the

network), the quantity of resource entering node i is equal to the quantity of resource leaving

node i, so we have Ii(t) = 0. In either case, Equation (4) implies that the net rate at which

resource leaves node i is

(5)

Note that we may be concerned with both the quantity of resource and the quantity of fluid

that passes a given point per unit time. Henceforth the term current is reserved for the

quantity of resource that passes a given point per unit time, while medium-current refers to

the volume of the advecting medium that passes a given point per unit time.

C. Critical time scales for advection, diffusion and delivery

For an edge of length l, mean velocity u > 0, dispersion coefficient D and local delivery rate

R, there are three critical time scales:

 is the time taken to advect across the edge,

 is the mean diffusion time for the edge and
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 is the time scale of transport out of the edge.

The ratio  is the macroscopic Péclet number for the edge [7, 24]. If  then

advection is the dominant form of transport across ij, and almost all of the material that

leaves ij will pass to locations downstream from ij. It is also generally true that in the case of

high Péclet numbers large concentration gradients can persist within each edge [7]. If

 then diffusion is the dominant form of transport across ij, which means that the

concentration within ij will tend to vary smoothly from node i to j.

If tT ≪ tA and tT ≪ tD, then the bulk of the resource will be delivered out of the transport

network before it transits the edge in question. As a general rule, an efficient transport

network will utilize resource over a time scale tT which is similar to the time scales over

which resource transits the network. For example, in the case of vascular networks, the

oxygen affinity of haemoglobin varies with body size, and is related to the circulation time

for the species in question [7, 21]. This makes sense, because if the oxygen affinity of

haemoglobin were too low for a given body size, red blood cells would become

deoxygenated too rapidly, and too little oxygen would be carried to the tissues distant from

the heart and lungs. On the other hand, if a large proportion of the haemoglobin were to

remain as oxyhaemoglobin throughout the vascular system, only a small fraction of the

oxygen in red blood cells would be transported to the surrounding tissue. As the diffusion

coefficient of oxygen is 2 × 10−3 mm2s−1 [7] and the velocity of flow in a capillary is about

1mm s−1 [23], a capillary of length 1 mm has tA = 1 s and tD = 500 s. Furthermore, as

oxygen is delivered throughout an entire network of capillaries, it follows that tT ≫ tA. If

this were not the case, most of the oxygen entering a capillary would not leave that capillary.

D. Alternative methods

As we outlined in Section II B, there is a system of equations which govern the changing

distribution of resource throughout a given network, where the resource in question is

subject to advection, diffusion and delivery. There are several methods that could be applied

to solve such a system of equations. We could model the movement of resource by taking a

particle based approach, where a large number of particles move across the network, and the

path taken by each particle is determined probabilistically, as is the time taken to travel from

one node to the next [4].

The problem with such particle based approaches is the challenge of avoiding under-

sampling in the regions of the network that contain a low concentration of resource. This

problem occurs because, in a finite simulation, the low probability paths are of course less

well sampled, but the fact that such regions are part of the network may exert a significant

effect on the movement of resource, particularly on the higher moments of the transit-times

for particles moving across the network [24, 30, 31]. Indeed, that is why the dispersion of

tracers can be used to probe the structure of networks, and why tracer dispersion plays such

a critical role in geophysical surveying techniques [3, 4, 32].

Another possible approach is to employ a finite difference scheme. However, in a network

where the transport velocities vary over several orders of magnitude, straight forward
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applications of such an approach are not efficient. The problem is that the time scale for

updating the concentrations is essentially determined by the fastest edge; for stability the

distance travelled by advection per time step must be smaller than the spatial resolution (ie.

the Courant number must be less than one). Using such a small time step may be very

inefficient in the slower moving regions of the network [33, 34].

III. ADVECTION, DIFFUSION AND DELIVERY IN LAPLACE SPACE

Given our system of fundamental equations, we want to find the quantity of resource

throughout the network, which may vary over time. It is convenient to follow the approach

of [24], which entails the application of the Laplace transform. This operation convolves the

different time scales over which resource may move from one node to another, so it is an

efficient way to handle the wide range of velocities our network may contain. In particular,

we take advantage of the following properties of the Laplace transform

:

(6)

(7)

If uij and Dij are constant over time, it follows from Equation (2) that

(8)

Furthermore, Equations (5), (6) and (7) imply that

(9)

where ϒi(s) denotes the Laplace transform of Ii(t), the net current flowing out of node i.

A. Zero initial conditions in an edge

We begin by considering an initially empty edge, before extending our results to the more

complex case of nonzero initial conditions. We let qij(x, 0) = 0, and consider the

homogenous case for Equation (8):

(10)

By solving this ODE in the usual manner, we find that for some pair of constants A and B,
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(11)

(12)

Note that the Laplace variable s represents a rate, and that αij(s) = αji(s) is positive, and

dimensionally equivalent to speed. Roughly speaking, αij(s) represents the speed at which

resource travels over the time scale 1/s, with a correction term to account for delivery. Since

s and Dij are positive and Rij is non-negative, we always find that αij(s) > |uij|. When

, Equation (12) implies that . The value of αij(s) depends on uij,

Dij and Rij over most time scales, but for very short time scales ( ) almost all

the movement is due to diffusion, αij ≫ uij and .

Equation (11) tells us that for any positive number s, we can find A and B and express Qij(x,

s) in terms of the quantity of resource at either end of the edge. For any given s, we denote

the quantity of resource at the ends of each edge by

(13)

For each edge ij, it is convenient to define two, dimensionless ratios between time scales:

(14)

Setting x = 0 and x = lij tells us that

(15)

A, B, Xij, Xji, αij and hij are all functions of the Laplace variable s, but this dependence is

omitted for the sake of clarity. Equation (15) tells us that

(16)
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(17)

Note that if uij is negative, the medium-current flows towards node i and the macroscopic

Péclet number for the edge ij is  [7, 24]. Assuming that edge ij is initially empty,

we can find Qij(x, s) by substituting Equations (14), (16) and (17) into Equation (11), giving

us

(18)

B. Advection, diffusion and delivery in an initially empty, static network

Having examined the case of a single edge, we now turn to the problem of coupling the

edges of a network such that the concentrations vary continuously as we move from one

edge to another. For each node i we have . Assuming that the cross-

sectional areas Sij are constant, Equations (3) and (13) imply that for all edges ij we have

(19)

Enforcing this equation ensures that the Laplace transform of the concentration at node i is

consistent for all edges ij, ik, and so on. In general, we may not know the Laplace transform

of the node concentrations C̄(s) = {C1(s), …, Cm(s)}, where m is the number of nodes.

However, given Ī(t) = {I1(t), …, Im(t)} (the net current of resource leaving each node), we

can calculate ϒ̄(s) = {ϒ1(s), …, ϒm(s)} (the Laplace transform of Ī), and, in the following

manner, calculate C ̄(s). If we substitute Equation (11) into Equation (9), noting that x = 0

tells us that

Equations (14) and (15) imply that A + B = Xij, and

so we have
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(20)

Equations (19) and (20) imply that

(21)

In other words, for each node i we have a linear equation in C1(s), C2(s), …, Cm(s). Hence

where C̄(s) and ϒ̄(s) are column vectors, we thus have

(22)

where

(23)

We refer to the matrix M(s) as the propagation matrix, and it contains a row and column for

each node in the given network. Given M(s) and ϒ̄(s) we can calculate C̄(s) using various

efficient algorithms, including the stabilized biconjugate gradient method (BiCGStab). In

most cases this is the most efficient algorithm to use, as our matrix M(s) is non-symmetric

and sparse [35].

Equation (12) implies that the diagonal elements M(s) are all positive. Furthermore, Mij(s) =

0 if and only if there is no edge between i and j, and the other off-diagonal elements are

negative. We note that if there is resource at node j, it may be transported along ij, bringing

resource to i and reducing ϒi(s) (the Laplace transform of the net current flowing out of

node i). Resource can only reach node i along the edges ij, ik, etc, so ϒi(s) is completely

determined by the concentration at i and the concentrations that flow through the nodes

adjacent to i. As ϒi(s) is the Laplace transform of the net current flowing out of node i, and

resource at nodes j ≠ i can flow into node i, the off-diagonal elements of M(s) are negative,

and zero if i and j are not directly connected.

Multiplying |Mij(s)| by Cj(s) gives us the Laplace transform of the current of resource

flowing from j to i, so roughly speaking, |Mij(s)| represents the size of the volumetric current

from j to i, over the time scale 1/s. Note that if uij is positive, then the medium-current flows

from i to j, |Mij(s)| < |Mji(s)|, and there is a greater flow from i to j than the other way

around. That is to say, when the medium-current is from i to j, the value of Ci(s) has a

greater influence on the value of ϒj(s) than the influence of Cj(s) on the value of ϒi(s). Also

note that the ratio of Mij(s) to Mji(s) depends on the Péclet number , as Mij(s) :

Mji(s) is equal to 1 : e2gij.
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For very short time scales we have a very large s, and by Equation (12), αij ≫ uij and

. In this case the off-diagonal elements of M are very small, and

. In other words, over very short time scales resource is

lost from the nodes by a process of diffusion, but it does not have time to reach the other

nodes. Over longer time scales the difference between uij and αij is smaller, the off-diagonal

elements of M are larger, and effect of advection is greater.

C. Inverting from Laplace space

We now have a method for finding the Laplace transform of various quantities, and in this

section we consider how to transform these quantities into the time domain. More

specifically, we have seen that for a given Laplace value s, we can find M(s) and ϒ̄(s). We

can therefore use Equation (22) to find C̄(s) = {C1(s), …, Cm(s)}, the Laplace transform of

the concentrations at each node. Furthermore, we can use Equation (18) to calculate Qij(x, s)

in terms of the boundary conditions Xij(s) = (qij(0, t)) and Xji(s) = (qij(lij, t)). In other

words, for each edge and each Laplace variable s, we can find an algebraic expression for

Qij(x, s) in terms of the boundary conditions Xij(s) and Xji(s), but we have yet to show how

we can numerically invert such quantities into the time domain.

As we can calculate any sequence of real valued sample points in Laplace space and we

wish to calculate the corresponding value at a given point in time, it is appropriate and

efficient to apply the Gaver-Stehfest algorithm [36, 37]. The key idea behind this algorithm

(and other, related algorithms) is the notion of constructing a sequence of linear

combinations of exponential functions, in order to form a weighted delta convergent

sequence [36–39]. That is to say, we consider a sequence of functions δn(x, t) such that for

any function q that is continuous at t, we have

(24)

where q̃n(t) → q(t) as n → ∞. As we shall see, there are weighted delta convergent

sequences of functions such that δn(v, t) is of the form

(25)

where θi > 0 for all i, and the terms θi and ωi do not depend on t. Now, if we suppose that

our function q does not increase exponentially, then the Laplace transform

 is well defined for all positive numbers s. Hence the existence of Q(s)

for all positive s is a reasonable assumption, given the context in which our functions q

arise. Assuming that Q(s) is well defined for all positive numbers s, Equations (24) and (25)

imply that
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Gaver [40] employed the sequence of functions

but the resulting terms q̃n(t) converge to q(t) logarithmically slowly. Gaver also showed that

the quantity q̃n(t)−q(t) can be expanded in terms of inverse powers of n, which enabled him

to accelerate the convergence of his original sequence of approximations [40]. The most

useful formula for finding an accurate estimate of q(t) based on a linear combination of the

Gaver estimates was derived by Stehfest [41], who stated that

(26)

and Ω is even. Note that the terms κn can be extremely large, and that the value of κn

depends on the parameter Ω. Furthermore, increasing the parameter Ω increases the accuracy

of our estimate q(t) ≈ q̃Ω(t), provided that we have sufficient system precision to utilize the

exact values for κn.

The Gaver-Stehfest algorithm is very efficient and accurate, but it requires high system

precision for the weights κn if it is to yield accurate estimates for q(t). Indeed, if we wish to

produce an estimate of q(t) that is accurate to N significant digits, we must calculate the

values of κn with an accuracy of about 2.5N significant digits [36, 42]. Fortunately, to

calculate q(t) accurately we do not require such a disproportionately high level of accuracy

in the values of Q(s).

If the transform Q(s) has all its singularities on the negative real axis, and if the function q(t)

is infinitely differentiable for all t > 0, extensive experimentation [36, 42] indicates that the

relative error

(27)
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provided that the values κn have been calculated with sufficient precision [36, 42]. If the

function q does not satisfy the above conditions q̃Ω(t) may converge to q(t) rather more

slowly, but as a rule of thumb setting Ω = 10 and using standard double precision for the

weights κn will ensure that the Gaver-Stehfest algorithm produces inversions that are

accurate to at least three significant digits.

IV. NON-ZERO INITIAL CONDITIONS

A. Non-zero initial conditions in a single edge

We now consider advection, diffusion and delivery along a single edge ij, where the initial

condition qij(x, 0) is non-zero. We let the length of ij equal l, the longitudinal dispersion

coefficient is D, the local delivery rate is R and the mean velocity is u.

We have seen that for any positive Laplace constant s,  and

 satisfy the homogeneous analog, Equation (10). Furthermore, the

Wronskian

By the method of variation of parameters,

(28)

is a particular solution to the fundamental Equation (8).

Note that f(0, s, q) = 0 for all initial conditions q. Also note if q = q1 + q2 then f(x, s, q) = f(x,

s, q1) + f(x, s, q2). Since f(x, s, qij(y, 0)) is a particular solution of Equation (8), for each edge

ij there is a pair of constants A and B such that

(29)

Because f(0, s, q) = 0 for all initial conditions q, Equations (14) and (29) imply that

(30)

(31)

We can therefore express A and B in terms of Xij and Xji. Indeed, substituting Equation (30)

into Equation (31) and multiplying both sides by e−g tells us that
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(32)

(33)

and explain its physical significance in Section IV B.

Equations (30) and (32) imply that

(34)

and substituting Equation (34) into Equation (29) tells us that for any initial condition qij(y,

0),

(35)

B. Non-zero initial conditions over a network

Having analyzed the case of a single edge with a nonzero initial condition, we now consider

an entire network, and find an exact solution that ensures that for all t > 0, the concentration

varies continuously as we move from one edge to another. The first step in finding this

solution is to note that Equation (28) implies that

where for the sake of clarity we drop the subscript ij from uij, αij, lij, gij, hij and Dij. Note

that for any initial condition qij(y, 0), we have . It follows that

(36)

Now, recall that ϒi(s) denotes the Laplace transform of the net current of resource flowing

away from node i, and that ϒi(s) = 0 unless i is an inlet node. Substituting Equation (36) into

Equation (9) gives us

Heaton et al. Page 14

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 May 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(37)

Assuming that the cross-sectional areas Sij are constant, Equations (19) and (37) imply that

(38)

In matrix form we have

(39)

(40)

and M(s) is the propagation matrix as in Equation (23). Note that the effect of the initial

conditions on the concentration at the nodes is completely captured by the terms βij(s), and

that, as before, the propagation matrix M(s) relates the concentrations at the nodes to the net

currents flowing out of the nodes. Furthermore, by comparison with Equation (23), we can

see that the concentration at the nodes is the same as would be the case if the network were

initially empty, and the Laplace transform of the net current leaving node i were pi(s) rather

than ϒi(s).

In effect, the formalism of the propagation matrix enables us to substitute an initial condition

in the edges around node i for a boundary condition at node i. For each node i and each

Laplace variable s, this boundary condition is of the form Σj βij(s). Intuitively speaking, the

term βij(s) represents the Laplace transform of the quantity of resource that first leaves edge

ij by arriving at node i. Note that we have not calculated the impact of the initial condition

qij(x, 0) on the future concentration profile qij(x, t) for t > 0: we have simply calculated the

impact of the initial conditions on the concentrations at the nodes (see Section V).

Since αij(s) ≫ uij and hij(s) ≫ gij for large s, for very short time steps t we have sinh(hij) ≫
max [egij, e−gij]. It follows that over short time scales, the off-diagonal elements of M(s) will

be very small. If the entries in the ith column of M(s) are very small, it may be numerically

difficult to calculate Ci(s), as any error in our estimate for Ci(s) would have very little

impact on the value of M(s)C̄(s).

In practice this is not a significant problem, as when we solve the above system of linear

equations to identify Ci(s), we make the initial guess that Ci(s) = ci(0)/s, which would be the

correct value if the concentration at node i remained constant. For numerical reasons we
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may not be able to identify the exact value of Ci(s), but this problem only arises when the

bulk of resource around node i does not leave the edges around node i over the time scale

1/s. As we shall see in Section V B, those are precisely the circumstances under which the

value of Ci(s) has little impact on our calculation of the distribution of resource within the

edges at a given time t ≈ 1/s.

V. EFFICIENT CALCULATION OF RESOURCE DISTRIBUTION

If we wish to find the concentration at various points in the network other than the nodes,

there are two ways we can proceed. The first method is to treat each point of interest as an

additional node. The problem with this approach is that it increases the size of the

propagation matrix, and finding C̄(s) by inverting the matrices M(s) is the major

computational cost of the propagation matrix algorithm. Furthermore, although this

approach can be used to find the exact concentration at each of a given set of points, it does

not provide a means of finding the exact quantity of resource between a given pair of points.

We could approximate the total quantity of resource between two points by assuming that

the concentration varies in a linear manner from one point to the next, but as the exact

solution may contain boundary layer effects, we might require a very high spatial resolution

to ensure that such a linear approximation is accurate.

A different approach, which we take, provides an exact solution for the total quantity of

resource within each section of the network, regardless of the spatial resolution. The key

conceptual step involves partitioning the resource into two parts. Strictly speaking our

approach is mathematically continuous, but we can imagine that the resource is composed of

particles, which either leave or do not leave a given edge over a given time scale. We let

q̂ij(x, t) denote the quantity of resource per unit length at the point 0 ≤ x ≤ lij in edge ij and

time t, where a given particle only contributes to q̂ij(x, t) if it has passed through a node (any

node) by time t after initialization. More precisely, we work in Laplace space and let (q̂ij(x,

t)) = Q̂
ij(x, s). This term denotes the Laplace transformed concentration profile that would

occur if the network was initially empty, and if the Laplace transform of the net current

leaving each node was pi(s) = ϒi(s) + Σj βij(s), rather than ϒi(s).

As we have seen, the impact of the initial condition on the concentration at the nodes is

completely captured by the constants βij(s). However, Q̂
ij(x, s) and q̂ij(x, t) do not fully

capture the influence of the initial condition qij(x, 0) on the concentration profile qij(x, t) for

t > 0. In addition to q̂ij(x, t) (the quantity of resource that has reached a node over the time

scale t), we must also consider the resource that starts in edge ij, and which does not reach

node i or j over the time scale t. We let q̃ij(x, t) denote the quantity of such resource at the

point 0 ≤ x ≤ lij in edge ij and time t, where by definition

(41)

We can calculate the concentration at each node by calculating βij(s) for every i and j, and

by using the propagation matrix. Furthermore, because at time 0 none of the resource in

edge ij has had time to reach a node, we can apply Equation 18, and find Q̂
ij(x, s) in terms of

the boundary conditions Xij(s) and Xji(s). Given Q̂
ij(x, s) for , we can apply the
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Gaver-Stehfest algorithm and find q̂ij(x, t). In addition, we solve a separate PDE for each

edge, which tells us how the resource that stays within each edge has evolved over a given

time step t. That is to say, for each edge ij we find q̃ij(x, t), given that q̃ij(x, t) satisfies the

fundamental advection-diffusion-delivery Equation (2), q̃ij(x, 0) = qij(x, 0), q̃ij(0, t) = 0 and

q̃ij(lij, t) = 0. Finally, Equation 41 tells us that qij(x, t) = q̃ij(x, t) + q̂ij(x, t).

In particular, we consider the case where the initial condition is stepwise constant, and edge

ij is divided into Nij sections of equal length. We let  denote the mean quantity of

resource per unit length in the nth section at the given time t, where by convention the first

section is next to node i and the Nth section is next to node j. For any t > 0, we can employ

the following algorithm to find an exact solution for the updated mean quantities per unit

length,

(42)

A. Stepwise constant initial conditions

We are interested in calculating how the quantity of resource in a network changes over

time, given that the resource decays and is subject to advection and diffusion. In particular,

it is convenient to consider a stepwise constant initial condition, as we can then calculate

how the total quantity of resource in each segment of the network has changed by time t.

The first step in this calculation is to find the Laplace transform of the concentrations at each

node C̄(s). As we have seen, to calculate C̄(s) we must first find Mij(s) and ϒ̄(s), which do

not depend on the initial condition. For each sample point s and each edge ij we must also

calculate βij(s) and βji(s), which capture the effect of the initial condition qij(x, 0). In

particular, we start this subsection by considering the case where the initial condition is

where n ≤ N. We will find our solutions for other initial conditions by summing the solutions

for various initial conditions of this form. For the sake of clarity we drop the subscripts ij

from lij, Nij, gij and hij, and note that Equation (28) tells us that for this initial condition

(43)

Substituting into Equation (33) yields
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(44)

Recall that f(x, s, q1 + q2) = f(x, s, q1) + f(x, s, q2). Since Equation (33) is linear, it follows

that if the initial condition contains several blocks of resource, each block makes its own

separate contribution to βij(s) and βji(s). Let x0 = 0, , …, xN = l, and

suppose that for all 1 ≤ n ≤ N we have

(45)

Given such a stepwise constant initial condition, we can calculate βij(s) by summing the

contribution of each of the blocks of resource. That is to say, Equation (44) becomes

(46)

We can find βji(s) by using the above formula, substituting −gij for gji, −uij for uji and

 for . It follows that

(47)

B. Resource that leaves its initial edge

If a particle leaves edge ij and reaches node i or j over the relevant time scale, it contributes

to βij(s) or βji(s), and hence it contributes to our solution Ci(s), Cj(s) and (qîj(x, t)) = Q̂
ij(x,

s). On the other hand, at time 0 none of the resource has reached the nodes, so the initial

condition q̂ij(x, 0) = 0. It follows that if the cross-sectional areas are held constant, we can

apply Equation (18). In other words, we can find Q̂
ij(x, s) by effectively considering an

initially empty network, where resource is introduced at the nodes at a rate which exactly

matches the rate at which resource reaches the nodes in the case where the network has the

given non-zero initial condition. Equation (18) also accounts for the impact of any inlet

nodes, in the case where resource is being added to the network.

We can therefore use Equations (39), (46) and (47) to find C̄(s) = {C1(s), …, Cm(s)}, and in

the case where the cross-sectional areas are constant, we can use Equations (18) and (19) to

express Q̂
ij(x, s) in terms of the boundary conditions Xij = SijCi(s) and Xji = SijCj(s). Since 

(∫ q̂ij(x, t)dx) = ∫ Q̂
ij(x, s)dx, we can find ∫ q̂ij(x, t)dx by calculating ∫ Q̂

ij(x, s)dx for s = ln

2/t, …, N ln 2/t and applying the Gaver-Stehfest algorithm.
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We suppose that edge ij is divided into Nij sections of equal length, and for the sake of

clarity we drop the subscripts ij from Dij, lij and Nij. We let  denote the mean value of

q̂ij(x, t) in the nth section of edge ij, and note that by definition

(48)

Defining  we have

which implies that

(49)

(50)

C. Resource that remains in its initial edge

Over the time scale t, not all of the resource will leave the edge in which it started. To find

q̃ij(x, t), the quantity of resource that has not left edge ij, we must solve the advection,

diffusion, delivery problem for each separate edge ij, where nodes i and j are absorbing

boundaries and the initial condition q̃ij(x, 0) = qij(x, 0). The resulting solution accounts for

those particles which do not reach a node in the relevant time-scale. In particular, we

consider the case where the initial condition is stepwise constant, as in Equation (45).

The fundamental Equation (2) tells us that for each edge

(51)
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Furthermore, we are looking for a real valued function such that q̃ij(0, t) = 0 and q̃ij(lij, t) = 0

for all t. These conditions imply that we can express q̃ij(x, t) in the following form:

(52)

The parameters Am can be found by taking Fourier transforms. More specifically, we know

that qĩj(x, 0) = qij(x, 0), so

It follows that for every positive integer m,

In particular, consider the case where the initial condition is stepwise constant, and of the

form described by Equation (45). We have

(53)

where

(54)

We are now in a position to find

as Equation (52) implies that
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(55)

Note that  as m → ∞, and likewise Am ∈ O(m−1). In contrast  tends to zero

much more rapidly. Indeed, we note that

(56)

It follows that the relative error

whenever we have

(57)

We can therefore be confident that if we truncate the sum in Equation (55) at m = Ω′, the

relative errors in our estimates for  will be smaller than ε provided that Ω′ satisfies

Equation (57). Also note that Equation (52) tells us that if  then  decreases

rapidly, so Ω′ does not need to be large unless . Furthermore, if  then

most of the resource will leave edge ij over the time scale t, and q̃ij(x, t) will only make a

small contribution to the total value of qij(x, t). In that case using a small value of Ω′ will

produce very accurate estimates for  even if .
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D. Calculating the total quantity of resource in each segment of a network

Suppose that we wish to calculate the mean concentration per unit length in each segment of

a network at time t, such that each part of our final answer has a relative error ε < 10−0.45Ω,

where Ω is an even integer. The first step is to set s = Ω ln 2/t, and apply Equations (46) and

(47) to find βij(s) and βji(s) for each edge ij. We then compute M(s) and p̄(s), and employ

the BiCGStab algorithm to find C̄(sΩ), starting with the initial guess that for each i,

(58)

This initial guess for the value of C̄(sΩ) would be correct if the concentration at the nodes

was constant, and making such a guess can help to speed up the process of finding the true

value of C̄(sΩ). At each step, when we have identified C̄(s) such that M(s)C̄(s) = p̄(s), we

store the vector C̄(s) and repeat for s = sΩ−1, …, s1, where sn = n ln 2/t. The only difference

is that for sub-sequent applications of the BiCGStab algorithm, we can take advantage of the

approximation

(59)

This is generally a better initial guess than that provided by Equation (58), so the BiCGStab

algorithm converges on the solution more rapidly. Given Ci(sn) and Cj(sn), we can use

Equation (49) to calculate  for each section in the edge ij. Having found 

for each 1 ≤ n ≤ Ω, we can apply the Gaver-Stehfest algorithm to obtain , and we

repeat this process for each edge in the network. Finally, for each edge ij we can use

Equations (52), (54) and (53) to calculate a sequence of values for  and Am until we

reach an integer Ω′ such that  satisfies Equation (57). We then employ Equation (55) to

find  (the mean quantity of resource in ij that has not reached a node),

and note that for each section of the network the mean quantity of resource per unit length

(60)

Unless there are many sections in each edge, finding the vectors C̄(s) such that M(s)C̄(s) = p̄
(s) is the most time consuming step of the computation, as it effectively involves inverting

an m × m matrix M(s), where m is the number of nodes. We also note that Equation (23)

implies that if hij is larger than 10 (say), then the matrix M(s) may be close to singular,

making it computationally difficult to calculate C̄(s). Fortunately this problem is easy to

avoid, as we can simply introduce an additional node k at the midpoint of edge ij. This

increases the size of the matrix M(s), but the lengths lik and lkj will be half the length lij. As

we have seen, the ratio Mij(s) : Mji(s) is equal to 1 : e2gij, so adding additional nodes greatly
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reduces the ratio between the entries of M(s), and can make it significantly easier to find the

vector C̄(s).

Finally, we note that this algorithm can be adapted for the case where the cross-sectional

areas Sij(t) vary continuously over time (see SI). However, even in the case where Sij(t)

varies continuously over time, our method requires that over each time step the lengths lij,

mean velocities uij, decay rates Rij and dispersion coefficients Dij are held constant. In the

case where we wish to find the concentration of resource in a changing network (see Section

VII), we simply vary all the parameters in a stepwise manner, finding the distribution of

resource at the end of each time step, and treating that distribution as an initial condition for

the following time step. In the case of the fungal networks that we analyze in Section VII,

this approach yields very similar results to the more complex algorithm with continuously

varying Sij(t).

VI. VASCULAR GEOMETRY AND NUTRIENT DELIVERY

A. Calculating the total rate of glucose delivery in idealized vascular networks

We now consider a simple model of glucose moving through a vascular network, where the

glucose is ‘consumed’ or transported out of the network by glucose transporters on the

surface of the vessels. For the sake of simplicity we assume that the glucose transporters are

uniformly distributed over the interior surface of all of the vessels, so the number of

transporters per unit length is proportional to the radius of the vessel, and the number of

transporters per unit volume of blood is inversely proportional to the radius of the vessel.

The rate of glucose delivery reflects the frequency of interaction between glucose and the

glucose transporters. The kinetics of glucose passing through a transporter is rapid [43], so

high concentrations of glucose are required to saturate the transporters. Throughout this

section we assume that the glucose concentration is below the carrying capacity (Km), and

we make the simplifying assumption that the reaction rate is proportional to the

concentration of glucose and the concentration of glucose transporters. In other words, we

consider the case where the local delivery rate per unit of resource Rij is inversely

proportional to the radius of the vessel.

We are interested in the total rate of glucose delivery in different networks of cylindrical

tubes, as this quantity corresponds to the total rate at which glucose is transported out of the

vasculature and into the surrounding tissue. We compare different network geometries by

assuming they have one inlet and one outlet node (nodes 1 and 2 respectively). We fix the

concentration at node 1, inject some volume of fluid F per unit time at node 1, and remove

an equal volume of fluid at node 2. Given the length and radius of each edge, we can

calculate the relative conductances, and thereby find the medium-current flowing through

each edge. This enables us to find the velocities uij as, by definition, the medium-current in

each edge is Sijuij. Given the molecular diffusion coefficient for the resource in question, the

dispersion coefficients Dij can be found by Equation (1).

Numerical simulations indicate that the distribution of resource reaches a steady state. At

steady state, the total rate of resource delivery must equal the current of resource entering
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the network minus the current of resource leaving the network. Furthermore, the

fundamental advection, diffusion, delivery Equation (2) tells us that at steady-state,

(61)

It follows that for each edge there must be a pair of constants A and B such that

(62)

(63)

Whatever current of resource and medium we introduce and remove from the given

network, the steady state distribution of resource must satisfy Equation (61). For the sake of

simplicity we ignore the process of vascular adaptation whereby vessels dilate, contract or

become apoptotic in response to fluid flow and the associated shear wall stress [44–47], but

as our algorithm(s) can be applied to networks with varying cross-sectional areas, we note

that such effects could be incorporated into a more complex model.

Our aim is to compare the efficiency of resource delivery for a range of different networks,

and we do this by calculating the total rate of resource delivery for a representative steady

state flow of medium and resource. To find such a representative distribution of resource,

we suppose that the concentration at node 1 is a fixed constant k, and that resource leaves

the network by flowing from node 2 into a dummy edge 2n (see Fig. 3). If we suppose that

the concentration at node 2 is c2 while the concentration at node n is 0, Equation (62)

implies that

where l is the length of the dummy edge 2n. Letting l → ∞, we have

(64)

In this case the flux of resource flowing out of the network at node 2 is

where Equations (1), (63) and (64) tell us that
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(65)

Given any network of cylindrical tubes with a specified inlet node 1 and outlet node 2 (see

Fig. 3), and given a molecular diffusion coefficient Dm and a local delivery rate Rij for each

edge, we can find a spatial distribution of resource that reflects the network’s efficiency as a

transport system, and we can calculate the total rate of resource delivery in the given case. In

particular, it is instructive to calculate the total delivery rate at steady state (denoted Ctot),

which is equal to the total current flowing into the network minus the total current flowing

out of the network. We note that

(66)

and we make a fair comparison between different networks by considering the following:

1. In each case, we assume that F1(t) = F. In other words, at node 1 we inject a

volume F of fluid per unit time.

2. We remove an equal volume of fluid from a node 2, so F2(t) = −F.

3. We assume that the flow of fluid is laminar, so the Hagen-Poiseuille equation

holds, and the conductance of each edge is proportional to .

4. Given the relative conductances of each edge, and given that a medium-current F

enters the network at node 1 and leaves the network at node 2, we can calculate the

velocites uij [48, 49].

5. All the edges are assumed to be cylindrical and composed of a single vessel. As we

are given the cross-sectional areas Sij we effectively know the radius of each edge,

as well as uij and Dm, so we can find the dispersion coefficients Dij by plugging

these values into Equation (1).

6. We suppose that the concentration at node 1 is a fixed constant k at all times. This

implies that C1(s) = k/s.

7. For each edge ij, including the dummy edge, we suppose that the delivery rate per

unit of resource Rij is inversely proportional to the radius of the vessel. This reflects

the assumption that in each vessel there is a fixed density of glucose transporters

per unit of surface area.

8. We suppose that the current of resource leaving the network at node 2 is

completely determined by the concentration at node 2. More specifically, we let

I2(t) = −F′c2(t), where F′ is given by Equation (65). Note that the value of F′
depends on the same cross-sectional area of the dummy edge, and in the following

section we assume that in each case, S2n = S12 (see Fig. 3).
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9. For the sake of simplicity we assume that each network is initially empty, and we

calculate the concentrations and total delivery rate for a time point t that is

sufficiently large for the system to have reached steady state.

B. Analytic solutions to the total rate of glucose delivery in simple vascular networks

We begin by considering glucose delivery by a single vessel (see Fig. 3a), where by

definition F = F1(t) = S12u12. As we are assuming that C1(s) = k/s and the network is

initially empty, βij(s) = 0 for every edge ij (see AII), and Equation (23) tells us that

It follows that

(67)

so we have

(68)

The approximation  is arbitrarily accurate for sufficiently

small s, so for very small s we can substitute Mij(0) for Mij(s). Hence Equation (67) tells us

that C2(s) ∝ 1/s for very small s, and Equation (68) tells us that ϒ1(s) ∝ 1/s for very small s.

It follows that for sufficiently large t,

(69)

Note that the terms F′, u and α̂ may vary with the cross-sectional area S: the relationship

between Ctot and the diameter of vessels is plotted in Fig. 4. To replicate the scales of

interest in actual vascular networks, we consider edges of length l12 = 1mm, and we let Dm =

6.7 × 10−4mm2s−1 (the molecular diffusion co-efficient of glucose in water at body

temperature). We also let k = 5mmole/litre: a typical value for the concentration of glucose

in blood. Finally, we assume that there is a fixed number of glucose transporters per unit

area, so the local delivery rate . The numerical value of the parameter ρ
reflects the density of transporters, and their affinity for glucose. To illustrate the

biologically relevant case, we set ρ = 0.05mm s−1. By choosing this value of ρ we ensure

that the concentration of glucose drops significantly between the inlet and the outlet nodes,
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but in the networks we consider the concentration does not drop by more than an order of

magnitude.

To produce the continuous curve shown in Fig. 4 we suppose that the medium-current F =

0.002mm3s−1 regardless of the cross-sectional area S12. In other words, we suppose that

, and find the dispersion coefficient D12 by applying Equation (1). We have also

plotted the case where the pressure drop between nodes 1 and 2 is held constant, rather than

the medium-current F (see the dashed curve in Fig. 4). The Hagen-Poiseuille equation states

that in the case of laminar flow, conductance should scale with the square of a vessel’s

cross-sectional area. In other words, in the case of a single edge, maintaining a constant

pressure drop is equivalent to setting u12 ∝ S12. Consequently, when the pressure drop is

held constant and the cross-sectional area is very low, very little resource enters the network

and the total delivery rate is very low. In the case of fixed current, the total delivery rate also

drops to zero as the cross-sectional area drops to zero, but in that case it is because the mean

velocity is inversely proportional to the cross-sectional area, so when the cross-sectional

area is very small, the velocity of flow is very large and a relatively large fraction of the

resource leaves the vessel without being delivered out of the transport network.

We now consider the other networks illustrated in Fig. 3. By assumption C1(s) = k/s, ϒ2(s) =

−F′C2(s) and ϒ3(s) = 0. Equation (23) relates these terms to the unknowns ϒ1(s), C2(s) and

C3(s). As in the previous example, this relationship enables us to calculate Ctot = I1(t) − F

′c2(t). In the case of a triangular network we let S12 = S13 = S32 = 1000μm2 and l12 = 1mm

(see Fig. 3b). To illustrate the effect of shortcuts we vary the length of l13 = l32, and see how

it effects Ctot (see Fig. 5). As before, Dij is determined by Equation (1), k = 5mmole/litre and

we set . The velocities uij are calculated in two different ways: we either fix the

total medium-current through the network, or we fix the pressure drop between nodes 1 and

2. In either case, the total rate of resource delivery is at a maximum when the alternate route

is of intermediate length (see Fig. 5).

As a final example we find Ctot = I1(t) − F′c2(t) in the case where our network contains a

dead-end (see Fig. 3c). We let S12 = 1000μm2, l12 = 1mm, u12 = 1mms−1 and u23 = 0, while

Dij is determined by Equation (1). In this case we vary the length of the dead-end to see how

it effects Ctot. As the presence of dead-ends vessels can only increase the mean transit time

for resource crossing the network, we find that increasing the length of the dead-end regions

increases the total rate of resource delivery (see Fig. 6).

C. Biomedical implications of altering vascular geometry

Despite their simple nature we now suggest that the results of Section .2 could have

biomedical implications. Tumours require access to blood vessels for growth and metastasis.

Consequently anti-angiogenic drugs, which disrupt and inhibit the formation of new blood

vessels, are a promising avenue for the treatment of cancer. As single agents, anti-

angiogenic drugs have only produced modest clinical improvements, but in combination

with chemotherapy, the drug bevacizuab (a monoclonal antibody against vascular

endothelial growth factor) has produced an unprecedented increase in survival (5 months) in

colorectal cancer patients [50]. This is somewhat paradoxical, as previous studies have
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indicated that destroying the vasculature severely compromises the delivery of oxygen and

therapeutics, producing hypoxia that renders chemotherapy and radiotherapy less effective

[51].

Tumours are subject to an unusually high interstitial fluid pressure, which may collapse

blood and lymph vessels, and inhibits the interstitial transport of drugs [7]. Furthermore, the

blood vessels within tumours are relatively leaky, tortuous, and arranged in a haphazard,

irregular pattern of interconnection, which results in velocities of fluid flow that vary

spatially and temporally in a random manner [7, 46, 51–53]. In healthy tissue the endothelial

cells of the vasculature are supported by cells known as pericytes, but in tumours the

pericytes are loosely attached or absent [25, 51, 54]. Anti-angiogenic drugs may impact on

drug delivery in several ways: they can induce the regression of the particularly leaky

vessels that lack pericytes [51], they can encourage the maturation of the remaining vessels

into less leaky, less dilated, less tortuous vessels with a greater coverage of pericytes [25, 51,

54], they can alter the pattern of vascular adaptation [44, 45, 47] and they can reduce the

interstitial fluid pressure [7, 10, 47]. Finally, by reducing the number of vessels, anti-

angiogenic drugs alter the topology of the vasculature. These effects have been described as

‘vascular normalization’ [51, 52], and they help to explain why the use of anti-angiogenic

drugs can actually increase the delivery capacity of the vasculature in tumours, increasing

the chemo-sensitivity of the tumour itself.

Our approach helps to illuminate the impact of changes in vascular geometry, as we can use

our algorithm to compare the delivery rates of various substances for a pair of networks

(before and after vascular pruning, say). If the delivery rate per unit of resource R is small

enough, almost every particle that enters the network will exit the network over a time-scale

smaller than 1/R. In that case the concentration of resource will be approximately constant

throughout both networks. This implies that any reduction in the total volume of blood

vessels will reduce the delivery capacity of the network for the substance in question, as the

total rate of resource delivery is equal to the total volume of blood times the mean

concentration of resource times R. On the other hand, if R is sufficiently large, almost all the

resource that enters the network will be consumed. Again we find that any reduction in the

volume of blood vessels will reduce the total rate of resource delivery Ctot, but in this case it

is because Ctot is approximately equal to the current of resource entering the network, and

reducing the number of blood vessels will increase the hydraulic resistance of the network,

thereby reducing both the medium-current and the current of resource flowing into the

network.

The interesting case is also the most biologically relevant one: where R is such that a

significant amount of resource is present in the blood that is leaving the network, but the

concentration of resource entering the network is significantly greater than the concentration

of resource leaving the network. In this intermediate case, reducing the total volume of

blood vessels may increase or decrease the delivery capacity of the network (that is, the total

rate of resource delivery). If we ignore the impact of vascular pruning on interstitial

pressure, Fig. 6 indicates that removing dead-ends can only reduce the delivery capacity of

the vascular network. Essentially, removing such dead-end regions does not affect the

amount of resource entering the network, but it does decrease the mean transit time. It
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follows that the resource flowing through the network is more likely to exit the network

before it is consumed, which is to say that removing dead-end regions will decrease the

delivery capacity of any given network.

The effect of removing vessels that are an integral part of the network is more complex. In

general, removing the shorter routes between the arteries and veins will increase the delivery

capacity of the network, as, in the absence of short cuts, any resource that enters the network

will be forced to spend longer within it, increasing the probability that any given particle

will be consumed. As an extreme example, when an arteriovenous malformation is formed

(that is, an abnormal connection between arteries and veins) the total volume of blood

vessels increases, but such a malformation will effectively short-circuit the capillaries in the

region, so the current in the capillaries and the rate of glucose and oxygen delivery drops

dramatically [55]. As Fig. 5 indicates, delivery is optimal when the various routes through

the vasculature are of similar length, which indicates the importance of mechanisms that

regulate the demarcation of artery-vein boundaries. This helps to explain the importance of

Eph/ephrin signals, and other molecular cues that effectively identify endothelial cells as

arterial or venous even before they are fused into a functioning circuit [56, 57].

In conclusion, the effect of vascular pruning on glucose delivery will depend on the network

structure, and the topological location of the vessels that are pruned. If anti-angiogenic drugs

eliminate dead-end vessels, the treatment will decrease the mean transit time of blood

flowing through the tumour. This will tend to reduce the total rate of glucose delivery and

the chemo-sensitivity of the tumour (though this effect may be swamped by other effects of

anti-angiogenic drugs, such as a reduction in interstitial pressure). On the other hand, if anti-

angiogenic treatment eliminates the shorter routes by which blood transits through the

tumour, our model suggests that the effect will be an increase in the total delivery rate of

glucose, and an increase in the chemo-sensitivity of the tumour.

VII. CONCENTRATION IN A GROWING FUNGAL NETWORK

A. Modelling the currents in fungal networks

Multi-cellular organisms need to supply individual cells with the resources necessary for

survival, but while transport in animals and plants is relatively well studied, surprisingly

little is known about transport in the third major kingdom of multicellular life. The fungal

body or mycelium can be understood as a network of fluid filled tubes or hyphae, which

grow by osmotically drawing water from their surroundings while adding material to the cell

wall specifically at the tips of the growing hyphae [58, 59]. Diffusion may be sufficient to

sustain short-range local growth when resources are abundant, but foraging fungi such as

Phanerochaete velutina can grow hundreds of millimeters away from a food source over

metabolically inert surfaces [15, 60, 61]. Together with various forms of experimental

evidence, this observation strongly suggests that long-distance transport mechanisms are

required to deliver nutrients to the growing tips at a sufficient rate, though there are many

open questions concerning the mechanism(s) of transport [15, 16, 48, 61, 62]. Vesicles

moved by motor proteins, contractile elements and carefully regulated osmotic gradients

have all been proposed as mechanisms for driving long range transport in fungi [15, 16, 61].
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Though a fundamental physiological question, which (if any) of these mechanisms is

important remains debated.

We note that the fluid within fungal networks is incompressible, and as the network grows,

there is water uptake in and near the inoculum. It follows that there is a mass flow from the

sites of water uptake to the sites of growth [48], and as the tips of the hyphae expand, the

cytosol within the organism moves forward along with the growing tips [28]. In this section

we investigate the argument that this form of growth induced mass flow is sufficient to

supply the growing tips with the resources they require. We do this by modelling advection,

diffusion and delivery over empirically determined fungal networks.

To obtain a sequence of digitized fungal networks, we placed a woodblock inoculated with

P. velutina in a microcosm of compacted sand. The growing mycelium was photographed

every three days, and the sequence of images was manually marked to record the location of

nodes or junctions, as well as the presence or absence of edges in the fungal network. These

edges were not sufficiently well resolved to make direct measurements of their diameter

from the digitized images. However, the reflected intensity, averaged over a small user-

defined kernel at either end of the edge, correlated well with microscope-based

measurements of edge thickness. The observed relationship between image intensity and

thickness was therefore used to estimate edge thickness across the whole network [60].

The edges in our fungal networks are composed of bundles of hyphae and transport vessels

bounded by an outer rind [63]. Unlike individual hyphae, the edges (or cords) in a fungal

network have tough hydrophobic coatings which insulate them from the environment [15,

16]. We make two simplifying assumptions: we suppose that all the water and other

materials which form the mycelium ultimately originate from the inoculum, and we suppose

that each edge is composed of transport vessels, each of which has a typical radius of 6μm

[63]. Note that the latter of these assumptions implies that the hydraulic conductance of each

edge is proportional to its cross-sectional area, as the number of transport vessels in each

edge is proportional to its cross-sectional area.

Since the mycelium is composed of incompressible material, the rate of increase in the

volume of each edge must equal the volumetric rate of flow into that edge minus the

volumetric rate of flow out of that edge. Together, these assumptions enable us to identify a

unique medium-current for each edge, namely the set of medium-currents that are consistent

with the observed changes in edge volume, and which also minimize the work required to

overcome viscous drag [48]. In effect, we simply consider the mycelium as a network of

resistors connecting the sources of material (the inoculum and shrinking edges) to sinks (the

growing edges). This enables us to identify a minimal set of growth induced mass flows, and

in this section we explore whether these currents are sufficient to deliver the resource that is

required at the growing tips.

B. Modelling resource uptake and delivery

To find the distribution of resource that results from a given set of currents, we must make

some assumptions about the rates of resource uptake and delivery. From the beginning of

each experiment, the inoculum is filled with wood-degrading hyphae, so we assume that
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resource enters the network at the inoculum (node 1) at a constant rate I1(t) = K. The rate of

water uptake at the inoculum corresponds to the total rate of growth, so our assumptions

imply that the amount of water entering the network per unit of resource is proportional to

the rate of growth. We also suppose that throughout the network there is a constant rate of

delivery per unit of resource R. In other words, where Q(t) denotes the total amount of

resource in the network, we suppose that

(70)

As Q(0) = 0, Equation (70) implies that .

The assumption that K and R are constants implies that the total quantity of resource in the

network accumulates over a time-scale , and approaches a steady state . Furthermore, in

our experimental set-up the fungal network attains a maximum volume as there is a finite

quantity of resource for the fungi to consume. As a final assumption, we suppose that

resource accumulates over a time-scale that is equal to the time-scale of growth, so that over

the course of the experiment the mean concentration is approximately constant. More

specifically, we let VF denote the maximum volume attained by the mycelium, and we

measure the time τ that elapses before the mycelium attains a volume . We then assume

that Q(τ) is half the maximum quantity of resource. The numerical value of K reflects the

units we use to measure the concentration, so without loss of generality we can assume that

the mean concentration at time τ is 1. It follows that  and . This implies that

(71)

so we have .

C. Modelling the spatial distribution of resource in empirical networks

To apply our minimal model for the distribution of resource in a growing fungal network,

we require empirical values for VF (the maximum volume attained by the network) and τ
(the time taken to grow to volume ). We also require the adjacency matrix of the

network, the lengths lij and the cross-sectional areas Sij(tn) for each edge ij and each time

point t1, …, tN.

For each time interval, the first step is to calculate the unique set of medium-currents which

are consistent with the observed changes in volume, and which minimize the work required

to overcome viscous drag [48]. We suppose that over the time interval tn < t ≤ tn+1 the cross-

sectional area . Furthermore, as the edges are composed of a

bundle of transport vessels, we suppose that the conductance of each edge is proportional to

its cross-sectional area. Finally, we calculate whether each of the nodes is a source or a sink.

Where Fi denotes the net medium-current flowing out of node i, we let
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(72)

If the edges around node i are growing, then Fi is negative and node i is a sink, which is to

say that more medium-current flows into the links of node i than flow out. If the edges

around node i are shrinking, or if node i is the inoculum, then Fi is positive and node i is a

source. Circuit theory tells us that we can use the conductance of each edge and the net

current flowing out of each node to determine the pressure difference between any pair of

nodes [48, 49]. Furthermore, given the conductance of edge ij and the pressure drop between

nodes i and j, we can uniquely determine the medium-current Fij(t) for each edge in the

network. This medium-current is constant over the time interval tn < t ≤ tn+1, and it does not

depend on the constant of proportionality between the cross-sectional area of the edges and

the conductance of the edges.

The edges or cords in a fungal network have a complex structure [63], and mass flows occur

in transport vessels that occupy some fraction λ of the cross-sectional area of each edge.

The medium-current in an edge is equal to the mean velocity of flow times the total cross-

sectional area of the transport vessels, so for each edge and each time interval we have

(73)

As we wish to investigate whether growth-induced mass flows are sufficient to carry

resource from the inoculum to the tips over the time-scale of growth, we set λ = 1. In other

words, given values for the medium-currents, we let the velocities of mass flow be as small

as possible by maximizing λ. Also note that, given the observed changes in volume, and

given the assumption that resource and water only enters the network at the inoculum, the

medium-currents that we identify are as small as possible (in the sense that any other set of

medium-currents consistent with the observed growth would require more work to overcome

viscous drag). We are interested in finding the distribution of a generic source of energy and

carbon, so we let Dm = 6.7 × 10−4mm2s−1 (the molecular diffusion coefficient of glucose),

as this is representative of the diffusion coefficient of a small molecule. We also assume that

in each edge the advection and diffusion of resource occurs within some number of transport

vessels of radius 6μm [63], so once we have found the mean velocity of flow uij(t), we can

use Equation (1) to find the piece-wise constant dispersion coefficient Dij(t).

The delivery rate per unit of resource is assumed to be the same in every edge, and the value

of Rij = R is given by Equation (71). In each experiment the parameters VF and τ were

chosen to ensure that, over each time step, the mean concentration is as close to 1 as

possible. The nutrient and water content of woodblocks can vary, resulting in more or less

vigorous growth. In the first replicate we found that VF = 393mm3 (20% of the volume of

the woodblock) and τ = 242 hours. In the second we found that VF = 372mm3 (19% of the

volume of the wood-block) and τ = 468 hours. In the third we found that VF = 616mm3

(31% of the volume of the woodblock) and τ = 367 hours. Finally, the Laplace transform of
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the net quantity of resource leaving the inoculum is assumed to be , and for

every other node ϒi(s) = 0. We now have all the parameters we need to implement the

algorithms described in Section V. That is to say, we can calculate the spatial distribution of

resource that would arise if the cross-sectional areas of the edges vary in either a step-wise

or continuous manner, where the volumetric currents are determined by the measured

changes in volume. Whichever algorithm we we employ, at each time tn we record the

resulting spatial distributions of resource by dividing each edge into Nij line segments such

that . These quantities of resource per unit length are then treated as an initial

condition over the following time step, and the concentrations at time tn are identified by

dividing qij(x, tn) by Sij(tn).

D. Results of the simulation

Three fungal networks were grown and digitized, and the observed changes in fungal

volume were used to determine the minimal currents consistent with the changing volume,

as well as the uptake rate and decay rate of a generic form of resource (see Sections VII A,

VII B and VII C). In each of three experiments our model suggests that the growth induced

mass flows were sufficiently large to spread the resource from the inoculum out to the

growing tips over the time-scale of growth (see Figs. 7 and 8).

This result is somewhat counter-intuitive, as in most of the edges the mean velocity of the

growth induced mass flows is very low [48]. Indeed, if we pool the data from all three

experiments and over all time steps, 70% of the edges have a mean velocity that is so small

that over the course of one week, resource travelling at that velocity would move less than

the 20mm that resource would typically travel by diffusing in one dimension (75% of edges

in Experiment 1, 59% in Experiment 2 and 64% in Experiment 3). Over the time-scale of

two hours, only 4% of edges have a velocity great enough to carry resource further than the

2.2mm that is typically travelled by diffusion alone (2% in Experiment 1, 6% in Experiment

2 and 6% in Experiment 3).

Despite the modest scale of the advection in most of the edges, the fraction of edges in

which the mean velocity is significant suffices to spread the resource from the inoculum out

to the growing tips (see Figs. 7 and 8). We also calculated the distribution of resource that

results if the cross-sectional areas Sij(t) vary continuously over each time step (see SI), but

the results were almost identical to the simpler case where the cross-sections are varied in a

stepwise manner.

E. Discussion of growth induced mass flows

In a fungal network, the incompressibility of aqueous fluids ensures that growth in one part

of the network requires the presence of fluid flows in the supporting mycelium. By

controlling the spatial location of growth, maintaining the appropriate turgor pressure and by

forming cords that are insulated from the environment, fungi can ensure that there is a long

range flow of fluid from the sites of water uptake to the sites of growth [48]. Furthermore,

the structure of the network is critical for ensuring that growth induced mass flows can carry

resource from the inoculum to the growing tips over a reasonable period of time. In this
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regard, it is instructive to compare a growing linear network to a growing branching tree

(see Fig. 9).

Suppose that the tips in both of the model networks illustrated in Fig. 9 grow a unit distance

from the inoculum per unit time, and that each edge has unit length and volume. In the case

of a linear network, and in the absence of diffusion, it will take n units of time for the

resource to travel from the inoculum to the nth edge. It follows that if the time-scale of

delivery is n, then growth induced mass flows in a linear network cannot supply resource

over length scales greater than n. In the case of a branching tree the volume of the nth

generation is greater than the total volume of all the preceding generations (see Fig. 9), so it

will take less than a unit of time for resource to travel from the inoculum to the nth

generation. Provided that the concentration of resource at the inoculum remains sufficiently

high, there is no limit to the size of branching tree that can be filled with resource by growth

induced mass flows, even if the local rate of resource delivery is high. Also note that in the

absence of diffusion, the fluid exactly at the growing tips is never replaced by the fluid

entering at the inoculum. This implies that growth induced mass flows alone cannot supply

resource to the growing tips: diffusion and specific transport mechanisms are essential for

transporting resource across the newest generation of edges.

Returning to our model of transport and resource delivery in an empirical fungal network, it

could be argued that the total rate of resource delivery in an edge should be proportional to

the volume of that edge, rather than being proportional to the quantity of resource contained

within that edge. However, as our model results in a fairly constant concentration throughout

the network, changing from first order to zero order delivery is unlikely to make a

significance difference to the concentration at the tips (unless, of course, we change the

mean amount of time that elapses between resource entering the network and the resource

being consumed). It might also be argued that the growing hyphal tips are responsible for a

significant fraction of the resource consumption [61, 62]. After all, as material is added to

the growing cell wall, the concentration of that material in the cytoplasm must be depleted

near the region of growth. Although our model does not include a term for consumption due

to growth, it does indicate that growth induced mass flows are sufficient to carry resource

across the network over the time-scale of growth. Furthermore, Equation (73) indicates that

if the growth induced mass flows are confined to transport vessels that only occupy a

fraction λ of the total cross section of each edge, then the mean advective velocities will be

greater than our minimal estimates by a factor of 1/λ.

While advective mass flows carry resource over long distances from the inoculum out

towards the growing tips [15, 16, 61], diffusion and active transport mechanisms may be

essential near the sites where the cell wall is expanding. This follows because the cytosol

within the hyphae moves forward at the same rate as the growing tips [28], but to transport

resource from the base of the hyphae to the growing tips, the resource has to move faster

than the rate of growth. Complex cellular machinery regulates the addition of material to the

cell walls, ensuring that the growing hyphae exhibit polar growth, and only expand at the

hyphal tips [58, 59]. We note, however, that our model suggests that vesicles carried by

motor proteins or other active transport mechanisms may not be needed for longer range

transport within fungal networks.
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Conclusion

In this paper we have presented an algorithm for calculating the concentration of resource

that arises when a given material is subject to advection, diffusion and local delivery out of

the transport network (see Section V). The resulting distribution will depend on the time-

scale required to transit the network, and the time scale of delivery (see Section II C). Nature

is full of networks in which materials within a fluid are transported by advection and

diffusion while being consumed or delivered, so these algorithms have many potential

applications. In particular, our modelling framework can be applied to the case of glucose

delivery through a vascular network. By analyzing simple, idealized vascular networks we

found that the total rate of glucose delivery depends on the network structure (see Section

VI), and in some cases increasing the volume of blood and the number of glucose

transporters can actually decrease the total rate of glucose delivery. This counter-intuitive

result can occur because the additional vessels can decrease the time taken to transit the

network, allowing a greater fraction of the glucose to pass through the network without

encountering a transporter. Finally, we employed our algorithms to implement a model of

transport in a growing fungal network (see Section VII). The expansion of fluid filled

vessels requires the movement of fluid, and in three empirically determined fungal networks

we found that the minimum currents consistent with the observed growth would effectively

transport resource from the inoculum to the growing tips over the time-scale of growth. This

suggests that the active transport mechanisms observed in the growing tips of fungal

networks may not be required for long range transport.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Properties of a single edge in a resource distribution network
Sij(t) denotes the cross-sectional area of edge ij at time t, lij denotes the length of the edge,

resource and medium flows along the edge with a mean velocity uij(t), and resource is

delivered out of the network at a rate Rij. Note that resource travels along each edge (and

into other edges) by advection and diffusion, but the total rate at which resource in the edge

is delivered out of the network is simply Rij times the quantity of resource present in the

edge. Also note that we do not need to assume that the edges in our network are straight, but

we do assume that a single length scale lij captures the distance that particles must travel to

move from i to j.
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FIG. 2. Properties of an arbitrary resource distribution network
Each edge in the network is comprised of a single vessel or a bundle of transport vessels,

and each edge has a length lij, a total cross-sectional area Sij(t), a mean velocity of flow uij(t)

and a local delivery rate Rij. Each edge also has a dispersion coefficient Dij(t), as described

by Equation (1). Note that the values of Dij(t) depend on the molecular diffusion coefficient

Dm, the velocities uij(t) and the radius of the transport vessels within the edge ij. The nodes

represent the point of contact between the edges: we assume that there is perfect mixing at

each node, and we require a consistent concentration at node i whether we consider it to be

one end of edge ij, or one end of any other edge connected to node i.

Heaton et al. Page 39

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 May 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIG. 3. Network structure has a critical influence on the total rate of resource delivery
Adding additional vessels may or may not increase the total rate of resource delivery,

depending on the extent to which the additional edges change the time taken to transit the

network. We illustrate this effect by considering the total rate of delivery in three simple

networks, where a current of medium with a fixed concentration of resource is introduced at

node 1, and medium and resource leaves the network at node 2 by flowing into the dummy

edge 2n.
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FIG. 4. Total rate of resource delivery in a single vessel
In the case where the medium-current is fixed, the velocity of flow is inversely proportional

to the vessel’s cross-sectional area S. Where the pressure drop is fixed, the velocity of flow

is proportional to S. Our parameters are such that the velocity is lower in the case where the

pressure drop is fixed, up until the point where S = 1000μm2, where in either case the

velocity u = 2mm s−1, the time-scale of advection is 0.5 s and the time-scale of delivery is

0.63 s. Since our parameters imply that the medium velocity is smaller in the case of a fixed

pressure drop, we also have a lower mean concentration and a lower total rate of resource

delivery. Note that the numerical solution was generated by sampling six points in Laplace

space, and applying the Gaver-Stehfest algorithm.
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FIG. 5. Total rate of resource delivery in a network with alternate routes
The medium-current passing through each route will be proportional to its conductance (see

Fig. 3b). If there is a very short alternative route, its conductance will be very small, the

mean transit time will be very small, and so that the total rate of resource delivery will also

be small. If the alternative route is sufficiently long, most of the resource entering the

alternate route is consumed. Further increases in the length of the alternate route will

decreases the total rate of resource delivery, as the medium-current will decrease and so too

will the current of resource entering the alternate route. It follows that for a fixed current or

a fixed pressure drop, the total rate of resource delivery is at a maximum for some

intermediate length of alternate route.
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FIG. 6. Total rate of resource delivery in a network with a dead-end
If the dead-end region is short (see Fig. 3c), its presence increases the total rate of resource

delivery by an amount that is proportional to both the volume of the dead-end region and the

delivery rate per unit of resource R23. As we assume that , it follows that for

sufficiently short dead-end regions the increase in the total rate of resource delivery is

proportional to . The total rate of resource delivery reaches a maximum when the

time taken to diffuse the length of the dead-end region is much greater than the time-scale of

delivery.
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FIG. 7. Concentration of resource in Experiment 1
Experiment 1 after 6 days (a, d, g and j), 12 days (b, e, h and k) and 18 days (c, f, i and l).

Diagrams (a – c) illustrate the concentration of resource that would occur in the absence of

advection, where resource enters at the inoculum at a rate of K = 1.125μmole hour−1, and τ
= 242 hours. Diagrams (d – f) illustrate the concentration of resource where fluid and

resource enter the network at the inoculum, and the medium-currents are consistent with the

observed changes in volume, while minimising the work required to overcome viscous drag

(see Section VII A). As before, resource enters at the inoculum at a rate of K = 1.125μmole

hour−1, and τ = 242 hours. Note that at any point in time, the concentration near the tips can

be greater than the concentration near the inoculum. This is possible because resource enters

the network at a constant rate, but the rate of water influx at the inoculum corresponds to the

total volumetric rate of growth. Consequently, as the total volumetric rate of growth

increases, the concentration of resource in the fluid near the inoculum decreases. In (d), for

example, the fluid in the tips contains more resource than the fluid near the inoculum, but

when that fluid first entered the network (at the inoculum) it contained an even higher

concentration of resource. We cannot directly measure the delivery rate of resource, so to

assess the sensitivity of our model to the parameter R, we also consider the cases where we

half and double the delivery rate R. Diagrams (g – i) illustrate the concentrations that occur

when the medium-currents and rate of uptake are as before, but the local delivery rate has

been halved. Diagrams (j – l) illustrate the concentrations that occur when the medium-

currents and rate of uptake are as before, but where the local delivery rate has been doubled.
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FIG. 8. Concentration in the tips relative to the concentration elsewhere
In each of the three experiments, the concentration at the tips (nodes of order one) was larger

than the mean concentration in the network as a whole.
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FIG. 9. Network structure and the efficacy of growth induced mass flows as a means of transport
Two contrasting examples of networks with growth induced mass flows.
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