
FORUM REVIEW ARTICLE

NADPH Oxidases in Lung Health and Disease
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Abstract

Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molec-
ular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the
physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of
oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The
purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adap-
tation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However,
there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the
pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in
normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853.

Introduction

The primary function of the lungs is to facilitate the
diffusion of gases, primarily the exchange of carbon di-

oxide for oxygen (O2), across alveolar-capillary membranes.
This is accomplished by ventilation, which brings the ambient
air we breathe into close proximity with the systemic circu-
lation. Adult human lungs exchange between 10,000 and
20,000 liters of air daily (19). This exposes the lungs to a va-
riety of potentially injurious environmental agents, both in-
fectious and noninfectious. Infectious agents are typically
eradicated by host defense mechanisms involving a combi-
nation of epithelial barrier function, innate immune cell acti-
vation, and efficient mucociliary clearance. A large inoculum
of pathogen or the inability to eradicate highly virulent strains
may evoke a host fibrotic response to ‘‘wall off’’ and restrict
the spread of pathogens. Noninfectious injury evokes similar
host responses and, when chronic, may result in tissue re-
modeling responses that span a spectrum from pulmonary
fibrosis to emphysema. A number of host factors, including
genetic/epigenetic factors and age, may influence the sus-
ceptibility to infectious or noninfectious injury and its related
complications that result in a number of clinical syndromes
and phenotypes.

NADPH oxidase (Nox) and Dual oxidase (Duox) enzymes
are an evolutionarily conserved family that has diversified to
seven members in mammals (Nox1–5 and Duox1–2) (15, 80,
147). NOX enzymes typically catalyze the reduction of mo-

lecular oxygen (O2) to superoxide (O2
� - ), the primary product

of the enzymatic reaction in most cases (14, 89). Depending on
the microenvironment or cellular compartment in which it is
produced, spontaneous or superoxide dismutase (SOD)-
catalyzed reduction of O2

� - to hydrogen peroxide (H2O2)
may occur in association with the generation of other reactive
oxygen species (ROS). ROS function as signaling molecules
and regulators of cell function when they are generated in a
compartmentalized and regulated manner (159). Here, we
examine roles of these ROS-generating enzymes in normal
cellular physiology of the lung and in the pathogenesis of
selected lung diseases.

Biochemistry and Structure of Nox Enzymes

The Nox enzymes are encoded by seven genes in humans
and six in mice (which lacks Nox5) (29, 89, 146). Nox1, Nox3,
and Nox4 encode proteins that are similar in size and domain
structure to Nox2. They consist of a C-terminal flavoprotein
domain containing an NADPH-binding region and a flavin
adenine dinucleotide binding region; the N-terminal hydro-
phobic domain consists of six transmembrane a helices that
contain two heme-binding sites (90). Nox5 includes two major
forms; the structure of the short form (Nox5-S) is similar to
Nox1, Nox3, and Nox4, while the long form consists of the
same domains along with an N-terminal extension containing
a calcium-binding domain. Duox1 and Duox2 build on the
Nox5 structure with an N-terminal extension consisting of a
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peroxidase homology region. Nox5, Duox1, and Duox2 are
activated by calcium as predicted by their calcium-binding
domains.

The activation of Nox2 by regulatory subunits has been
extensively studied and has been reviewed elsewhere (14, 89).
Nox1 is the first identified homolog of Nox2 (146). Nox1-
dependent ROS generation can be reconstituted in cells by co-
transfection with the regulatory subunits NoxO1 and NoxA1
(12, 30, 31, 152) (Fig. 1). Nox3 is primarily expressed in the
kidney and inner ear (13, 29), although it may be induced in
the lung (186). Similar to Nox1 and Nox2, it is also associated
with p22phox in biological membranes and is regulated by
regulatory subunits. However, Nox3 activation reveals more
flexibility. For example, NoxO1 alone is sufficient to activate
Nox3; p67phox further potentiates the effect of NoxO1 on Nox3
activation (32). The combination of NoxA1 and p47phox may
also mediate Nox3 activation, suggesting variable mecha-
nisms for activation of Nox3. Nox4 is more ubiquitously ex-
pressed. Similar to Nox1, 2, and 3, it functionally associates
with p22phox and is generally considered a constitutively ac-
tivated Nox enzyme. Interestingly, Nox4 is unique among the
Nox1–5 isoforms in generating H2O2, not O2

� - (106, 136, 170–
172), although mechanisms for this and its biological signifi-
cance remain to be elucidated.

Anatomic and Cellular Localization of Nox Enzymes

The lung is a complex organ and comprises more than forty
cell types, including immune cells (18). It extends from the
proximal conducting airways involving the trachea, bronchi,
and bronchioles to the distal gas-exchanging alveolo-capillary
units. Nox/Duox enzymes have been localized to various
anatomic structures of the lungs and to specific cell types
(Fig. 2).

Nox expression and function in the upper
respiratory tract

The combined action of resident immune cells and the se-
cretory products of epithelial cells maintain the sterility of the
airways. Nox/Duox enzymes participate in innate immunity
and host defense of the lung (89). Duox1/2 localize to the
surface of tracheal epithelial cells where they produce H2O2

and, in the presence of lumenal lactoperoxidase, generate
antimicrobial hypothiocyanite (OSCN - ) (128). A deficiency of
this antimicrobial system has been implicated as an important
host defense mechanism against Staphylococcus aureus and
Pseudomonas aeruginosa infections in cystic fibrosis (115). This
Duox-dependent antimicrobial system is induced by viru-
lence factors such as flagellin (for Duox2), and the anti-
inflammatory cytokines, interferon c (INF-c) (for Duox2),
interleukin (IL)-4, and IL-13 (for Duox1) (68). In addition to
microbicidal products such as OSCN- , the airway surface liquid
(ASL) covering the upper airways contains complex poly-
saccharide mucins that trap pathogens and particulates from
entering the lower airway. Secretion of Mucin-5 Subtype AC
(MUC5AC) by human bronchial epithelial cells has been
shown to be dependent on Duox1 activation by neutrophil
elastase via PKCdelta/PKC (137); this supports Duox1 as a
therapeutic target in chronic inflammatory airway diseases
that are characterized by mucus hypersecretion. The ASL anti-
microbial property depends partly on the maintenance of its
pH. Secretion of H + by tracheal epithelial cells has been
shown to be mediated by an extracellular H2O2-dependent
mechanism and is correlated with the expression of Duox1/2,
p22phox, p40phox, p47phox, and p67phox (135). Viral infection of
the airways triggers secretion of anti-inflammatory cytokines
by immune cells and epithelial cells. Silencing of Nox2 ex-
pression/activity in human bronchial epithelial cells by small

FIG. 1. Domain structures and interactions with regulatory subunits in the activation of Nox1 and Nox2. Solid lines
represent the known interactions for activation; dashed lines represent inhibitory effects; question marks represent predicted
interaction. PX domains of both p47phox and NoxO1 bind to membrane lipids. AD, activation domain; PR, proline-rich region;
PX, phox homology domain; TPR, tetratricopeptide repeat; NOX, NADPH oxidase. To see this illustration in color, the reader
is referred to the web version of this article at www.liebertpub.com/ars
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interfering RNA (siRNA) or the scavenging of ROS with an-
tioxidants blocks the up-regulation of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-jB) and cytokine
production in response to the respiratory syncytial virus and
the sendai-virus (51). In contrast, Nox1-derived ROS has been
reported to contribute to barrier dysfunction and transmi-
gration of rhinoviruses by disruption of the zona occludins of
the apical tight junctions (33).

Nox expression and function in the lower airways

Two morphologically distinct cell populations constitute
the alveolar epithelium: type I (which covers 95% of the epi-
thelial surface) and type II cells. Efficient alveolar gas ex-
change is dependent on alveolar fluid clearance via the action
of epithelial sodium channel (ENaC) that is expressed on the
surface of type I and type II cells (46). Nox2/Rac1-dependent
production of ROS has been shown to control the activity of
ENaC in mouse and rat epithelial cells; lack (Nox2-deficient
mice) or decreased Nox2 activity (pharmacologic blockade of
Nox2 with Rac-1 inhibitor NSC23766) as well as ROS scav-
enging with TEMPO resulted in alveolar fluid retention in an
in-vivo model of lipopolysaccharide-induced lung injury (63).
Up-regulation of Nox2 and Rac-1 in the mouse alveolar epi-
thelium after chronic exposure to alcohol has been linked to
ENaC hyperactivity, suggesting a potential mechanism un-

derlying the increased incidence of acute respiratory distress
syndrome (ARDS) observed in the alcoholic population (47).
In addition, Nox2 has been implicated in cell cycle control of
alveolar epithelial cells; PPAR-c activation through Nox2-
derived ROS promotes cell-cycle progression from G0/G1
into S and G2/M phases (162). Nox4 expression is induced in
alveolar type II cells in response to lung injury, and Nox4-
derived ROS have been shown to induce apoptosis of alveolar
epithelial cells and promote lung fibrosis (24). Duox1/2 are
expressed by type II epithelial cells and Duox-generated H2O2

has been suggested to control acid release during lung de-
velopment in mice (53, 54).

Nox expression by lung fibroblasts

The generation of ROS by NAD(P)H-like enzymes in fibro-
blasts was described well before the cloning and identification
of the Nox gene family (108, 157, 158). The primary Nox isoform
expressed in fibroblasts is Nox4, although p67phox and p47phox

are also co-expressed in the absence of Nox2 (43). Nox4-derived
ROS appears to mediate signaling events in cell that regulate IL-
8 secretion (43), fibroblast migration (5), and myofibroblast
differentiation (5, 37, 71). Deficiency or silencing of Nox4 pro-
tects against the development of experimental lung fibrosis in
mice (24, 71), and this enzyme is also highly expressed in the
lungs of patients with idiopathic pulmonary fibrosis (5, 71).

FIG. 2. Cellular localization of Nox enzymes in the lung. Nox/Duox isoforms are expressed in specific lung cells, where
they mediate diverse functions in both normal physiologic and/or pathologic states. The catalytic subunits of Nox enzymes
are schematically represented by an orange ‘‘duplex.’’ Refer to text for related references and details. ASL, airway surface
liquid; Duox, dual oxidase. To see this illustration in color, the reader is referred to the web version of this article at
www.liebertpub.com/ars
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Nox expression in the pulmonary endothelium

The pulmonary endothelium serves as a tightly controlled
barrier to prevent plasma exudation into the interstitium and
alveolar space. The primary Nox isoforms expressed by vas-
cular endothelial cells are Nox2 and Nox4. In P. aeruginosa
lung infection, Nox4 and Nox2 play distinct roles in regulat-
ing lung inflammation, apoptosis, and permeability; Nox2
was critical in regulating inflammation, while Nox4 mediated
apoptosis of endothelial cells and vascular permeability (58).
Vascular cell adhesion molecule-1 signals activation of Nox2,
which then mediates ROS-dependent activation of PKCa,
protein tyrosine phosphatase 1B (PTP1B), and extracellular-
signal-regulated kinases 1/2 (ERK1/2) and initiation of
leucocyte migration (1, 34). Nox4-dependent ROS regulates
endothelial cell motility and angiogenesis; RNAi-mediated
silencing of Nox4 or pretreatment with N-acetylcysteine at-
tenuates hyperoxia-induced endothelial cell migration and
capillary tube formation (124). Hyperoxia has been shown to
induce Nox4 expression via nuclear factor (erythroid-derived
2)-like 2 (Nrf2) binding to antioxidant response elements on
the Nox4 promoter (125). Hyperoxia has also been shown to
stimulate phosphorylation of myosin light chain (MLC) and
to recruit phosphorylated and nonphosphorylated cortactin,
MLC, Src, and p47phox to caveolin-enriched microdomains
(CEMs), which are essential for Nox activation (165). This
process involves c-Abl-mediated dynamin 2 phosphorylation
that is required for the recruitment of p47phox to CEMs (139).
Nox2-mediated ROS in pulmonary artery endothelial cells
has been implicated in the induction of autophagy, which
contributes to impaired angiogenesis in persistent pulmonary
hypertension in fetal lambs (154).

Nox expression by pulmonary smooth muscle cells

Smooth muscles cells (SMCs) are found in the medial layer
of the vasculature, where their primary function is to control
pulmonary perfusion. SMCs are also found underlying the
tracheal and bronchial epithelium, where their contraction is
stimulated in response to inflammation. Several reports point
to a key role of Nox4 in the contractility and proliferation of
airway/vascular SMCs induced by pro-fibrotic cytokines or
hypoxia (145, 148). Hypoxia induces Nox4 expression in
SMCs via a hypoxia-inducible transcription factor HIF-1a (44,
112). Hypoxia-induced mitochondrial ROS production has
been shown to activate protein kinase C-n (PKCn) and Nox,
providing a positive feedback mechanism to further increase
intracellular ROS, calcium-induced calcium-release, and SMC
contraction (129, 175). The pro-fibrotic cytokine, transforming
growth factor-b1 (TGF-b1), induces the expression of Nox4 in
human pulmonary artery SMCs via an Smad2/3-dependent
pathway, which mediates ROS-dependent ERK1/2 phos-
phorylation and cellular proliferation (145).

Nox expression by immune cells

The prototypical Nox isoform, Nox2, has been well char-
acterized in phagocytic cells as a critical component of the
innate immune response [reviewed in Nauseef (117)]. How-
ever, in addition to its conserved role in combating invading
pathogens, Nox2 appears to mediate additional (paradoxical)
roles in suppressing inflammation (62, 181, 188). Nox1 and
Nox4 are also expressed in monocyte/macrophage popula-

tions (164, 182). Metabolic stress (low-density lipoprotein and
high D-glucose) induces Nox4 expression, which mediates
monocyte chemotaxis in response to monocyte chemoat-
tractant protein (MCP)-1, thereby contributing to vascular
injury (93, 164). Further studies are required to determine the
function of nonclassical Nox isoforms in immune cells.

In summary, Nox isoforms are expressed in the different
compartments of the human lung, where they regulate several
critical functions. The production of H2O2 by Duox/Nox en-
zymes by epithelial cells of the upper and lower airways as
well as by immune cells is of primary importance in the lung
host defense system. Indeed, H2O2 serves as a substrate to
produce OSCN - , regulates chemotaxis and the production of
other host defense molecules. Nox-generated H2O2 also con-
tributes to airway epithelial cells proliferation and differenti-
ation by activating signaling cascades that modulate gene
transcription. Transcription factors such as NF-kB, p53, and
activator protein 1 (AP-1), which are redox sensitive, provide
the link between oxidative stress and gene expression. Finally,
there is an emerging role of Nox enzymes in lung remodeling
(ECM production, angiogenesis) by controlling mechanisms
such as cell differentiation, motility, and apoptosis.

Subcellular Compartmentalization and Function
of Nox Isoforms

The signaling functions of Nox enzymes are likely to be
controlled by their subcellular localization, which dictates sig-
naling specificity, reactivity, and half lives of ROS (Fig. 3). The

FIG. 3. Subcellular localization of Nox enzymes. Nox/
Duox isoforms localize to specific subcellular compartments
to mediate their cellular functions. The catalytic subunits of
Nox enzymes are schematically represented by an orange
‘‘duplex.’’ CEM, caveolin-enriched microdomain; ECM, extra-
cellular matrix; ER, endoplasmic reticulum; H2O2, hydrogen
peroxide. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars
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study of Nox subcellular localization remains challenging due
to the lack of isoform-specific inhibitors. Chimera studies in
which the N-terminus or the cytoplasmic tail of different Nox
isoforms is interchanged indicate that the Nox amino-terminal
tail likely determines Nox subcellular localization (73, 172).

Nox/Duox at the plasma membrane

Nox1, Nox2, and Nox4 have been localized to the plasma
membrane. Their localization often associates with specific
signaling domains, such as lipid rafts, caveolae, or focal ad-
hesions, where they facilitate signaling of cellular prolifera-
tion, differentiation, and migration (166). For instance, lipid
raft-generated ROS stimulate proliferation and migration of
endothelial cells by activating vascular endothelial growth
factor receptor-2 (VEGFR2) and downstream p38 mitogen-
activated protein kinases (MAPK) activation (122). Nox2-
generated ROS in caveolae regulates blood–brain barrier
function through the modulation of occludin expression via an
ERK1/2-dependent signaling cascade (123). Nox4 has been
co-localized with vinculin at the site of focal adhesions
in vascular SMCs; in association with polymerase delta-
interacting protein 2 (Poldip2), Nox4 participates in stress
fiber formation (102). Nox1-dependent ROS have been re-
ported to regulate stress fiber assembly at the site of focal
adhesions in Ras-transformed-Swiss3T3 fibroblasts (138).

The Duox isoform was first identified at the apical
membrane of thyrocytes, where they generate H2O2, the
substrate for follicular thyroperoxidase that catalyzes oxi-
dization of iodide and formation of thyroxine (65, 114).
Duox2 is mainly expressed by thyrocytes, while the apical
surface of the airway epithelial cells is the primary expres-
sion site of Duox1 (54, 56). Production of Duox-generated
H2O2 is necessary to confer anti-microbial properties to the
ASL (135). Functional Duox1/2 also localize at the leading
edge of migrating lung cancer or epithelial cells, suggesting
a key role of Duox-generated H2O2 in metastasis and wound
repair (101, 177).

Nox in the endoplasmic reticulum

The first evidence of an endoplasmic reticulum (ER) locali-
zation of Nox to the ER came from studies using overexpression
of tagged or chimeric Nox in HEK293 cells that are designed to
study Nox-antibodies specificity or domains within the Nox
sequence which are responsible for their localization (183). A
signaling function for ER Nox-dependent ROS production has
been reported in the acute myeloid leukemia (AML) cell line,
MV4–11, on stimulation of the tyrosine-like kinase receptor,
Fms-like tyrosine kinase 3 (FLT3) (180). Mutations of the FLT3
are associated with the development of AML. Inhibition of the
FLT3 receptor or knocking down the expression of p22phox

abolishes ER-generated H2O2, while preserving mitochondrial-
ROS; ER-associated H2O2 production has been suggested to
promote the synthesis of the proto-oncogene Pim-1 via signal
transducer and activator of transcription 5 (STAT5) signaling,
thus promoting the oncogenic process (180). In macrophages,
the antimicrobial function of Nox2-depend ROS is executed, in
part, by the translocation of Nox2 and p22phox from intracellular
compartments (ER, endosomes) to the plasma membrane after
stimulation with INF-c (27).

Several lines of evidence link ER stress-induced apoptosis
to increased cytosolic production of ROS, although further

studies are warranted to determine the precise source(s) of
ROS (36, 96). Another proposed function of Nox-dependent
ROS in the ER relates to the control of protein trafficking.
Through inactivation of PTP1B, Nox4-dependent ROS nega-
tively regulates the trafficking of the endothelial growth factor
(EGF) receptor to the plasma membrane, thus terminating
EGF signaling in endothelial cells (28). Cytosolic ROS also
contributes to regulation of muscle contraction in skeletal
muscle cells. Nox2, Nox4, and p22phox have been reported to
co-localize with transverse tubules and the sarcolemma in
murine skeletal muscle cells; muscle contraction induces the
recruitment of the activator and regulator subunits p67 and
p40phox and activates ROS-production (131).

Nox in the nucleus

Nox2 and Nox4 have been localized to the nucleus/peri-
nuclear region of certain cell types. Nuclear Nox2-dependent
ROS has been implicated in apoptosis of endothelial cell death
that is triggered by exposure to homocysteine (140). In this
study, 3D-digital imaging showed the accumulation of Nox2
and p47phox to the nucleus of human umbilical vein endothe-
lial cells on homocysteine in association with the formation of
nitrotyrosine, suggesting O2

� - production, and induced
cleaved-caspase-3 activity (140). In contrast, another study
indicated Nox4, but not Nox2, in the nucleus of human
pulmonary artery endothelial cells in which it mediated
hyperoxia-induced cell migration and capillary tube forma-
tion (124). In murine embryo fibroblasts (NIH3T3 cells),
nuclear Nox4 mediates TGF-b1-induced plasminogen acti-
vator inhibitor-1 (PAI-1) gene expression, at least in part
through oxidative modification and inhibition of MAPK
phosphatase-1 (MKP-1), a nuclear phosphatase (99).

Nox in the mitochondria

So far, Nox4 is the only member of the Nox gene family to
have been reported functionally expressed in the mitochon-
dria. Mitochondrial Nox4-produced ROS have been impli-
cated in the etiology of several pathologies through the
modulation of senescence, apoptosis, and oncogenicity (17,
64). A 73-amino-acid long domain within Nox4 amino-
terminal tail, identified by sequence analysis using the Mito-
prot program combined with mutagenesis (64), targets Nox4
to the mitochondria. One of the first evidence for the func-
tional expression of mitochondrial Nox4 came from a study
performed in a rat model of diabetes (17). Using subcellular
fractionation assays combined with microscopy and mea-
surement of mitochondrial activity, this study showed
that Nox4 up-regulation in the cortex of diabetic rat kidney
was linked to glucose-induced mitochondrial ROS (17). More
recently, angiotensin II has been shown to increase mito-
chondrial Nox4-dependent ROS (O2

� - and H2O2) via mito-
chondrial membrane depolarization in a model of kidney
tubular cells; this increase in mitochondrial ROS activated the
intrinsic pathway of apoptosis with release of cytochrome c
and apoptosis-inducible factor (82).

Mitochondrial Nox4 has been reported as a major source
of O2

� - in the failing heart (3, 86); these studies employed cardiac-
specific Nox4 conditional knockout mice (86) or cardiac Nox4
over-expressing mice (2). Up-regulation of Nox4-dependent mi-
tochondrial O2

� - mediates cardiac myocyte apoptosis, fibrosis,
and heart failure after pressure overload (86). Breast cancer has
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also been linked to oxidative stress; although Nox1, Nox4, and
Nox5 are expressed in breast tissue, mitochondrial Nox4-depen-
dent H2O2 production appears critical in the tumorigenic process
(64). It remains to be determined whether Nox4 and potentially
other Nox isoforms are localized to the mitochondria of specific
lung cells; their functional roles in such cells will also need to be
elucidated.

In summary, Nox/Duox isoforms are known to be local-
ized to the plasma membrane in specialized structures such as
lipid rafts, caveolae, or focal adhesions. The cell surface lo-
calization of Nox enzymes, while essential in host defense and
phagocytosis, is critical for their emerging roles in mediating
intracellular signaling, endocytosis, cellular adhesion, and
migration. Nox enzymes are also found in biological mem-
branes of intracellular organelles such as the ER, nucleus,
and mitochondria. Although much work needs to be done on
the functional roles of Nox enzyme in specific organelles,
there is a growing recognition of their participation in
the mediating stress responses in each of these subcellular
compartments.

Nox Enzymes in Lung Health

The evolutionary conservation and diversification of Nox
enzymes suggest essential and adaptive roles of Nox-
generated ROS in human physiology. Physiological roles of
ROS include signal transduction (8, 146), angiogenesis (7), and
innate immunity (61). Nox2 generates high levels of ROS in
neutrophils as a central mechanism of host defense against
microbial infection, including infection of airways and lung,

and has been reviewed elsewhere (49, 84, 169). A functional
role of Nox2 role in innate immunity is well exemplified by its
loss-of-function mutations in chronic granulomatous disease
(CGD). CGD is caused by an inherited mutation of Nox2 or its
subunits. Patients with CGD suffer recurrent infections of
multiple organs, and pulmonary infection is the leading cause
of death (9, 143).

Other Nox/Duox isoforms have been proposed to function
in host defense and innate immunity. Studies in gastric mu-
cosal cells support a role for Nox1 in antimicrobial host de-
fense (81, 155), although a similar role for NOX1 in the lung is
yet to be demonstrated. Duox1 and Duox2 in upper airway
epithelium generate H2O2 to mediate lactoperoxidase-
catalyzed generation of microbicidal oxidants (61, 115, 179).
The expression of Duox1 and Duox2 in salivary, tracheal, and
bronchial epithelium supports a broad role of these isoforms
in host defense functions at these epithelial surfaces (56, 61,
115, 128, 135).

Nonphagocytic Nox isoforms generate ROS at lower lev-
els and in a regulated manner, participate in signaling of
immune responses and other cellular functions (89). Nox
enzymes may be induced by a variety of bacteria and viruses
and participate in host inflammatory responses. For exam-
ple, airway instillation of P. aeruginosa significantly increases
the expression of Nox2 and Nox4 in lung microvascular
endothelial cells, where they mediate distinct signaling
functions (58). Nonimmune mediated functions of Nox-
derived ROS include, but are not limited to cell growth,
proliferation, angiogenesis, apoptosis, and autophagy (22,
48, 52, 89, 133).

FIG. 4. Anatomic localization of Nox enzymes in the lung and associated diseases. Nox/Duox isoforms are expressed in
multiple cell types and anatomic locations, extending from the proximal trachea and large airways to terminal bronchioles
and alveoli. Proposed associations of Nox/Duox isoforms with specific lung diseases are indicated. ARDS, acute respiratory
distress syndrome; COPD, chronic obstructive pulmonary disease. ‘‘?’’ indicates non-identified Nox and/or nox subunits.
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Nox Enzymes in Lung Diseases

Nox/Duox enzymes contribute to a variety of lung dis-
eases, either due to a loss of function or due to heightened
expression/activity of specific isoforms (Fig. 4). In this section,
we consider a select group of lung diseases in which Nox
enzymes have been implicated in pathogenesis.

Pulmonary infections and inflammatory diseases

A central theme with many of the Nox family genes is their
participation in various aspects of host defense against patho-
gens. Indeed, Nox2 is well established as an archaic antimi-
crobial defense mechanism that is conserved across multiple
species (45, 117). In addition to the predicable susceptibility to
infections with loss of function of Nox2, there is also evidence
for a homeostatic role of Nox2 in controlling inflammation.

CGD, characterized by susceptibility to recurrent pyogenic
infections, is the prototypical example of a human disease that
is associated with inherited loss-of-function of genes encoding
components of the Nox2 enzymatic complex. Initially char-
acterized as a fatal granulomatous disease of childhood, the
clinical course of CGD is marked by recurrent, suppurative
infections (21). CGD can be associated with a defect in any of
the subunits of the multicomponent Nox2 enzyme (45, 95, 118,
130, 153). Emerging data suggest a shift in the most common
infecting organisms from staphylococci and enteric bacteria to
other pathogens, including Aspergillus pneumonia and Bur-
kholderia cepacia (78).

An unexpected role for Nox2 in suppressing neutrophilic
inflammation has also been suggested (35). Similar findings of
a putative ‘‘anti-inflammatory’’ role for p47phox/Nox2 are re-
ported in mice challenged with intra-peritoneal live Escherichia
coli to induce sepsis (60), and in murine models of emphysema
(181), pneumococcal pneumonia (105), influenza pneumonia
(141), and disseminated Cryptococcus neoformans infection
(142). A deficiency in neutrophil cytosolic factor-1, required for
activation of Nox2, protects from virus-induced acute lung
injury (ALI) (76). These studies support a homeostatic role
Nox2 (and potentially other p47phox- and/or p22phox- requiring
Nox enzymes) in modulating the host inflammatory responses.

Asthma

Systemic and airway-associated oxidative stress is in-
creased in asthmatic patients compared with healthy indi-
viduals; this has been correlated to the degree of airflow
obstruction and airway hyperresponsiveness (AHR) (41, 121,
148). Serum levels of damaged lipid and carbonylated pro-
teins are increased in asthmatic children compared with
controls (121). Airway SMCs of asthmatics demonstrate an
increase in stress-induced DNA damage and ROS production;
compounds such as apocynin diphenylene iodonium (DPI)
that are known to inhibit Nox activity, albeit not specific,
decreased agonist-induced airway smooth muscle contrac-
tion, which underlines AHR (148). Apocynin has also been
shown to inhibit the production of anti-inflammatory cyto-
kines (tumor necrosis factor a [TNF-a], IL-1b, and IL-6) by the
airway mucosa, as well as the migration of macrophages and
eosinophils (83). The effect of apocynin on cytokine synthesis
is likely due to the regulation of gene expression by oxidative
stress-responsive sensitive transcription factors (159).

The activity of Nox2 and Nox4 isoforms are primarily im-
plicated in the increased oxidative stress that is associated
with asthmatic airways, both in humans and in experimental
murine models. Studies using Nox2 knockout mice sensitized
with ovalbumin suggest a role of Nox2 in the cross-talk be-
tween T-lymphocytes and macrophages to limit the inflam-
matory response and to restrain acute allergic reactions (11).
Accordingly, Nox2 deficiency resulted in enhanced recruitment
of inflammatory cells to the airways and cytokine production,
which worsens the asthmatic phenotype compared with wild-
type (WT) mice (10). Alternatively, Nox2 has also been sug-
gested to promote asthmatic airway inflammation, primarily
by enhancing recruitment of eosinophils (1, 34). While Nox2
modulates inflammatory responses in asthma, Nox4-generated
ROS have been suggested to underlie AHR by mediating
airway smooth muscle hypercontractility. Indeed, Nox4
expression is enhanced in primary airway smooth muscle de-
rived from asthmatic patients, and the silencing of its expres-
sion abrogates agonist-induced contraction of airway smooth
muscle (148). Therefore, targeting of Nox2 and Nox4 may offer
therapeutic benefits in specific phenotypes of asthma.

Acute lung injury

ALI and the ARDS represent clinical syndromes of varying
severity and diverse causes that present with a set of defined
clinical-physiologic-radiologic criteria (55). The common
pathophysiologic feature involves disruption of the alveolo-
capillary membrane, resulting in diffuse bilateral infiltrates on
chest radiographs and severe arterial hypoxemia (176). The
generation of ROS by enzymatic and nonenzymatic mecha-
nisms, including activation of NOX enzymes, may contribute
to the pathobiology of ALI/ARDS (26).

Nox1 is an important contributor to ROS production, epi-
thelial cell death, and disruption of the alveolo-capillary
barrier during hyperoxia; this oxidative stress-induced ALI
involves activation of JNK and ERK pathways (25). Vascular
endothelial cells function is also critical in maintaining the
alveolo-capillary barrier function. Both Nox2 and Nox4 are
expressed in pulmonary vascular ECs and contribute to hy-
peroxia-induced ROS generation (124). Hyperoxia induces
pulmonary edema and neutrophil influx into the alveolar
space of WT mice, effects that are attenuated in Nox2-deficient
mice. The observed protection is incomplete, suggesting the
potential involvement of other Nox isoforms, including Nox4,
in alveolo-capillary barrier dysfunction (124). Interestingly,
baseline levels of Nox4 mRNA expression are increased in
Nox2-deficient mice compared with WT mice, suggesting the
existence of a compensatory mechanism for ROS production.
Nox2 promotes NF-jB-dependent acute inflammatory re-
sponses, neutrophil influx, and tissue injury specifically in the
lungs, but not other organs, in response to systemic TNF-a
administration (185). In response to acid aspiration, however,
Nox2 appears to reduce neutrophil accumulation, while Nrf2
decreases ALI without affecting neutrophil influx (39); these
observations suggest distinct functions of Nox2 and Nrf2 in
modulating inflammation and injury in the lung.

Pulmonary arterial hypertension

Chronic hypoxia is the most common risk factor for pul-
monary arterial hypertension (PAH), characterized by vas-
cular remodeling and enhanced vasoreactivity. Specific Nox
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isoforms, in particular Nox2 and Nox4, have been implicated
in hypoxia-induced pulmonary hypertension (50, 57, 98, 112).
Nox2 has been implicated in hypoxia-induced endothelial
dysfunction (57). Hypoxia-induced PAH in mice has been
linked to increased Nox4 expression in pulmonary artery
(SMCs) (112), suggesting a key role for Nox4 in vascular re-
modeling that is associated with hypoxia-induced PAH. TGF-
b-induced Nox4 expression and ROS production have been
shown to mediate proliferation of human pulmonary artery
SMCs (77, 145). Targeting Nox1/4 with a pharmacological
inhibitor, GKT137831, attenuates hypoxia-induced pulmo-
nary SMC proliferation, vascular remodeling, and the devel-
opment of PAH (66).

Nox-derived ROS may directly cause extracellular Ca2 +

influx by inhibiting voltage-dependent K + (KV) channels and
the opening of store-operated Ca2 + channels, as well as in-
tracellular Ca2 + release by activating ryanodine receptors,
leading to an increase in intracellular Ca2 + concentration and
associated SMC contraction (175). The Nox inhibitor and ROS
scavenger, apocynin, as well as Nox4 siRNA reverses the
hypoxia-induced decrease in Kv current density, whereas the
protein levels of the channels remain unaffected by Nox4 si-
lencing; this effect appears to be related to, at least in part,
direct effects of Nox4-derived ROS in cysteine oxidation of the
Kv1.5 channel (111). Finally, in addition to the intima and
media, remodeling of the vascular adventitia may contribute
to hypoxia-induced PAH. For example, hypoxia has also been
shown to up-regulate Nox4 expression in pulmonary artery
adventitial fibroblasts in association with increased ROS lev-
els and increased cellular proliferation, effects that are abro-
gated by siRNA silencing of Nox4 (97).

Emphysema

Emphysema is the most common cause of chronic ob-
structive pulmonary disease (COPD), and it is primarily re-
lated to cigarette smoking. Human subjects with COPD and
cigarette smokers exhibit differential Duox1 and Duox2 de-
pending on smoking status and type of lung epithelium
sampled; for example, airway epithelium of current smokers
express decreased Duox1 and increased Duox2 compared
with never smokers, whereas former smokers with COPD
demonstrate reduced levels of both Duox isoforms (116, 127).
In contrast, alveolar epithelial Duox1 and Duox2 were ex-
pressed at low levels and were unchanged regardless of
smoking or COPD status (116). The precise role of Duox en-
zymes in COPD pathogenesis requires further studies.

The role of Nox2 in emphysema has been studied in
knockout mouse models. Mice deficient in p47phox or Nox2
(gp91phox - / - ) exhibit increased cigarette smoke (CS)-induced
lung inflammation and emphysema despite decreased ROS
production; this was associated with increased production of
pro-inflammatory cytokines/chemokines via a toll-like re-
ceptor 4 (TLR4)-NFjB pathway, suggesting that Nox2 may
mediate anti-inflammatory functions by restraining TLR4
activation (181). It is interesting to note that aging gp91phox - / -

mice ( > 6 months) exhibit spontaneous emphysema (79); in
this study, basal levels of oxidative stress markers were not
altered in p47phox or Nox2-deficient mice, indicating stress-
mediated responses. Interestingly, CS-exposed p47phox or
Nox2-deficient mice, despite a compensatory increase in Nox4
expression, demonstrate reduced CS-induced release of ROS,

lipid peroxidation, and DNA damage. In contrast, a pro-in-
flammatory role for p47phox-containing Nox enzyme(s) was
suggested as p47phox null mice develop less inflammation with
lower levels of IL-6, keratinocyte-derived chemokine (KC/
CXCL1) and monocyte chemoattractant protein-1 (MCP1/
CCL2) in lung lavage specimens after CS exposure in com-
parison to wild-type mice (87). Gene profiling studies in lung
tissues from CS-exposed mice recently revealed up-regulation
of NoxO1, which primarily regulates Nox1 activation, indi-
cating that specific roles of other Nox isoforms in emphysema
remain to be determined (109).

An unexpected role for Nox3 and TLR4 regulation in em-
physema has been elucidated (186). Mice deficient in TLR4
develop age-dependent emphysema, a phenotype that is
ameliorated with chemical Nox inhibitors or Nox3 siRNA,
suggesting a role for Nox3-generated ROS in emphysema
(186). Lung endothelial cells from TLR4-deficient mice were
identified as the primary source of increased ROS production,
which potentiates matrix degrading enzymatic activity (186).
It is possible that Nox3, due to its potential pro-oxidant effects
in the lung, requires tight suppression (by TLR4) under ho-
meostatic conditions; however, pathologic states of TLR4
deficiency may allow for unrestrained Nox3 activity and pro-
oxidant effects that contribute to emphysema. Indeed, aging
and CS exposure are associated with depressed TLR4 function
in human subjects (103, 167), supporting the theory of a dis-
rupted TLR-Nox3 axis in human emphysema.

Pulmonary fibrosis

Pulmonary fibrosis is a chronic ‘‘scarring’’ disease of the
lung that may result from known causes (e.g., environmental
exposures, drugs, and connective tissue diseases) or unknown
etiology (i.e., idiopathic). In almost all cases, the fibrotic re-
ponse is characterized by the accumulation of activated
myofibroblasts and the deposition of extracellular matrix
(ECM) (161). Myofibroblast differentiation is mediated by
soluble factors, primarily TGF-b1 (42, 160), and by ECM fac-
tors, primarily tissue stiffness (75, 187). In addition to its
multiple fibrogenic actions, myofibroblasts generate ROS
in response to TGF-b1 (37, 158, 173). Although the cellular
localization/compartmentalization of Nox4 has not been
clarified in myofibroblasts, a unique feature of NOX4 activity
is its capacity for constitutive generation of extracellular H2O2

(106, 136, 170–172). Extracellular generation of H2O2 by lung
myofibroblasts may mediate additional fibrogenic effects by
inducing apoptosis of adjacent lung epithelial cells (173), or by
inducing matrix cross-linking reactions (91), potentially con-
tributing to tissue stiffness.

A pro-fibrogenic role for Nox4 in a number of organs
systems has been proposed, including kidney fibrosis (16,
120, 151, 178), vascular remodeling/fibrosis associated with
chronic hypertension (4), cardiac fibrosis (74, 86, 144, 174),
pancreatic fibrosis (107), liver cirrhosis (6, 40, 132), and lung
fibrosis (24, 71). Interestingly, recent studies also suggest a
protective effect of Nox4, primarily in the kidney (119) and
cardiovascular system (23, 134, 184).

In addition to Nox4, other Nox isoforms have been impli-
cated in lung fibrosis. A p47phox-requiring Nox isoform is re-
quired for the development of fibrosis in a murine lung injury
model; this bleomycin injury model is inflammation depen-
dent and the observed protection in p47phox - / - mice may be
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related to modulation of neutrophilic inflammation and/or
matrix metalloproteinase-9 activity in the bronchoaveolar
lavage of these deficient animals (104). Studies of the gela-
tinase activities of lung fibroblasts from p47phox - / - mice will
provide further insights into the extent by which p47phox-
dependent ROS function in fibrotic lung remodeling. Nox1
has not been implicated in lung fibrosis, although there is
evidence for a role of this isoform in liver fibrosis (38). Im-
portantly, a pharmacologic inhibitor against Nox1/4 ap-
pears to be effective as an anti-fibrotic agent in preclinical
models (59, 88).

Lung cancer

Nox enzymes may participate in several of the key events in
the multi-step development of human cancers (67, 69). Studies
more than two decades ago indicated the generation of ROS
by an Nox-like flavoenzyme in several different cancer cells,
although the identity of the enzymatic source(s) was not
known at that time (150). Since then, specific Nox isoforms
have been identified in a variety of human malignancies, in-
cluding colon (92, 126, 149), gastric (163), pancreatic (94, 113,
168), and prostate (20) cancers. The tumorigenic potential of
Nox1 was demonstrated by showing that Nox1-transfected
cells produce phenotypically aggressive tumors in athymic
mice (8, 146). Nox1 silencing in K-Ras transformed cells ab-
rogates anchorage-independent cell growth and capacity for
tumor formation in vivo (110). In fact, Nox1 was originally
referred to as the ‘‘mitogenic oxidase’’ (8, 146); however, its
effects on specific cell types are likely contextual and include
other cellular functions. A number of reports support a role
for Nox1 in angiogenesis (7). Vascular endothelial growth
factor (VEGF) functions as a key mediator of neovascular-
ization within tumors. Ras-induced VEGF transcription is
mediated by an NOX1/Ras/ERK-MAPK pathway (85).

Resistance to apoptosis is another hallmark of cancer cells
(67). Nox4 promotes apoptosis resistance in pancreatic cancer
cells (168). Nox5 has been reported to mediate cell prolifera-
tion and resistance to apoptosis in prostate cancer cells (20). A
potential mechanism by which the Nox isoforms promote
apoptosis resistance may involve ROS-mediated inactivation
of PTPs (94); alternatively or in parallel, activation of the
phosphoinositide-3-phosphate (PI3K)/AKT and apoptosis
signal-regulating kinase 1 pathway may contribute to Nox4-
induced pro-survival signaling (113). Specific roles for Nox4
in lung cancer are yet to be determined. However, Duox1
and Duox2 and their maturation factors are reported to be
down-regulated by promoter methylation in primary lung
carcinomas (100). Restoration of functional Duox1 reverses
the phenotype of the lung cancer cells lines, supporting epi-
genetic mechanisms involving Duox1 in lung carcinogenesis
(100). Further studies are required to clearly define the precise
roles of Nox enzymes in various aspects of cancer develop-
ment and progression.

Conclusion

Nox family enzymes serve many homeostatic and host
defense functions in the lung. Our current understanding of
the physiological roles of Nox/Duox enzymes in the lung is
still in its very early stages. A clearer understanding of these
roles and their aberrant function in disease pathogenesis will
expedite the eventual development and testing of Nox

inhibitors in specific lung diseases (70, 156). All of the Nox
enzymes are likely to be contextual in their actions and, thus,
defining their ‘‘disease context’’ is critical in designing infor-
mative preclinical and successful clinical studies. Animal
models of most chronic lung diseases have significant limi-
tations, and this highlights the importance of validating the
expression and localization of Nox isoforms in lung cells/
tissues derived from patients with specific lung disorders. The
utility of Nox enzymes as biomarkers in disease expression
and progression deserves further studies.
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Abbreviations Used

AHR¼ airway hyperresponsiveness
AKT¼protein kinase B
ALI¼ acute lung injury

AML¼ acute myeloid leukemia
AP-1¼ activator protein 1

ARDS¼ acute respiratory distress syndrome
ASL¼ airway surface liquid

CEM¼ caveolin-enriched microdomain
CGD¼ chronic granulomatous disease

COPD¼ chronic obstructive pulmonary disease
CS¼ cigarette smoke

CXCL1¼Chemokine (C-X-C motif) ligand 1
DPI¼diphenylene iodonium

Duox¼dual oxidase
ECM¼ extracellular matrix
EGF¼ endothelial growth factor

ENaC¼ epithelial sodium channel
ER¼ endoplasmic reticulum

ERK¼ extracellular-signal-regulated kinases
FLT3¼ Fms-like tyrosine kinase 3
H2O2¼hydrogen peroxide

IL¼ interleukin
INF-c¼ interferon c

MAPK¼mitogen-activated protein kinases
MCP¼monocyte chemoattractant protein

MKP-1¼MAPK phosphatase-1
MLC¼myosin light chain

MUC5AC¼Mucin-5 Subtype AC
NF-jB¼nuclear factor kappa-light-chain-enhancer

of activated B cells
Nrf2¼nuclear factor (erythroid-derived 2)-like 2
NOX¼NADPH oxidase

O2¼ oxygen
O2

-� ¼ superoxide anion
OSCN-¼hypothiocyanite

p53¼ tumor protein 53
PAH¼pulmonary arterial hypertension

PAI-1¼plasminogen activator inhibitor-1
PI3K¼phosphoinositide-3-phosphate
PKC¼protein kinase C

Poldip2¼polymerase delta-interacting protein 2
PPAR-c¼peroxisome proliferator-activated receptor- c
PTP1B¼protein tyrosine phosphatase 1B

Rac1¼Ras-related C3 botulinum toxin substrate 1
Ras¼Rat sarcoma

ROS¼ reactive oxygen species
SMC¼ smooth muscle cell
SOD¼ superoxide dismutase

STAT5¼ signal transducer and activator
of transcription 5

TGF-b¼ transforming growth factor-b
TLR¼ toll-like receptor

TNF-a¼ tumor necrosis factor a
VEGFR2¼vascular endothelial growth factor receptor-2

WT¼wild-type
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