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Abstract

Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine di-
nucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This re-
view addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an
increasingly evident player in redox pathophysiology given its role in redox protein folding and stress re-
sponses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their
processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for
phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER
is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences
redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium
ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded
protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting,
whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI)
closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as
well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation.
Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase
activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with
p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that
convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which
paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and
the ER may provide relevant insights in Nox-related (patho)physiology. Antioxid. Redox Signal. 20, 2755–2775.

Introduction

Working paradigms of cellular redox signaling in-
creasingly suggest compartmentalization of transduc-

tion pathways, in which oxidative stress can be modeled as a
loss of such modular architecture (51). This pattern of orga-
nization assumes that reactive oxygen species (ROS) gener-
ation is highly regulated on a basis of space, time, and type of
species being produced (27, 126, 167, 178), thus implying an
important role of enzymatic ROS sources in this process. Nox
family reduced nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases are the prototypical source of signaling
ROS in most cells [reviewed in Refs. (12, 58, 96, 97)], even
though in quantitative terms, mitochondria can predictably
surpass Noxes as ROS sources in most, although likely not in

all, cell types (10, 25). While in mitochondria, the modular
architecture is provided by the organellar structure itself, in
the case of Nox NADPH oxidases, this is achieved through a
regulated set of multiple protein interactions and/or post-
translational modifications associated with Nox complex
assembling and traffic to specific subcellular locations, which
vary according to the type of Nox isoform [reviewed in Refs.
(12, 58, 96, 97)]. Thus, understanding isoform- and context-
specific subcellular location of Nox(es) is relevant to allow
inferences on their functional pathways.

The endoplasmic reticulum (ER) has emerged as an in-
creasingly evident player in redox physiology and patho-
physiology (110, 145). This is due to at least three facts, the
first of which being the ER-dependent production of ROS via
enzymes, such as ER oxidoreductin 1 (Ero1) and its thiol
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redox partner(s) protein disulfide isomerase(s) (PDI). Such
ER oxidoreductases engage in thiol-disulfide exchange re-
actions that culminate with the downstream insertion by
oxidized PDI of disulfides into nascent proteins, coupled at
the upstream end to electron transfer from reduced Ero1 to
oxygen, thus generating hydrogen peroxide and oxidized
Ero1—the latter step re-enabling the redox protein folding
cycle (14, 68, 159). The significance of this potentially
enormous source of hydrogen peroxide is not yet clear, but
peroxide can be used at least in part for productive protein
folding by promoting parallel oxidations of ER-resident
peroxiredoxin IV (199) or glutathione peroxidase 7/8 (122),
in addition to glutathione (158)—all converging toward PDI
oxidation. These processes have been previously reviewed in
detail (99). Second, the ER closely communicates and in-
teracts with mitochondria via specific membrane tethering
structures composing the ‘‘mitochondria-associated mem-
brane’’, a subcompartment involved in calcium exchange,
Ero1-mediated protein folding, and apoptosis regulation (21).
Finally, the ER is closely involved in multiple aspects with
Nox NADPH oxidases, in a way that extrapolates its expected
role as the site of synthesis and protein processing of the
transmembrane catalytic subunits. Increasing evidence points
to the ER or ER-associated structures as an activation com-
partment for some isoforms, a pattern bearing possible an-
cestral connections and evolutionary relevance. Furthermore,
ER chaperones, such as PDI, have been shown to display
functionally relevant interactions with Nox(es) in distinct cell
types (99). The aim of the present review is to discuss in more
detail the mechanisms and implications of such interactions
between the ER and Nox NADPH oxidases, an exercise we
believe is likely to shed light on important aspects of Nox
(patho)physiology.

Synthesis and Processing of Nox NADPH
Oxidases at the ER

Excellent previous reviews (8, 9, 12, 58, 96, 97) have ad-
dressed in-depth the structural and functional aspects of Nox
NADPH oxidases, which will not be covered here. As
transmembrane proteins, the prototypical catalytic Nox iso-
forms are synthesized and processed within the ER, similar to
the regulatory transmembrane subunit p22phox. Contrarily,
the canonical cytosolic regulatory subunits p47phox,
p67phox, p40phox, and Rac1 or Rac2 are likely synthesized
at the cytosol. Full maturation of the Nox complex includes
several steps: glycosylation (and putatively other post-
translational modifications), p22phox heterodimerization,
insertion of heme and flavin adenine dinucleotide (FAD), and
traffic to relevant locations within the distal secretory path-
way up to membrane-containing subcompartments. Distinct
functions of the ER are involved to a variable extent in each
of these steps. In addition, these steps are isoform-specific:
for example, p22phox incorporation is not known to occur
with Nox5, and traffic distal to the ER, as well as post-
translational modifications, may be restricted in some aspects
for isoforms active at ER membranes, such as Nox4. In ad-
dition, as discussed below, the incorporation of cytosolic
subunits seems to occur as a process concomitant to the traffic
of nonphagocytic Noxes toward membrane(s) (162), as op-
posed to a clear activation step for the phagocytic complexes
[reviewed in Refs. (8, 9)].

The most well-known NADPH oxidase complex regarding
synthesis and processing is the phagocytic Nox2 (8, 9). Fla-
vocytochrome b558 contains two integral membrane proteins:
gp91phox (a synonym for Nox2) and p22phox (127). The
former is the redox center of the electron transfer, which
binds heme and FAD, whereas the latter provides stability to
gp91phox and fulfills the role of an adaptor protein working
as an activation platform able to mediate interactions with the
cytosolic regulatory subunits p67/p47 phox (35). The 91 kDa
glycoprotein gp91phox weighs 50–55 kDa when fully de-
glycosylated (64, 127), whereas a 65 kDa precursor is most
often detectable, even as the only form in cells, such as B
cells (132) and PLB-985 human promyelocytic leukemia
cells (190). Such gp65 precursor cosediments with ER, but
not with Golgi, marker-containing fractions (188) and is
susceptible to digestion with endoglycosidase H, suggesting
that it contains ER-related high mannose-type carbohydrates
(188, 190). Therefore, the synthesis of the larger subunit of
flavocytocrhome b558 occurs in the ER, where initial glyco-
sylation takes place (40, 188, 190). Surprisingly, less than
one third of newly synthesized gp65 pool appears to be
processed to gp91phox and a significant fraction is degraded
by the proteasome (40). The functional importance of ER-
dependent gp91phox N-glycosylation is supported by the fact
that patients with congenital deficiency of ER membrane-
located glucose-incorporating enzymes have neutrophil
dysfunction in connection with impaired NADPH oxidase
activity. Such Nox dysfunction is associated with normal
protein expression of all subunits but decreased gp91phox

molecular weight, indicating a failure of glycosylation, and in
fact the N- and O-glycomes of such neutrophils exhibit a
failure of galactosylation (69). In addition to ER-dependent
glycosylation, gp91phox presents complex carbohydrates,
likely added at the Golgi, in line with the fact that, contrarily
to gp65 precursor, endoglycosidase H is unable to digest
gp91phox carbohydrate chains (40).

Full processing of mature stable gp91phox involves, be-
sides glycosylation, the interrelated events of heme addition
and heterodimerization with p22phox. Coexpression of gp91
phox and p22phox is important for gp91phox maturation and
increases its cell surface expression without influencing gp65
expression in Chinese hamster ovary cells (197). Gp91phox
binds two heme groups by itself (189). Accordingly, prote-
olysis study of purified neutrophil plasma membrane reveals
that the portion of cytochrome b bound to heme groups is
located within the lipid bilayer (135) and critical histidines at
the N-terminal region are involved in the coordination of the
bis-heme structure (53, 189). Importantly, these histidine
residues are conserved across the Nox family. Cells expres-
sing gp91phox mutated in critical histidines (H101L, H115L,
H209C, or H222L) do not process gp65 to gp91phox nor do
they achieve plasma membrane expression of flavocyto-
chrome b, whereas their NADPH oxidase activity is com-
pletely abolished. (18). Relevant to the present discussion, in
these mutated cells, not only gp65 but also p22phox were
normally synthesized, but degraded with time, suggesting
that sustained binding to the latter requires heme insertion
and that heme insertion is a post-translational process (18).
Such post-translational nature is further suggested by ex-
periments with the heme synthesis inhibitor succinyl acetone,
which abolishes superoxide generation (72), but does not
affect the expressions of gp65 protein or gp91phox and
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p22phox mRNA, while decreasing p22phox and mature
gp91phox protein expression. This indicates a fundamental
heme function in heterodimer assembly, which occurs in the
ER with the gp65 precursor (188, 190). Golgi disruption or
inhibition of N-linked glycosylation, respectively, did not
impair the associations between p22phox and the precursors
gp65 or gp58, although preventing gp91phox maturation
(40). Induction or superexpression of heme oxygenase in
murine macrophages significantly decreases superoxide
production, in connection with enhanced proteasomal deg-
radation of gp91phox and p22phox, indicating that post-
translational heme incorporation is not only essential for
adequate electron transfer by cytochrome b558 but also for its
stability (157). After ER synthesis and Golgi processing,
human flavocytochrome b558 is constitutively expressed on
monocyte and neutrophil plasma membranes, as well as
neutrophil secondary granules (54), and Nox activation at
either or both locations depends on the stimulus [reviewed in
Ref. (87)].

The neutrophil NADPH oxidase cell-free system requires
FAD to be active and cytochrome b558 is the FAD-binding
site (140). Neutrophil membranes from X-linked CGD pa-
tients have FAD content below the normal FAD/heme 1:2
ratio (146). FAD replenishment to FAD-depleted cytochrome
b558 promotes 10-fold increase in the NADPH oxidase ac-
tivity in the cell-free system, whereas FAD binding to cyto-
chrome b558 increases in phorbol ester-stimulated whole
neutrophils. Probably, in resting cells, FAD is loosely bound
to cytochrome b558 and their interaction enhanced upon ac-
tivation (66). The H338Y gp91phox mutation described in a
patient (186) promotes FAD depletion as well as decreased
gp91phox expression. His338 is located in the HPFT motif
(His338ProPheThr), which is involved in FAD binding in a
ferredoxin-NADP + reductase. FAD replenishment restored
phorbol myristate acetate (PMA) stimulation of the NADPH
oxidase activity in such H338Y CGD granulocytes. Retention
of nascent mutant H338Y gp91phox by the ER glycoprotein-
processing chaperone calnexin prevents mutated gp91phox
to be detected at the cell surface, implicating FAD binding in
calnexin dissociation from gp91phox. In normal cells, gp65
interaction with calnexin is detectable 1 h after its synthesis
and totally abolished within 5 h, whereas gp65 from H338Y
mutant cells remains bound to calnexin up to 5 h after syn-
thesis. Surprisingly, calnexin also associates with p22phox
even in the absence of gp91phox, probably via an unknown
glycoprotein (106). Interestingly, NADPH oxidase as well as
in vitro and in vivo bactericidal activities were further re-
stored in H338Y mutants in the concomitant presence of FAD
and thapsigargin, which efficiently redistribute ER-retained
gp91phox to plasma membranes (77). Thapsigargin effect
was apparently unrelated to increases in cytosolic calcium
levels, but rather on its action on ER calcium-dependent
protein quality control, allowing relief of calnexin-mediated
ER retention of mutant gp91phox (33). On the other hand,
FAD presence was not detected in resting or stimulated
T341K, C369R, G408E, and E568K gp91phox mutants dis-
playing X + -CGD phenotype with loss in the NADPH oxidase
activity. Surprisingly, the NADPH oxidase assembly is nor-
mal in T341K, although not in the other mutants, indicating
that FAD binding is dispensable for the translocation of cy-
tosolic factors. Of note, Thr-341, located at the predicted
FAD-binding site, and Glu-568 are conserved in Nox1, Nox3,

and Nox4 (39). Overall, these data indicate that FAD is not
strictly required for gp91phox maturation and cell surface
expression on the cell surface, although probably contribut-
ing in yet unclear aspects to sustain gp91phox expression.
FAD binding to gp91phox likely occurs concomitantly or
upon activation of NADPH oxidase and consequently not
within the ER.

Lipid metabolism is an important ER-related function, and
the association with lipid compartments appears important
for the distribution and assembly of active Nox2 complex
since mature gp91phox has been documented in lipid rafts, as
opposed to gp65 precursor (170). Moreover, lipid raft dis-
ruption impairs NADPH oxidase assembly, as seen in the
cell-free system, in which cholesterol is required for efficient
p67phox and p47 phox translocation. Cholesterol depletion
in Ra2 microglia and HL60 cell membranes changes the
distribution of gp91phox and p22phox in detergent-resistant
membranes from low- to high-density fraction, in association
with the decrease in stimulated superoxide production (170).

Therefore, there are many levels of organization to be
reached until NADPH oxidase becomes a functional enzy-
matic complex (48). These include (i) incorporation of redox
components like heme and FAD, which are essential to
proteins stability and heterodimer formation; (ii) correct lo-
calization on the membrane; and (iii) assembly of cytosolic
components, which includes translocation and association of
factors: p40phox, p47phox, p67phox, and Rac with flavo-
cytochrome b558.

Little is known about the synthesis and early processing of
the other Nox isoforms within the ER (the Duoxes will be
discussed in the next section). There is, however, no apparent
reason why Nox1, Nox3, and in some aspects Nox4 proces-
sing and assembling should be significantly distinct from that
of Nox2. Nox4 location at the ER and the lack of downstream
interaction with cytosolic subunits, in addition to the lack of
Nox5 heterodimerization with p22phox, are, of course, ob-
vious differences. Since Nox4 does not require cytosolic
subunits for activation, the role of heterodimerized p22phox
is likely of stabilization rather than activation. Of note, the
mutation of Nox4 histidine 115 abolishes its interaction with
p22phox, similar to Nox1 and Nox2 (4). In addition, there is
no reason why these isoforms are not glycosylated in a
manner analogous to that of Nox2, although objective evi-
dence for this is presently lacking.

Nox NADPH Oxidase Localization
and Activation Within the ER

A good deal of research in the Nox field has focused on
understanding isoform localization as a conceivable window
to reveal their possible functions. This approach, somewhat
disappointingly, has proven so far only partially successful.
No Nox isoform has a clear localization signal in its structure,
and their subcellular location appears quite dynamic and
stimulus-related, consistent with its preferential dependency
on post-translational processes, such as protein modifications
and protein–protein interactions, which remain to be better
understood. In addition, most Nox isoform antibodies have
questionable specificity, rendering localization studies a
challenge. Few studies report controls with inhibitory pep-
tides and Nox silencing to probe antibody specificity. In the
case of the ER, the issue of location is further limited because,
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as the place of synthesis, all isoforms have at least a transient
maturation stage within the ER, whereas in many cases, they
do not become fully active at the ER. Importantly, many
studies addressing Nox location make use of transfection of
tagged isoforms, whereas overexpression of any protein can
lead to their artifactual retention in the ER as they may not be
correctly folded and/or they can overload the ER folding
machinery.

An emerging discussion in this context is the role of de-
hydrogenase domains, which are common to all Noxes. Such
domains canonically mediate electron transfer from NADPH
to FAD, that is, diaphorase activity. Normally, electron
transfer from FAD to transmembrane heme groups is opti-
mized by changes in protein conformation, as suggested for
Nox2 (37). However, electron transfer from FAD to artificial
substrates has been reported for Nox2 (62) and Nox4 (80,
121, 124). Whether in vivo the corruption of such dehydro-
genase activity can generate ROS if these electrons are
transferred to oxygen is interesting but yet speculative.
However, the demonstration of cellular ROS generation for
short alternatively spliced Nox4 isoforms lacking the trans-
membrane domain, such as Nox4D (56), which has recently
been shown to display nuclear location (6), is consistent with
such possibility. Similar findings have been shown for short
alternatively spliced Nox2 beta isoform, which has only two
transmembrane domains and lacks FAD-binding as well as
all heme-binding domains (65). These facts allow some
speculations. Since some of these short isoforms may lack
domains responsible for traffic and membrane anchoring,
they could behave as immature Noxes, being retained at the
ER. An analogous mechanism could account for ROS gen-
eration by immature and/or slightly misfolded Noxes retained
at the ER, even for otherwise normally membrane-located
isoforms.

Nox4

Nox4 is the isoform most consistently associated with the
ER according to many studies, some of them detailed in
Table 1. However, even in the case of Nox4, several other
locations have been described: mitochondria, focal adhesions
and cytoskeleton, and nucleus, the latter associated to one of
its short spliced isoforms (6). In addition, recently developed
monoclonal antibodies have detected Nox4 localization also
at the plasma membrane by total internal reflection fluores-
cence (TIRF) microscopy (194) (Table 1). High glucose and
palmitate induce Nox4 translocation to lipid rafts in adipo-
cytes (63). Overall, a seemingly emerging consensus about
the yet controversial topic of Nox4 location is that this iso-
form is primarily an ER-targeted Nox but undergoes traffic to
many other compartments depending on unknown factors
that likely include cell type, triggering stimuli, prolifera-
tive status, and probably culture conditions. Each of these
Nox4 locations, including the ER itself, may require specific
protein–protein associations or post-translational modifica-
tions since Nox4 does not depict a known ER retention signal,
whereas a software prediction algorithm yielded high score
for mitochondrial location (19). Studies with chimeric Nox1
and Nox4 indicate that location, as well as type of produced
ROS, are determined by the N-terminal portion of each
Nox, whereas constitutive activity is regulated by cytosolic
tail (70).

Since Nox4 is constitutively active, evidence for Nox4
location at the ER implicates that Nox4 is active within this
organelle. However, there is not a wealth of data reporting
direct evidence for this fact. This is suggested by Nox4
loss- or gain-of-function experiments utilizing ER-localized
sensors, such as Hyper (175, 181). Although an important
advance, studies with redox sensors should yet be analyzed
with caution, as their precise in vivo reaction mechanisms and
limitations are not understood (116). Table 1 summarizes
some specific aspects addressed in studies focusing on Nox4
within the ER. Since the ER lumen is topologically analogous
to the extracellular milieu, it is expected that Nox4 is oriented
at the ER membranes to release ROS toward the ER lumen.
Interestingly, the opposite orientation cannot in principle be
ruled out since the NADPH pool is preserved and reportedly
thiol-independent at the ER lumen (130). Whether Nox4-
derived ROS contribute to protein folding is possible but
unknown.

The implications of ER location regarding Nox4 functions
are not clear-cut, similar to Nox4 functions themselves.
However, some specific ER-related targets have been iden-
tified, apart from Nox4 involvement with ER stress re-
sponses, discussed in the next section. One such target is
sarcoendoplasmic reticulum calcium ATPase (SERCA), an
ER membrane-located enzyme, which upon nitric oxide
(NO)-stimulated cys674 glutathiolation increases calcium
uptake into the ER, thereby impairing cytosolic calcium-
dependent cell migration. Nox4 upregulation in vascular
smooth muscle cells (VSMC) of prediabetic rats promotes
irreversible SERCA cys674 oxidation after transforming
growth factor-b stimulation, preventing NO-mediated inhi-
bition of cell migration. Knockdown of Nox4 prevented
SERCA cys674 oxidation and neointima formation after
carotid artery injury (161). In endothelial cells, Nox4-derived
hydrogen peroxide synergizes with NO to promote SERCA
glutathiolation and increased vascular endothelial growth
factor-dependent migration. Interestingly, SERCA glu-
tathiolation also required Nox4-induced generation of Nox2-
derived superoxide (50). Another potential Nox4 target is the
ryanodine receptor. In striated muscle myocytes, a p(O2)-
dependent generation of Nox4-derived oxidants targets rya-
nodine receptor cysteines to promote calcium release and
muscle contraction. These data place Nox4 as a novel oxygen
sensor, at least in skeletal muscle (154). Other observations in
coronary artery myocytes, however, place the ryanodine re-
ceptor upstream of Nox4 ROS generation (192). Protein-
tyrosine phosphatase-1B (PTP-1B), another ER-located
enzyme, is oxidatively inactivated by Nox4. Through this
effect, Nox4 is able to sustain epidermal growth factor (EGF)
receptor signaling by negating PTP-1B-mediated inhibition
of this tyrosine kinase, which occurs through its dephos-
phorylation at the ER (28). PTP-1B can also potentiate IRE1-
dependent signaling during ER stress (59) and thus can be a
potential target of Nox4 in this condition (see below).

Nox1

The fact that Nox1 colocalizes with PDI in smooth muscle
cells (82) has been sometimes taken to implicate an ER lo-
cation for this isoform. The evidences for Nox1 location at
plasma membrane, endosomes, and caveolae are compelling,
however, and the ER pool of Nox1 may represent to some
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extent immature enzyme—in addition to the fact that not all
PDI may localize at the ER lumen (164). In gastrointestinal
cancer cells, a major Golgi-located pool of Nox1 and its
regulatory subunits has been described (160). Nevertheless,
in lipopolysaccharide (LPS)-stimulated human colon cancer
cells, diphenylene iodonium-sensitive oxidant generation dis-
plays a pattern suggestive of ER location, on the basis of co-
localization between oxidant-sensitive 2¢,7¢-dichlorofluorescein
(DCF) and ER-tracker dyes. Although both Nox1 and Nox2 are
expressed in these cells, oxidant signals and increased cell ad-
hesion were completely abrogated by Nox1 siRNA (125).

Rac1 and p47phox

Although Rac1 and p47phox are cytosolic subunits, they
have been associated (probably indirectly) with dysfunction
of calcium regulation. A Rac1-dependent NADPH oxidase
controls intracellular calcium oscillations in histamine-sim-
ulated endothelial cells, via possible ER sensitization to
inositol 1,4,5-trisphosphate (76). Also, the oxidation of cal-
cium/calmodulin-dependent protein kinase II (CAMKII) has
been associated with cardiac sinus node dysfunction, an ef-
fect significantly inhibited upon genetic deletion of p47phox
(155). These results implicate a role for distinct Noxes, in
addition to Nox4, at several levels of calcium signaling
regulation.

Nox2

Phagocytic Nox2 is clearly functional at the plasma
membrane, phagosomes, and specific granules (8). In mac-
rophages, LPS stimulation promotes internalization of Nox2
via clathrin-coated pits for recycling within the endosomal
secretory compartment (46). In contrast, nonphagocytic
Nox2 displays locations that resemble the ER, for example, in
endothelial cells (102, 168). It is unclear, however, whether
the enzyme can be active at this location or whether this
represents just a maturation stage of the active complex. In
the cardiomyocyte, Nox2 localizes at the sarcolemma, as well
at transverse T-tubules, which are deep sarcolemmal invag-
inations toward the cytosol juxtaposed to terminal cysternae
of the smooth ER. Physiological stretch activates, via mi-
crotubules, Nox2 at those locations, promoting a flash of
oxidants that act locally at the ryanodine receptor from
junctional ER, releasing a calcium spark for contraction. This
circuit integrates and tunes excitation–contraction coupling
(133, 134) in cardiac as well as skeletal muscles.

p22phox

Recent evidence indicates close correlation between
p22phox and ROS generation detectable by an ER-specific
aryl-boronate probe in a human acute myeloid leukemia cell
line, for which Nox2 may contribute at least partially to the
phenotype. ROS generation is inhibitable by the Nox inhib-
itor VAS2870 or siRNA against p22phox. The expression of
p22phox is reduced, through proteasome degradation, upon
tyrosine kinase inhibition, thus providing a connection be-
tween p22phox and the leukemic phenotype, further re-
inforced by demonstration of p22phox-related downtream
signal transducer and activator of transcription 5 (STAT5)
signaling (179).

Nox5

The location of Nox5 seems variable and dynamic, similar
to other Noxes, but there are some evidences for an ER lo-
cation. Importantly, Nox5 has many distinct variants with
potential location-related functions (13). Within the cell, ei-
ther endogenous or overexpressed Nox5 displays an ER-
resembling perinuclear distribution pattern, colocalizes with
calreticulin in endothelial cells (11, 13), and has been re-
ported at the detergent-resistant microdomains of the ER
(81). When overexpressed in HEK293 cells, Nox5 seems
located not only at the plasma membrane but also at the
perinuclear region, generating superoxide in response to
protein kinase C activation (148). Despite the evidences for
Nox5 in the ER, the strategies of Nox5 to bind to the plasma
membrane indicate the functional relevance of such location.
One such strategy is the binding to p22phox: Nox5 coim-
munoprecipitates with p22phox when both are over-
expressed, but not with endogenous p22phox, whereas
p22phox is not essentially required for Nox5b-dependent
ROS production (13, 88). Also, Nox5 has two polybasic re-
gions, one N-terminal and another C-terminal. Extracellular
production of ROS by Nox5 is modulated by PtdIns4,5P2,
which targets Nox5 location at the plasma membrane through
its N-terminal polybasic region (89). The nonreceptor tyro-
sine kinase c-Abl comigrates with Nox5 to the plasma
membrane in a calcium-mediated process (47). Finally, some
studies indicate a cytosol location for Nox5 in myocardium
(61), myometrium (34), and esophageal carcinoma cells (75).
In the latter case, colocalization and functional interplay
between the short Nox5S isoform and Rac1 has been
reported.

Duox1 and Duox2

While mature Duoxes clearly locate at plasma membranes,
maturation and processing of these glycoproteins involve a
tight connection with the ER. Oxidative folding is the rate-
limiting step for Duox2 maturation and exit from the ER,
which is facilitated by the specific maturation factor DuoxA2
(57). Interestingly, the partially glycosylated form of Duox2
is located at the ER and generates, in a calcium-dependent
way, superoxide detectable with electron paramagnetic
resonance techniques, contrarily to the mature enzyme,
which releases mainly hydrogen peroxide (5). Duox2 tar-
geting to plasma membrane is preceded by its exit from the
ER, which is regulated by an N-terminal ectodomain segment
including the first transmembrane domain. Such exit is
completely inhibited by mutation of four specific cysteine
residues (119).

Overall, the data discussed in this section indicate that
Nox4 (constitutively) and possibly other isoforms (cir-
cumstantially) do exhibit ER localization, and there is
emerging evidence that at least Nox4 in fact becomes
active at this organelle. At the same time, this discussion
indicates that, for each isoform, focusing on location
as a window to define function is a limited strategy in
the absence of a specific (patho)physiological context
in which this is inquired. In fact, Noxes appear to have
evolved to display varied subcellular locations, which
are not only isoform-specific but also stimulus-specific,
likely in connection with acquisition of many specialized
functions.
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ER Stress and Nox Activation

Adequate protein folding and processing is likely to be one
of the most fail-safe and conserved cell functions, as judged
by the number and nature of known defensive strategies to
assist, preserve, correct, or balance it (23, 150). Protein
processing within the ER lumen includes three major general
activities: folding, disulfide introduction, and N-glycosyl
residue insertion (23, 33). Failure at any of these steps will
promote an imbalance between protein load and the ER ca-
pacity to process such cargo, leading to ER stress. ER stress
counteractivates homeostatic signaling known as the ‘‘un-
folded protein response (UPR),’’ a complex network of sig-
nals arising from ER membrane sensors toward the nucleus
and back to the ER and several other cell compartments.
Details of UPR signaling have been reviewed elsewhere
(139, 143, 156, 180) and are briefly summarized in Figure 1.
The UPR aims (i) to prevent, at least temporarily, protein
synthesis, (ii) to improve the ER folding capacity, (iii) to
remodel the ER, and (iv) to adjust cell metabolism to a de-
fensive mode. Some features of the UPR recapitulate general
cell stress responses, such as the arrest in protein synthesis,
some metabolic adjustments, and enhanced protein degra-

dation, whereas other aspects are more specific, for example,
increased expression of ER chaperones, such as Grp78,
Grp94, and calreticulin (139). Although such responses are
primarily homeostatic, they can, as with any stress response,
lead to cell damage and apoptosis if ER stress is sufficiently
sustained or strong (143). Experimental studies often address
the acute UPR (145). In many disease states, however, there
is a state of chronic protracted UPR activation, in which
sustained or oscillating ER stress coexists with variable
combinations of adaptive as well as apoptotic signaling. Such
state, which is so far not well understood, is a hallmark of
many disease states, including atherosclerosis, diabetes,
obesity, and cancer (112). Oxidative stress and ROS gener-
ation is an integral component of the acute as well as some
chronic states of UPR signaling, whereas ROS generation by
itself can apparently trigger the UPR in some, but not every
case (145). Antioxidant compounds have been repeatedly
shown to protect against apoptosis, especially during the
acute UPR, in many distinct circumstances (110, 145). This,
however, should not be taken as a rule, and protective effects
of ROS during the UPR have been reported as well (15, 181,
182). Overall, it is increasingly clear that the UPR is a
complex response activated in highly specific patterns, often

FIG. 1. Organization of the unfolded protein response (UPR) signaling and interplay with Nox NADPH oxidases.
ER stress triggers UPR signaling from three main arms based on distinct ER transmembrane sensors: the endonuclease/
kinase IRE1, the kinase PERK, and transcription factor ATF6. Each one triggers signals emerging from the cytosolic surface
of ER, which integrate pathways for decreasing global protein synthesis load, improving protein folding, adjusting me-
tabolism and amino acid sufficiency, and inducing misfolded protein degradation. Such responses can be classified as either
prosurvival or proapoptotic, although both types are triggered simultaneously. Among several UPR-responsive homeostatic
genes, the chaperones Grp78 (BiP), Grp94, and calreticulin are regulators, as well as operational markers, of the UPR. The
most specific apoptosis pathway is the transcription factor CHOP (GADD 153). Nox4 is induced early during the UPR and
is upstream to several signaling events that may induce autophagy, survival, or eventually apoptosis. Nox2 is induced
through a CHOP/CAMKII pathway to mediate apoptosis. CAMKII, calcium/calmodulin-dependent protein kinase II;
CHOP, CCAT/enhancer binding protein homologous protein; ER, endoplasmic reticulum; Grp, glucose-regulated protein;
JNK, c-Jun N-terminal kinases; NADPH, reduced nicotinamide adenine dinucleotide phosphate. To see this illustration in
color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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partially, and depends highly on the cell type and context.
Clearly, however, ER stress is a major context in which
transient or sustained oxidative stress arises in many disease
states.

The mechanisms accounting for ROS generation during
the UPR appear to be multiple [reviewed in Ref. (145)]. Prior
suggestive evidence has been published with respect to ER
folding-related oxidoreductase cycles and mitochondria. This
is, however, not without criticism since compelling evidence
that the ER is underoxidized during the UPR in yeast (117) or
quite resistant to redox imbalances in mammalian cells (7a)
argues against a predominant luminal ER source of oxidants
during ER stress. More recently, increasing evidence sug-
gests that Nox NADPH oxidases are important ROS sources
during the UPR in distinct cell types (Fig. 1). Nox4 has been
the most studied isoform in this context, with consistent ev-
idence for increase in its gene and protein expression during
ER stress induced by distinct stimuli. In VSMC, incubation
with the oxidized cholesterol product 7-ketocholesterol in-
duced 3-fold increase in Nox4 mRNA and protein expression
(128), similar to the classical ER stressor tunicamycin, which
increases Nox4 mRNA levels about 10-fold (145). Neither
stimulus significantly affects Nox1 expression. In this sce-
nario, ROS generation is virtually abolished by Nox4
knockdown, implicating this isoform as ‘‘a’’ and eventually
‘‘the’’ major ROS source in this circumstance. Intriguing
evidence indicates that Nox4 is a proximal trigger of the UPR
in endothelial cells exposed to tunicamycin or the ER stressor
protein HIV-tat (181). In this case, the ER surface constitutes
a platform for spatial organization of Nox4 signaling and
downstream K-Ras activation, both as upstream UPR triggers
(182). Nox4-dependent signals activate autophagy as a pro-
tective mechanism since autophagy inhibition promotes ap-
optosis. Transfection with an ER-located Hyper plasmid
allowed detection of hydrogen peroxide production within
the ER triggered by tunicamycin or HIV-tat, in a Nox4-
dependent way, even though Nox4 could still affect hydrogen
peroxide production indirectly. Moreover, the Hyper probe
can be influenced by pH changes and is heavily affected by
thiol-disulfide redox (116). Intriguingly, hydrogen peroxide
production was not locally detected after thapsigargin or
DTT-induced stress, even though shRNA for Nox4 decreased
UPR signaling triggered by them (181). Thus, Nox4 can have
a central role as upstream regulator of the UPR, although the
mechanisms of Nox4 effects appear to be dependent on the
nature of the UPR trigger. The distinct outcomes—survival
versus apoptosis—regarding Nox4 within the UPR context is
in line both with the conflicting evidences for protective
versus damaging effects of Nox4 (1, 195), discussed above,
as well as with the known dichotomy of ER stress endpoints.
To what extent Nox4 itself is at the crossroads of UPR-related
cell decisions is unknown.

Nox2 has also been implicated in the UPR (Fig. 1). ER
stress induction with cholesterol or 7-ketocholesterol pro-
moted apoptosis and oxidative shift in macrophages, which
were abolished by Nox2 siRNA (101). Such apoptosis sig-
naling involved a CCAT/enhancer binding protein homolo-
gous protein (CHOP)-CaMKII-c-Jun N-terminal kinases
( JNK) pathway. Remarkably, the expression of CHOP (the
canonical effector of UPR-related apoptosis) was dependent
on double-strand RNA-dependent protein kinase (PKR) and
was decreased in stressed macrophages from Nox2 - / - mice.

Mitochondrial pathway of apoptosis was also diminished in
Nox2 - / - macrophages. Nox2 - / - mice also displayed kid-
ney protection upon an in vivo challenge with tunicamycin, in
connection with abrogated CHOP induction (101). Close
convergence between ER stress signaling and Nox sub-
units also occurs in central nervous system regulation of
hypertension. Loss-of-function of p22phox in the subfornical
organ eliminated hypertensive responses to angiotensin II
(AngII) (107) in association with decrease in UPR marker
expression (187).

In addition to the above-discussed investigations, a rela-
tively large body of studies report coincidences between Nox
or Nox subunit effects and the occurrence ER stress, without
showing clear evidence that such Nox plays a direct role in
UPR signaling. In most such studies, loss-of-function of Nox
promotes decrease in some ER stress-associated targets or
another pathway promotes both Nox activation and ER stress.
Such results should be interpreted bearing in mind the com-
plex pathways connecting Nox to ER stress-dependent target
responses, which can be indirect and involve collateral sig-
naling, such as inflammatory mediators (193), metabolic
adaptations, cell adhesion processes, and many others. A few
examples can be listed regarding these studies: Nox2 in ath-
erosclerosis (104); Nox2 in neurodegenerative diseases (16);
p47phox in impaired cardiac contractility (196); p47phox in
cytokine-induced inflammatory angiogenesis and autophagy
(141); Nox4 in glycation product-induced fibroblast apoptosis
(108); Rac1 in saturated fat-induced JNK activation in hepa-
tocytes (149); Rac1 in diabetes-induced cardiac hypertrophy,
collagen deposition, and contractility (103); Rac1 in high
glucose-induced ER stress in culture cardiomyocytes (103);
Nox activity in vascular cell calcification (105). ER stress
plays a prominent role in Toxoplasma gondii-induced tro-
phoblast apoptosis, whereas an increase in Nox1 expression
and oxidant generation preceded UPR signaling and down-
stream activation of caspase 12, and UPR-related apoptotic
signaling was abolished by N-acetylcysteine (183).

The UPR closely converges with the ‘‘endoplasmic retic-
ulum-associated degradation (ERAD)’’ to promote enhanced
degradation of un/misfolded proteins in the cytosol by the
proteasome (22). ERAD is the executive arm of essential
protein quality control mechanisms that can exert control on
Nox subunit expression, although information for this is in-
cipient. Such is the case not only of defective forms, for
example, mutated Nox2 (106), but also of normal regulation
of p22phox (20) or Rac1 (92), both cases seemingly involv-
ing redox-dependent steps (42, 92). The proteasome also
helps sustain Nox4 mRNA expression during the UPR (3).

In summary, evidence for the involvement of Noxes in
UPR signaling, as well as in protein quality control, is
growing, but the mechanistical links are yet fragile. As
judged from the convergence between Noxes and the ER
discussed in this review, it can be speculated that more
chapters of this story are to be written.

PDI Interaction with Nox NADPH Oxidase

Another point of convergence between the ER and Nox
NADPH oxidases is the interaction between Noxes and ER
chaperones from the PDI family. There are more than 20 PDI
isoforms, with PDI itself, also called PDIA1 or P4HB gene
product, as the founding member. These proteins belong to
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the thioredoxin superfamily and have, as hallmarks, a thior-
edoxin fold and in most cases dithiol groups. Most studies
addressing PDI convergence with Noxes concentrate on
PDIA1 (or simply PDI), which has two dithiols with the
typical –CXXC– sequence. PDI displays oxidase, reductase,
and—as the hallmark of this family—thiol isomerase activity
(7, 68, 78, 99, 176). In addition, PDI has a chaperone effect—
preventing protein aggregation and sustaining their folding—
which in itself is independent on its thiol groups, although
cooperative with thiol oxidoreductase activity. Such chap-
erone effect is mostly attributable to a hydrophobic pocket
within the main protein core (67, 68). Access to this core is
flanked by a mobile arm, which opens when PDI is oxidized
and closes upon its reduction (172, 173). The canonical
function of PDI in the ER lumen is to introduce and/or re-
shuffle disulfide bonds into nascent proteins destined to
membrane insertion or secretion (176). PDI composes with
other isoforms or related chaperones to integrate protein
folding, disulfide introduction, and N-glycosyl residue at-
tachment, the three main steps of protein processing in the
ER. All such PDI effects provide it with the intrinsic function
of being the convergent hub of ER redox homeostasis and,
consequently, an important player in ER-dependent redox
signaling processes (99). The role of PDI in redox signaling,
as well as ER and cellular redox homeostasis, was reviewed
in detail recently (99).

In addition to its canonical ER location, PDI, similar to
some other ER chaperones, is also present at the cell surface
and pericellular compartments (‘‘peri/epicellular PDI’’ or
pecPDI), where it mediates a number of thiol-disulfide ex-
change events (reductase and possibly oxidase and isomerase
activities) (86, 99, 164). Such redox effects mediate a number
of physiological or pathophysiological processes related to
thrombus formation (30, 31, 84, 137), tissue factor functional
regulation (2, 137, 169), phospholipid asymetry (131),
platelet adhesion, and aggregation [reviewed in Ref. (49)],
ADAM activity (177), citoxicity of diphtheria toxin (111),
uptake of viral particles (55, 113, 171), and galectin regula-
tion (17), among others. The putative route through which
PDI gains access to its epi/pericellular location remains
elusive (71, 86). This remains a crucial question since it is
possible that PDI effects on Nox regulation outside the ER
take place at the physical route of PDI externalization.

Convergence between PDI and the NADPH oxidase
complex was described by our group in the context of ad-
dressing mechanisms underlying thiol sensitivity of non-
phagocytic NADPH oxidase (82). Evidences suggesting such
an interaction have been obtained in both the context of
functional interdependence and physical association, with the
functional data showing the most clear results so far. In
VSMC, antagonism of PDI by pharmacological compounds,
as well as loss-of-function experiments with specific protein
knockdown induces loss of NADPH oxidase activation and
superoxide production in response to AngII (52, 82). More-
over, silencing PDI expression even partially is sufficient to
prevent the enhanced expression of Nox1 due to AngII (52) or
platelet-derived growth factor (129), whereas in both cases,
the expression of Nox4 remains unaltered. Importantly, gain-
of-function experiments in which PDI was overexpressed
about 2–2.5 times depicted an enhanced spontaneous base-
line activation of NADPH oxidase, reflected by superoxide
and hydrogen peroxide detection, in a preemptive way, that

is, further incubation with AngII did not enhance the NADPH
oxidase activity. Such Nox activation was associated with
enhanced expression of Nox1, but not Nox4 at baseline,
whereas after AngII incubation, Nox4 expression was also
enhanced (52). PDI requirement for NADPH activation was
also observed in endothelial cells challenged with AngII (98),
as well as PMA-activated macrophages (144) and neutrophils
(38) and in glial cells (83). This indicates that the functional
support of the NADPH oxidase activity by PDI occurs in
distinct cell types and with nonphagocytic as well as
phagocytic Noxes.

Importantly, PDI-dependent support of the Nox activity
was shown to have functional implications. In response to
AngII incubation in VSMC, PDI loss-of-function abrogates
Akt phosphorylation (82), a response known to be associated
with Nox1. Accordingly, PDI silencing with siRNA signifi-
cantly impairs Nox1-dependent VSMC migration in response
to PDGF (129). In macrophages, lowering PDI expression
inhibits Leishmania chagasi phagocytosis (144).

Of note, the partial PDI knockdown in these experiments in
VSMC and macrophages was unassociated with evidence of
UPR activation, a result in line with other studies indicating
that PDI loss-of-function does not necessarily trigger the
UPR (120, 142) and that PDI is generally not considered an
ER stress-responsive gene (68, 145, 176). However, in some
cell types such as mouse embryonic fibroblasts (unpublished
observations from our laboratory), PDI silencing associates
with UPR marker expression and, indeed, PDI silencing can
possibly sensitize most cells to other ER stressors. In fact, in
neuronal cells (165) and oxidized low-density lipoprotein-
challenged macrophages and endothelial cells (120), loss of
PDI function promotes or amplifies the UPR, leading, re-
spectively, to the formation of insoluble protein aggregates
and CHOP expression/apoptosis. The extent to which PDI
down-expression induces that UPR is likely dependent on
cell type, secretory status, ER redox state, and concomitant
expression of other PDI family members (99). PDI has a
possible role to couple ER stress to Nox-dependent ROS
generation (99). Evidence for this logical hypothesis is
however poor, even though preliminary (unpublished ob-
servations) data from our group indicate that PDI silencing,
while increasing apoptosis signaling, prevents ROS genera-
tion in tunicamycin-challenged VSMC, a situation in which
Nox4 expression accounts for essentially all detectable ROS
(145). Interestingly, UPR-induced increase in mRNA levels
of both PDI and Nox4 are essentially abrogated by nonlethal
concentrations of proteasome inhibitors, which nonetheless
increase UPR-induced loss of VSMC (3).

The above results suggest a clear functional interplay be-
tween PDI and either Nox1 or Nox2, in distinct cell types,
whereas the functional interplay between PDI and Nox4 is
unclear at present. Evidences for physical interaction be-
tween PDI and Nox subunits further reinforce these func-
tional data. A word of caution is important here since PDI is
highly expressed in cells and displays a client-type interac-
tion with a large number of proteins, although such interac-
tions tend to be quite rapid and generally do not yield
detectable protein complexes unless PDI is artificially mu-
tated to trap substrates (85). Also, the large PDI hydrophobic
core may interact nonspecifically with unfolded proteins (67)
and even small substrates, such as estrogens, bisphenol A,
insulin [reviewed in Ref. (78)], antigen peptides (32), and
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somatostatin (91). With these caveats in mind, there is sub-
stantial evidence for confocal colocalization and/or coim-
munoprecipitation between PDI and many Nox subunits,
including Nox1, Nox2, Nox4, p22phox, p47phox, and Rac1
or GTPase regulator RhoGDI (38, 82, 99, 144). Since these
associations do not imply functional relevance, they may
implicate a similar share of location at the ER or downstream
ER-derived compartments. Such may be the case of Nox4,
which clearly associates with PDI (82, 195), but does not
show expression modulation in response to PDI loss- or gain-
of-function, as discussed above. Another important point is
that none of these associations has shown a clear pattern of
modulation in response to Nox activation. Overall, the mode
of PDI association is likely to be transient and possibly
multiple, more akin to that expected for a peripheral regu-
latory protein rather than a more stable subunit of the Nox
NADPH oxidase complex.

The mechanisms whereby PDI affects Nox NADPH oxi-
dases are yet unclear and likely to be multiple, reflecting the
diverse functions of PDI and its versatile array of interac-
tions. Within contexts in which PDI exerts the regulation of
AngII-mediated Nox1 activity, overall PDI expression ex-
hibits little or no change, whereas there is a translocation of
PDI toward particulate fraction containing membrane sub-
compartments (82). In such homogenates obtained after
AngII stimulation, incubation with the thiol isomerase in-
hibitor bacitracin or a neutralizing antibody against PDI in-
duces decrease in the NADPH oxidase activity, indicating
that PDI segregates into locations close to the oxidase com-
plex milieu and exerts Nox control via thiol redox mecha-
nisms (82). Given PDI role as chaperone and folding catalyst,
a role for PDI in complex stabilization and/or organization is
possible, but remains to be proven. In addition, nonredox
mechanisms also play a role in PDI effects since over-
expression of cysteine-less PDI in VSMC induces acute ac-
tivation of the NADPH oxidase activity and Nox1 expression
similar to the wild-type counterpart (52). This indicates that
at least acutely a PDI-mediated chaperone effect, known to be

thiol-independent, may contribute to NADPH oxidase com-
plex organization. In fact, it is well known that PDI binding to
most client proteins occurs through a chaperone-like mech-
anism involving the hydrophobic PDI groove, whereas thiol
redox pathways subsequently stabilize the interaction (67, 68,
99). Of note, redox sensitivity of any PDI interaction does
not implicate that binding to target necessarily occurs via
PDI thiols, as this may simply reflect the profound redox-
dependent plasticity of PDI. When its thiols are oxidized, PDI
is in open configuration, exposing its hydrophobic core and
enhancing its chaperone activity. As PDI thiols are reduced,
for example, following disulfide introduction into a client
protein, the hydrophobic PDI groove shifts to closed con-
figuration. These configurations are in line with PDI func-
tions. Although oxidized PDI is expected to accomodate
variable client proteins, reduced PDI configuration is con-
sistent with an impaired binding to complex proteins, while
allowing exposure of aromatic residues that bind the oxidase
Ero1, thus potentially allowing PDI reoxidation (99, 173).

Surprisingly, not much is known about the existence and
possible function of reactive thiols within Nox subunits.
Classical thioredoxin-like dithiol motifs are absent in their
structure, although a dithiol specific for Nox2 has been re-
ported in its cytosolic domain (36, 37, 43). In addition, up to
four cysteines may contribute to modulate p47phox function
(79). Mutations of two Nox4 E-loop cysteines switch the
ROS product from hydrogen peroxide to superoxide, with no
change in its expression or subcellular localization (158). The
absence of a clear Nox dithiol target, plus the somewhat
protean nature of PDI association with Nox subunits dis-
cussed above, do not allow at present to highlight any par-
ticular catalytic or regulatory subunit as a specific PDI target,
although possible candidates have recently emerged. We
detected in human neutrophils a thiol redox-dependent as-
sociation between PDI and p47phox in pull-down assays,
whereas in the cytosol fraction during neutrophil activation,
PDI shows a reductive shift, contrarily to the oxidation shift
depicted for p47phox (38). In addition, we recently identified

FIG. 2. PDI and ER (patho)physiology
confer a novel dimension to Nox NADPH
oxidase/ROS signaling. The mechanisms
involved in these connections have been
discussed throughout the text, whereas here
we highlight: calcium signaling convergence
with Nox(es), RhoGTPase convergence with
PDI, and Nox(es) and PTP1B convergence
with Nox4. PDI, protein disulfide isomerase;
ROS, reactive oxygen species. To see this
illustration in color, the reader is referred to
the web version of this article at www
.liebertpub.com/ars
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RhoGTPases (Rac1 and RhoA) and their regulator RhoGDI
as possible mechanisms of PDI-mediated support of platelet-
derived growth factor-induced, Nox1-dependent, VSMC
migration (129). Such interaction was proposed from physi-
cal protein–protein interaction system biology maps, which
identified high bottleneck score values for GTPases and GDI
in PDI interactome. In fact, impaired cell migration after PDI
silencing closely correlated with decreases in Rac1 or RhoA
activity and profound disruption of cytoskeletal structures,
such as stress fibers, focal adhesions, and adhesion vesicles.
Importantly, Rac1 and RhoA can be strongly regulated by
redox mechanisms, although it is yet unclear to what extent
this occurs in vivo (118). Overall, these emerging findings
allow the proposal that PDI may act as novel redox-related
organizer of the NADPH oxidase complex. Together, PDI
and ER physiology confer an additional dimension to Nox/
redox-dependent signaling (Fig. 2).

The interaction between PDI and Noxes is not an isolated
example, and other PDIs may also be involved in distinct
ways. Erp72 associates with Nox1 at the plasma membrane
and is oxidized by it upon EGF exposure, leading to de-
creased Erp72 reductase activity (29). The thioredoxin su-
perfamily protein EFP1 interacts with Duoxes as a
component of the assembled membrane complex (174). En-
dothelial cell incubation with atorvastatin promotes en-
hanced migration of endoplasmic reticulum protein 46
(Erp46, also known as endoPDI) to lipid rafts, the same lo-
cation of Nox2 (60). In addition, Noxes may interact with
other chaperone families, such as heat shock protein 90
(Hsp90), which binds to the C-terminal region of Nox1–3 and
5, though not of Nox4, to enhance their stability (26).

Evolutive Perspectives of ER-Nox Convergence:
Implications for Calcium Signaling

Evolutive analysis provides a quantum leap in the quality
of biological inferences. It is thus opportune to raise some
evolutive perspectives about Nox convergence with the ER,
even though evidences for such correlations are indirect. The
major ER-related function connected to Nox NADPH oxi-
dases is calcium handling. Calcium flashes are ancestral early
injury signals that converge with Duox-type Noxes in zeb-
rafish to trigger hydrogen peroxide generation after me-
chanical injury as a required step for leukocyte recruitment
(123), which is dependent on a specific cysteine from the
leukocyte Src-family kinase Lyn (185). The early calcium
response as well as the ensuing Duox/redox-dependent acti-
vation of the epithelial Src-family kinase FynB are essential
for adequate injury response since ablation of either prevents
late epimorphic fin regeneration (184). Of note, in the same
zebrafish model, epithelial Duox-derived hydrogen peroxide
is not required for leukocyte recruitment after infection with
Pseudomonas aeruginosa (41), thus suggesting some degree
of specificity to this highly conserved stress response. In
Drosophila embryos, calcium flashes are the earliest up-
stream response to laser injury, triggering Duox-dependent
hydrogen peroxide generation (136). In filamentous fungi,
mechanical injury promotes calcium signals associated with
Nox1/NoxR activation and production of oxylipin metabo-
lites (73)—with lipid metabolism being another impor-
tant ER-related function. The high conservation of such
Nox-dependent responses, likely to have strong evolutive

pressure, is in line with evolutive analyses identifying
calcium-sensitive Nox NADPH oxidases (Duoxes, Nox5) as
the most ancestral Noxes in eukaryotes (90). Ancestral con-
vergence between Nox regulation and calcium-dependent
signaling is indicated by the fact that, in Arabidopsis, phos-
phorylation of a calcineurin B-like protein, physically associ-
ated with the Nox NADPH oxidase RBOHF, and its
coexpression with the interacting protein CIPK26 strongly
enhance ROS generation (44). The convergence between
Noxes and calcium signaling in upper eukaryotes, regarding
SERCA function, ryanodine receptor, muscle contraction, cell
migration, oxygen sensing, and ER stress signaling, discussed
throughout this article and summarized in Table 2, provides
further links between Noxes and calcium signaling. Moreover,
the roles of N-glycosylation, which is predicted or demon-
strated for most Noxes, interactions between Noxes and PDI,
as well as subcellular localizations of Noxes, all discussed
previously, further corroborate those functional interplays.

Whether ancestral Nox NADPH oxidases from lower eu-
karyotes localize at the ER is yet poorly known, although
emerging evidence indicates an ER location for Nox-related
enzymes from yeast (138) and many fungi (163). On the other
hand, a membrane location has been suggested for Arabi-
dopsis (44, 191), Aspergillus (95), and Caenorhabditis
elegans (45) NADPH oxidases, in association with specific
functions, such as immune regulation, sexual differentiation,
and cuticle strengthening, respectively. These considerations
allow one to speculate that the ER has been a default subcel-
lular localization of Noxes, whereas compartmentalization

Table 2. Nox NADPH Oxidases and Calcium

Regulation: A Summary of Discussed

Evidences (References)

Nox5 and Duoxes exhibit calcium-binding EF hands
involved in enzyme activation and required for ROS
generation (5, 8, 9, 12, 58, 81, 96, 97).

Calcium flashes are ancestral signals triggering activation of
specific Noxes (36, 44, 73, 123, 136, 185).

ER calcium levels and related chaperones (ex. calnexin)
control Nox processing in the ER (33).

ER calcium uptake by the ER via SERCA is redox/
Nox-regulated (161).

Nox4 can affect calcium release via ryanodine receptor
(154).

Nox2 at transverse T-tubules regulates ryanodine receptor
and calcium-mediated muscle contraction (133, 134).

Rac1 interplays with calcium oscillations (76).

p47phox-related CAMKII oxidation impairs cardiac
function (155).

Nox2 supports apoptosis during ER stress in macrophages
via CHOP/CAMKII/JNK pathway (101).

Intracellular calcium levels mediate effects of Nox
activation and can to some extent substitute for its effects:
p47phox-related, VEGF-dependent c-Src, Akt and FAK
phosphorylation in endothelial cells (100a); Nox1-
dependent, thrombin-mediated VSMC migration (198).

Akt, protein kinase B; CAMKII, calcium/calmodulin-dependent
protein kinase II; CHOP, CCAT/enhancer binding protein homol-
ogous protein; Duox, dual oxidase; JNK, c-Jun N-terminal kinases;
SERCA, sarcoendoplasmic reticulum calcium ATPase; VEGF,
vascular endothelial growth factor.
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to other locations was associated with acquisition of spe-
cialized functions, in some cases involving alternative
splicing (6). An additional arguable context around which
Noxes evolved is pathogen killing, another function in which,
among other organelles, the ER has a prominent role as a site
for intracellular pathogen targeting and chaperone-mediated
host–pathogen interaction (152), antigen presentation (32),
and particularly as a possible but much-debated source of the
Nox2-containing phagosome (24). Overall, Noxes appear to
have evolved around prominent ER-related functions and
conversely the ER itself has played a possible role in contexts
associated with Nox evolution.

Conclusions and Perspectives

The data reviewed here place the ER at an important
position of Nox physiology and pathophysiology (Figs. 2 and
3). This organelle is the site of synthesis and processing of all
catalytic subunits, as well as p22phox. Several processing

steps crucial for further Nox maturation, traffic, and regulation
also occur at the ER, such as heme insertion, p22phox het-
erodimerization and, particularly, N-glycosyl residue attach-
ment. On a second realm, some Noxes, such as Nox4—but
maybe also other Nox isoforms in specific circumstances—are
active at the ER. This location exposes functionally relevant
ER-resident proteins to Nox-derived ROS: such is the case of
calcium-related proteins such as SERCA and signaling ef-
fectors such as PTP-1B. In addition, Noxes interplay with ER
stress responses and are integral components of the UPR,
with documented roles for Nox4 and Nox2. In line with these
events, ER chaperones such as PDI associate with and are
involved in Nox regulation and can possibly further connect
Noxes to ER-dependent functions (Fig. 3).

Much emphasis in previous years has been placed on Nox
‘‘localization.’’ Although this review further highlights the
importance of understanding accurate Nox subcellular lo-
calization, it also raises the limitations of a monolithic ap-
proach to this question, indicating that such localization is

FIG. 3. NADPH oxidase synthesis/processing, trafficking, and activation are connected to the ER. (1) Transmem-
brane catalytic Nox subunits, as well as p22phox, are synthesized in the ER. Nox2 is folded, N-glycosylated (p65), and
heterodimerizes with p22phox in the ER and then migrates to Golgi apparatus, in which processing mannosidases add
complex side chain carbohydrates. Mature gp91phox moves to secretory vesicles and/or to plasma membrane. The lumen of
Nox2-containing vesicles is topologically analogous to the extracellular milieu regarding superoxide production. It is likely
that other isoforms share at least to some extent the same sequence of processing, except for Nox4, which often seems to
become active at the ER membrane. (2) Some Noxes become active at the ER, such as Nox4, and may be in specific cases
other isoforms (Nox5 and other immature Noxes?). Nox1 can translocate to caveolae and plasma membrane, whereas Nox4
can also be found at locations other than ER, such as nucleus, focal adhesions, and mitochondria. (3) ER stress leads to the
UPR, which associates with oxidative stress, reportedly related to Nox4 or Nox2. (4) ER chaperones such as PDI associate
with and functionally regulate Nox activation. Although PDI is canonically involved in redox protein processing at the ER,
PDI interaction with Noxes likely occurs at other cell locations and even at the cell surface. Mechanisms of PDI effects may
include its association/interaction with p47phox and RhoGTPases Rac1 and RhoA. (5) Noxes converge with calcium level
regulation at several levels, here exemplified by the effects of Nox4 on the oxidation of sarcoendoplasmic reticulum calcium
ATPase (SERCA). Please see text for further details.
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highly dynamic and influenced by cell type, specific stimuli,
protein and lipid interactions, and the occurrence of alter-
native splicing isoforms. In this context, the ER emerges as
an important structural and functional reference to help un-
derstand the complex regulation of Nox NADPH oxidases.
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138. Rinnerthaler M, Büttner S, Laun P, Heeren G, Felder TK,
Klinger H, Weinberger M, Stolze K, Grousl T, Hasek J,
Benada O, Frydlova I, Klocker A, Simon-Nobbe B,
Jansko B, Breitenbach-Koller H, Eisenberg T, Gourlay
CW, Madeo F, Burhans W, and Breitenbach M. Yno1p/
Aim14p, a NADPH-oxidase ortholog, controls extra-
mitochondrial reactive oxygen species generation, apo-
ptosis, and actin cable formation in yeast. Proc Natl Acad
Sci U S A 109: 8658–8663, 2012.

139. Ron D and Walter P. Signal integration in the endoplasmic
reticulum unfolded protein response. Nat Rev Mol Cell
Biol 8: 519–529, 2007.

140. Rotrosen D, Yeung CL, Leto TL, Malech HL, and Kwong
CH. Cytochrome b558: the flavin-binding component of the
phagocyte NADPH oxidase. Science 256: 1459–1462, 1992.

141. Roy A and Kolattukudy PE. Monocyte chemotactic pro-
tein-induced protein (MCPIP) promotes inflammatory
angiogenesis via sequential induction of oxidative stress,
endoplasmic reticulum stress and autophagy. Cell Signal
24: 2123–2131, 2012.

142. Rutkevich LA, Cohen-Doyle MF, Brockmeier U, and
Williams DB. Functional relationship between protein
disulfide isomerase family members during the oxidative
folding of human secretory proteins. Mol Biol Cell 21:
3093–3105, 2010.

143. Rutkowski DT and Kaufman RJ. That which does not kill
me makes me stronger: adapting to chronic ER stress.
Trends Biochem Sci 32: 469–476, 2007.

2772 LAURINDO ET AL.



144. Santos CX, Stolf BS, Takemoto PV, Amanso AM, Lopes
LR, Souza EB, Goto H, and Laurindo FR. Protein dis-
ulfide isomerase (PDI) associates with NADPH oxidase
and is required for phagocytosis of Leishmania chagasi
promastigotes by macrophages. J Leukoc Biol 86: 989–
998, 2009.

145. Santos CX, Tanaka LY, Wosniak J, and Laurindo FR.
Mechanisms and implications of reactive oxygen species
generation during the unfolded protein response: roles of
endoplasmic reticulum oxidoreductases, mitochondrial
electron transport, and NADPH oxidase. Antioxid Redox
Signal 11: 2409–2427, 2009.

146. Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ,
Haley B, Garcia RC, Rosen H, and Scrace G. Cytochrome
b-245 is a flavocytochrome containing FAD and the
NADPH-binding site of the microbicidal oxidase of
phagocytes. Biochem J 284 (Pt 3): 781–788, 1992.

147. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B,
Plastre O, Sienkiewicz A, Fórró L, Schlegel W, and
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Abbreviations Used

Akt¼ protein kinase B
AngII¼ angiotensin II
c-Abl¼Abelson murine leukemia viral oncogene

homolog
CAMKII¼ calcium/calmodulin-dependent protein

kinase II
CHOP¼CCAT/enhancer binding protein

homologous protein
cys¼ cysteine

DCF¼ 2¢,7¢-dichlorofluorescein
Duox¼ dual oxidase
EGF¼ epidermal growth factor

ER¼ endoplasmic reticulum
ERAD¼ER-associated degradation
Ero-1¼ER oxidoreductin 1
Erp46¼ endoplasmic reticulum protein 46
FAD¼ flavin adenine dinucleotide
GFP¼ green fluorescent protein
Grp¼ glucose-regulated protein

GTPase¼ guanosine triphosphate hidrolase enzyme
HAEC¼ human aortic endothelial cell
Hsp90¼ heat shock protein 90

HUVEC¼ human umbilical vein endothelial cell

IF¼ immunofluorescence

JNK¼ c-Jun N-terminal kinases

KO¼ knockout

LPS¼ lipopolysaccharide

NADPH¼ reduced nicotinamide adenine dinucleotide
phosphate

NO¼ nitric oxide

PDI¼ protein disulfide isomerase

PMA¼ phorbol myristate acetate

PTP-1B¼ protein-tyrosine phosphatase-1B

ROS¼ reactive oxygen species

SERCA¼ sarcoendoplasmic reticulum calcium
ATPase

STAT5¼ signal transducer and activator of
transcription 5

Tg¼ transgenic

TGF-b¼ transforming growth factor beta

TIRF¼ total internal reflection fluorescence

UPR¼ unfolded protein response

VEGF¼ vascular endothelial growth factor

VSMC¼ vascular smooth muscle cells
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