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Abstract

High radiation dose in CT scans increases a lifetime risk of cancer and has become a major

clinical concern. Recently, iterative reconstruction algorithms with Total Variation (TV)

regularization have been developed to reconstruct CT images from highly undersampled data

acquired at low mAs levels in order to reduce the imaging dose. Nonetheless, the low contrast

structures tend to be smoothed out by the TV regularization, posing a great challenge for the TV

method. To solve this problem, in this work we develop an iterative CT reconstruction algorithm

with edge-preserving TV regularization to reconstruct CT images from highly undersampled data

obtained at low mAs levels. The CT image is reconstructed by minimizing an energy consisting of

an edge-preserving TV norm and a data fidelity term posed by the x-ray projections. The edge-

preserving TV term is proposed to preferentially perform smoothing only on non-edge part of the

image in order to better preserve the edges, which is realized by introducing a penalty weight to

the original total variation norm. During the reconstruction process, the pixels at edges would be

gradually identified and given small penalty weight. Our iterative algorithm is implemented on

GPU to improve its speed. We test our reconstruction algorithm on a digital NCAT phantom, a

physical chest phantom, and a Catphan phantom. Reconstruction results from a conventional FBP

algorithm and a TV regularization method without edge preserving penalty are also presented for

comparison purpose. The experimental results illustrate that both TV-based algorithm and our

edge-preserving TV algorithm outperform the conventional FBP algorithm in suppressing the

streaking artifacts and image noise under the low dose context. Our edge-preserving algorithm is

superior to the TV-based algorithm in that it can preserve more information of low contrast

structures and therefore maintain acceptable spatial resolution.
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1. Introduction

X-ray computed tomography (CT) has been extensively used in clinics to provide patient

volumetric images for a number of purposes nowadays. However, by its nature, CT scans

expose a high x-ray radiation dose to the patient which may result in a non-negligible

lifetime risk of cancer (Hall and Brenner, 2008; de Gonzalez et al., 2009; Smith-Bindman et

al., 2009). This fact has become a major concern for the clinical applications of CT scans,

particularly for pediatric patients, who are more sensitive to radiation and have a longer life

expectancy than adults (Brenner et al., 2001; Brody et al., 2007; Chodick et al., 2007).

Therefore, it is highly desirable to reduce CT imaging dose while maintaining clinically

acceptable image quality.

A simple way to reduce the x-ray dose is to lower mAs levels in CT data acquisition

protocols. Nonetheless, this approach will result in an insufficient number of x-ray photons

detected at imager and hence elevate the quantum noise level on the sinogram. As a

consequence, the quality of the CT images reconstructed from a conventional filtered

backprojection (FBP) algorithm (Deans, 1983) will be degraded by the noise-contaminated

sinogram data. Another way to reduce imaging dose is to decrease the number of x-ray

projections acquired by, e.g., operating the x-ray generator in a high-frequency pulsed model

in future with hardware modification. Yet, this will cause serious streaking artifacts in the

reconstructed CT images, as the FBP algorithms require that the number of projections

should satisfy the Shannon sampling theorem (Jerri, 1977).

Recently, compressed sensing algorithms (Donoho, 2006) have been applied to the CT

reconstruction problem. In particular, Total Variation (TV) methods (Rudin et al., 1992)

have presented their tremendous power in CT reconstruction with only a few x-ray

projections (Sidky et al., 2006; Song et al., 2007; Chen et al., 2008; Sidky and Pan, 2008).

In such approaches, an energy function of a TV form is minimized subject to a data fidelity

condition posed by the x-ray projections. Since this energy term corresponds to image

gradient, minimizing it will effectively remove those high spatial gradient parts such as

noise and streaking artifacts in the reconstructed CT images. One disadvantage of this TV

approach is its tendency to uniformly penalize the image gradient irrespective of the

underlying image structures. As a result, edges, especially those of low contrast regions, are

sometimes over smoothed, leading to the smoothed edge to some extent and loss of low

contrast information. To resolve this issue, an edge guided compressive sensing

reconstruction algorithm has recently been proposed in solving an MRI image reconstruction

problem (Guo and Yin, 2010). In such an approach, edges are detected during the

reconstruction process and are purposely excluded from being smoothed by the TV norm, by

which the reconstruction can be speed up. Though this method can be easily generalized to

the CT reconstruction problems, when it comes to the low dose case where insufficient

or/and noisy x-ray projections are used in the reconstruction, a high quality edge detection

algorithm is required to avoid incorrect detection of those fake edges caused by image noise

and streaking artifacts. The sophisticated edge detection algorithms usually pose a high

computation burden in the reconstructions. Moreover, they may require fine tuning of some

case dependent parameters, making it hard to control their efficacy.
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Another disadvantage of the TV-based reconstruction methods are the associated time

consuming computation process due to their iterative nature. Generally speaking, the

prolonged computational time makes the iterative CT reconstruction approaches prohibitive

in many routine clinical applications. Recently, high-performance graphics processing units

(GPUs) have been reported to speed up heavy duty computational tasks in medical physics,

such as CBCT reconstruction (Xu and Mueller, 2005, 2007; Li et al., 2007; Yan et al., 2008;

Jia et al., 2010b), deformable image registration (Sharp et al., 2007; Samant et al., 2008; Gu

et al., 2010), dose calculation (Gu et al., 2009; Hissoiny et al., 2009; Jia et al., 2010a) and

treatment plan optimization (Men et al., 2009; Men et al., 2010). In principle, high

computation efficiency can be expected utilizing GPU in our CT reconstruction problem.

In this work, we generalize the TV-based CT reconstruction algorithm to an edge-preserving

TV (EPTV) regularization form to reconstruct CT images under undersampling and/or low

mAs situation. In particular, an EPTV norm is designed by introducing a penalty weight to

the original TV norm, which enables the algorithm to automatically locate the sharp

discontinuities of image intensity and adjust the weight adaptively to adopt the progressively

recovered edge information during the reconstruction process. This regularization term

automatically ensures that less smoothing is performed on edges to better preserve the

edges, as will be seen in below. Our reconstruction algorithm is implemented on GPU to

speed up the computation process.

2. Methods

2.1 Reconstruction Model

CT projection can be mathematically formulated as a linear equation,

(1)

where f is a vector whose entries correspond to the x-ray linear attenuation coefficients at

different voxels of the patient image. P is a projection matrix in fan-beam geometry.

Numerically, we generate its element pi,j by the length of the intersection of the x-ray i with

the pixel j, which can be explicitly computed by Siddon’s fast ray tracing algorithm (Siddon,

1985). The vector y represents the log-transformed projection data measured on image

detectors at various projection angles. A CT reconstruction problem is formulated as to

retrieve the unknown vector f based on the projection matrix P and the observation vector y.

When it comes to an undersampled problem where inadequate projection data is used to

reconstruct the CT image, the problem become underdetermined and there exist infinitely

many solutions to the Eq. (1).

As opposed to solve the linear equation directly, the CT image can be reconstructed by

minimizing an energy function with a TV regularization term:

(2)
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where ||·||n denotes the ln vector norm in the imager vector space. In Eq. (2), the first term is

known as a data fidelity term, which ensures the consistency between the reconstructed

image f and the measurement y. The second one is a regularization term, which is chosen to

be a TV semi-norm. The introduction of the TV term in this optimization process

differentiates those infinite many solutions to the Eq. (1) and picks out the one with desired

image properties as the reconstructed image. Specifically, the TV term is defined as

(3)

where ∇f(x) represents the gradient of an image f at a pixel x. The TV term has been shown

to be robust to remove noise and artifacts in the reconstructed image f (Sidky and Pan, 2008;

Jia et al., 2010b). A scalar μ is introduced to adjust the relative weights between the data

fidelity term and the regularization term. This parameter depends on different factors, such

as the complexity of the image content and the extent of the consistency between the

measured data and the ground truth image. In this paper we choose it manually to yield a

good reconstruction quality.

Despite the great success of the TV model in terms of reconstructing high quality CT

images, edges around low contrast regions are sometimes oversmoothed and low contrast

information is lost as a consequence. To overcome this limitation, we propose an EPTV

regularization term by introducing a penalty weight vector ω in defining the TV term,

namely

(4)

(5)

The parameter σ controls the amount of smoothing that we would like to apply to those

pixels at edges, especially the low contrast edges, relative to those non-edge pixels.

Apparently, the choice of σ is of central importance for the algorithm. A large σ is not able

to differentiate image gradients at different pixels. In such a circumstance, the algorithm

becomes essentially the TV method. In contrast, small σ tends to give small weights to

almost every pixel, making the EPTV norm inefficient in removing noise or streaking

artifacts. Since the gradient values changes during the iterative reconstruction process, we

propose to adaptively set the value of σ according to the histogram of the gradient

magnitude, so that a certain percentage pixels have the gradient values larger than σ. The

specific percentage is dependent on the image complexity, that is, the complex images with

more structures and edges should have a larger percentage than the simple images with

fewer structures. In particular, for the test cases in this paper, the percentage is chosen

90%~95% as we found this choice is a good balance between reconstruction efficiency and

image quality. Besides, during the reconstruction process, the pixels at edges would be

gradually picked out and given small penalty weight that could be neglected, which makes

the EPTV term sparser and speeds up the implementation.
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2.2 Optimization Approach

Since the cost function defined in this minimization problem is convex, it is sufficient to

consider the optimality condition:

(6)

where PT denotes the transposition matrix of P. By introducing a scalar parameter λ > 0 and

a vector v, we can split the Eq. (6) as

(7)

This inspires us that the reconstruction problem can be solved by iteratively performing the

following two steps:

(8)

The meaning of these two steps is straightforward. In each iteration, we first obtain a trial

solution in (P1) constrained by the data fidelity term. This trial solution may contain noise

and artifact, since no regularization is performed. Then the subproblem (P2) utilizes the

EPTV term to effectively remove those noise and artifacts, improving image quality. This

two step iteration is actually the so-called forward-backward splitting algorithm, whose

mathematical properties, such as convergence, has been discussed in (Combettes and Wajs,

2005; Hale et al., 2008). Xu and Mueller proposed a similar two-step reconstruction

algorithm, where OS-SIRT is used to obtain a trial solution and the image enhancement is

achieved by using bilateral filter or TV minimization (Xu and Mueller, 2009b).

The subproblem (P1) in Eq. (8) is a gradient descent update with a step size of μ/(2λ) for a

minimization problem . The introduction of the parameter λ in the

algorithm is to ensure a small step size for numerical stability consideration. In this work,

we modify the subproblem (P1) into using a conjugate gradient least square (CGLS) method

(Hestenes and Stiefel, 1952) to solve the minimization problem instead of the gradient

descent update. The skeleton of the CGLS method is presented in Appendix I. We found that

the efficiency of the algorithm has been improved with this modification, yet the

mathematical proof of its convergence is still needed. The minimization problem (P2) is

solved with a simple gradient descent (GD) method in an iterative manner. At each iteration,

the gradient direction g is first numerically calculated. An inexact line search is then

performed along the negative gradient direction and a step size is determined according to

Amijo’s rule (Bazaraa et al., 2006). The solution is then updated accordingly. The penalty

weight is also updated accordingly at each iteration. Specifically, the gradient direction g is

calculated as:
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(9)

(10)

Numerically, we approximate the functional variation of EPTV, , by a symmetric

finite difference scheme to ensure the stability of the algorithm. The detailed derivation and

the approximation of the variation of EPTV are described in Appendix II. Moreover, since

physically those pixel values are x-ray attenuation coefficients and has to be positive, we

have also ensure this condition by a simple truncation of those negative pixel values of the

reconstructed images in each iteration. In summary, the EPTV algorithm is implemented as

follows.

EPTV Algorithm:

Initialize f(0) = 0. For k = 1,2,…, do the following steps until convergence.

1
Solve (P1):  with an initial value f(k) using CGLS solver.

2
Solve (P2): with GD method, and ω is updated at
each iteration in this step,

3 Ensuring image positivity: f(k+1) = 0 if f(k+1) < 0.

The number of iterations used in our algorithm is case dependent, as it varies with the

number of projections used for reconstruction, the noise level due to the mAs level used in

scanning and so on. Generally, the fewer projections are used, the more obvious streak

artifacts are yielded due to undersampling, the more iterations are required to suppress these

streaks. Similarly, the lower mAs level is used, the more iterations are needed to remove the

noise.

2.3 Details in CUDA implementation

Our GPU-based reconstruction code was developed under the Compute Unified Device

Architecture (CUDA) programming environment and GPU hardware platform. This

platform enables a number of tasks implemented in parallel on different CUDA threads

simultaneously, which speeds up the performance of our reconstruction algorithm.

There are two strategies to implement the Step1 in Algorithm1 on GPU according to the size

of the projection matrix P. For the cases with a small image size and a small amount of

projections where the projection matrix P and its transposition matrix PT are small enough

to be stored in GPU memory, the strategy is to pre-calculate the projection matrix and save it

and its transposition in GPU as a lookup table. Then CGLS method used in Step 1 becomes

a set of matrix and vector operations, such as sparse matrix-vector multiplication, vector

addition, scalar-vector operation and so on, which can be efficiently performed on GPU by
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adopting the fast GPU sparse matrix-vector multiplication (Bell and Garland, 2008) and

CUBLAS Library (NVIDIA, 2008). For the cases where the projection matrix and its

transposition are too large to be loaded on GPU, especially when cone-beam geometry is

used, the strategy is to directly compute the forms y = Pf and f = PT y repeatedly whenever

needed. The former y = Pf can be easily performed in parallel on GPU by making each

thread responsible for one ray line using an improved Siddon’s ray tracing algorithm

(Siddon, 1985). The latter f = PT y is actually a backward projection in that it maps the

projection y on the detector back to the slice image f by updating its pixel values along all

the ray lines. It can be calculated by still using the Siddon’s algorithm on GPU with each

thread responsible for updating voxels along a ray line. However, this operation would cause

a memory writing conflict problem due to the possibility of simultaneously updating a same

pixel value by different GPU threads. When this conflict occurs, one thread will have to wait

until other threads finish updating. It is this fact that severely limits the maximal utilization

of GPU’s massive parallel computing power. To solve this issue, a GPU-friendly backward-

projection method is developed as follows:

(11)

where (u*, v*) is one pixel on the reconstructed CT slice, and l(u*, v*) is the distance from

the x-ray source to the pixel (u*, v*). β* is the angular coordinate of the rayline connecting

the x-ray source and the pixel (u*, v*) at the projection angle θ. yθ(β*) is the corresponding

detector reading. Δu and Δv are the size of pixels on CT slices, and Δβ is the angular spacing

of the detector units. The derivation of Eq. (11) is briefly shown in the Appendix III. By this

backward projection method, we can simply get the value of f at a given pixel (u*, v*) by

summing the projection values yθ(β*) over all projection angles θ after proper geometry

correction, which allows us to implement the calculation in parallel on GPU with each

thread responsible for one pixel and thus to avoid the memory writing conflict problem. In

numerical computation, since we always evaluate yθ(β) at a set of discrete coordinates and

β* does not necessarily coincide with these discrete coordinates, a linear interpolation is

performed to obtain yθ(β*). In this paper, we adopt the second strategy for all the cases in

order to keep the algorithm uniform.

The main operations in the Step 2 are calculating the gradient direction, descending along

the direction, and updating the penalty weight etc. All of them can be easily implemented in

parallel on GPU with each thread computing one entry. The Step 3 can be similarly

processed. The flow chart of our reconstruction algorithm is shown in Fig. 1.

3. Experimental Results

We tested our reconstruction algorithm on three cases: a digital NURBS-based cardiac-troso

(NCAT) phantom in thorax region (Segars, 2002), a physical chest phantom, and a Catphan

phantom. In digital phantom experiments, we simulated x-ray projections using Siddon’s ray

tracing algorithm (Siddon, 1985) in fan-beam geometry with an arc detector of 888 units and

a spacing of 1.0239mm. The source to detector distance is 949.075mm and the source to

rotation center distance is 541.0mm. All of these parameters mimic a realistic configuration

of a GE Lightspeed QX/I CT scanner. In all cases, we simulated/acquired x-ray projection
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data along 984 directions equally spaced in a full rotation and a subset of them were used for

reconstruction. The size of reconstructed images is 512×512.

3.1 Digital phantom experiment

We first tested our EPTV algorithm on an NCAT phantom in thorax region using

undersampled x-ray projections. In order to better illustrate how our EPTV algorithm

performs, in Fig. 2 we show the penalty weights and the reconstructed image at different

iterations during the reconstruction with 40 projections being used. During the evolution, the

algorithm automatically picks out the edges and gave them small weight w in the EPTV term

to avoid being oversmoothed, as shown in Fig. 2 (2nd row). Accordingly, the structural

information is gradually resolved in the reconstructed image, with main structures and

obvious artifacts at first and low contrast structures and fewer artifacts later, shown in Fig.2

(3rd row). Note that there are some false edges detected at iteration 5, which are gradually

removed with more iterations, leading to visually better reconstructed images.

The reconstructed images using 40 projections with 50 iterations are shown in Fig. 3. We

can see that the conventional FBP algorithm is not able to reconstruct the CT images with

such few projections and obvious streaking artifacts are observed, which makes the image

unacceptable. In contrast, even with such few projections, both the TV method and the

EPTV method can still capture most of the structures, leading to visually much better

reconstruction results. However, one disadvantage of TV based method, including our

EPTV method, is the potential missing of small structures in the reconstructed images and

degradation of image resolution due to the very few projections used. For instance, one very

small dot-like structure in the right side of the lung below the heart is missing in both Fig.

3(c) and (d).

As for the comparison between the TV method and the EPTV method, the spinal bone

structures of low contrast indicated by the arrow in Fig. 3(c) and (d) are hardly resolved by

the TV method, while much clearer structures with sharper edges are observed in the image

reconstructed by the EPTV method. To better compare the TV method and the EPTV

method in detail, we also show the horizontal and vertical intensity profiles going through

the center of the reconstructed images. Clearly, large fluctuations at non-edge points are

observed in the profiles obtained from the TV method. Besides, the jumps indicated by

arrows are broadened and weakened, indicating blurring effects and losing of contrast. On

the other hand, the profiles of EPTV are very close to that of the ground truth with sharp

jumps at edge points and small fluctuation at non-edge points. All of these clearly

demonstrate the advantages of the EPTV algorithm in resolving the low contrast edges over

the TV algorithm within the same number of iterations. It should be noted that the TV

method can produce very accurate reconstruction results given enough number of iterations.

For example, Sidky et al. (Sidky et al., 2006) have shown a very nice match of the profile in

their numerical example of their TV algorithm. Yet, the convergence speed of an algorithm

is an important factor that determines its practicality. Comparing two iterative reconstruction

algorithms, the one that can produce higher image quality with a same amount of

computation time is more favorable. In the comparison shown in Fig. 3, we compare the TV

method and the EPTV method with the same number of iterations, i.e., 50, which is enough
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for EPTV but not for TV. This actually shows the improvement of our EPTV method over

the original TV method in terms of convergence speed.

To quantify the reconstruction accuracy of the algorithm, we use relative error as a metric to

measure the similarity between the ground truth image and reconstructed image. Besides,

since edge information is an important feature of images and human vision is highly

sensitive to it, edge cross-correlation coefficient (ECC) (Xu and Mueller, 2009a) is also used

as another metric to evaluate the reconstruction accuracy. These metrics are calculated as

follows:

(12)

(13)

where f* is the ground truth image and b is a binary image in which 1 indexes the edge

points on the reconstructed image and 0 indexes others. The edges are detected using a

standard Sobel edge detector (Kanopoulos et al., 1988). b* is defined in a similar manner for

the ground truth image. The over-bar indicates an average of the corresponding quantities

over all pixels.

For a fair comparison, the parameter μ in both the TV and the EPTV methods are carefully

tuned manually, so that the best qualities indicated by the smallest error level e are obtained

from each of them. The relative error e and the edge correlation coefficient c of the

reconstructed images of the digital phantom are shown as functions of number of projections

and number of iterations, respectively, in Fig. 4. As expected, the more projections used, the

better reconstruction quality will be obtained with smaller relative error and higher edge

correlation coefficient. Fig. 4(a) and (b) clearly demonstrate that with the same number of

projections, the EPTV method is superior to the TV method with a smaller error and higher

edge cross-correlation. In this particular case, 40 projections are sufficient for EPTV

reconstruction to clearly resolve the low-contrast structures. The evolution curves of the

relative error and the edge correlation during iterations in Fig. 4(c) and (d) show that the

EPTV algorithm converges much faster than the TV method. With these curves, we can

conclude that the EPTV method outperforms the TV method, in that it leads to smaller

relative error, higher correlation, and faster convergence for a given number of projections.

3.2 Physical phantom experiments

In this paper, we scanned both a physical chest phantom and a physical Catphan phantom

under high dose and low dose protocols. The experiment on the chest phantom was designed

to evaluate the tolerance of the EPTV algorithm to image noise due to low imaging dose,

while the experiment on the Catphan phantom aimed to evaluate the performance of our

algorithm in terms of spatial resolution. The parameter μ used in the TV method and the

EPTV method are adjusted manually so that visually the best image quality is obtained.
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In the experiment on the chest phantom, for the high dose protocol, 984 projections with

0.4mAs/projection were acquired and then used to reconstruct the image with the FBP

algorithm. In the low dose protocol, the chest phantom was scanned at 0.02mAs/projection

and only 200 equally spaced projections are used for reconstruction. The dose in the low

dose protocol is about 1% of that in the high dose protocol. The reconstruction results with

30 iterations are shown in Fig. 5. Two different display windows are used to stress the bones

and the details in the lung, respectively. We can see that using FBP in such a low dose

situation, the image quality deteriorates greatly with obvious streaking artifacts and image

noise. In contrast, images reconstructed by TV and EPTV under the same low dose context

show better image quality with less noise and streaking artifacts. While comparing TV and

EPTV methods, the latter is found to be superior on preserving the edges of fine structures.

The bones are much clearer with a hollow in the image reconstructed by EPTV than that in

the image reconstructed by TV. Although the cloud-like and low contrast details in the lung

region in Fig. 5(b1) are great challenges to be reconstructed for both the TV algorithm and

the EPTV algorithm, they are better preserved by the latter. It is worth noticing that under

this low dose protocol, image degradation occurs in all of the three algorithms. But the

artifacts in the FBP result and those in the TV or the EPTV results are quite different. For

FBP, it leads to serious noise and streaks of high spatial frequency. This may lead to a visual

impression that the image contains more detailed structures, especially inside the lung as in

(b2). On the other hand, it is well known that TV-based algorithms suffer from edge blurring

artifacts. To better demonstrate this point, we have also presented in Fig 5(c2)~(c4) the

difference images inside the lung area between the reconstruction results and the ground

truth image assumed to be the high dose reconstruction results in Fig. (a1). Apparently, these

figures indicate that the FBP result is contaminated by a high amount of high spatial

frequency noise signal over the entire lung area. On the other hand, the TV based algorithms

can suppress this noise contamination considerably, leading to relatively small error level

inside the lung area, though a large error around edges, especially around the rib bones, is

clearly observed.

To further quantify the reconstruction accuracy, the relative error of the whole image ewhole

and that of the lung region elung; are calculated are as follows:

(14)

(15)

where, f* is the ground truth image shown in Fig. 5 (a1). flung; is the subimage of the lung

region. As indicated in Table 1, the EPTV method leads to the smallest error of the whole

image among the three algorithms. It also results in the smallest error inside the lung region.

To quantify the image quality of reconstructed images in terms of image noise, the signal to

noise ratio (SNR) of a region of interest (ROI) is shown in Table 1. The calculation is as

follows:
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(16)

where P is the set of pixels inside the ROI and E(·) stands for a spatial average over the ROI.

It can be observed from Table 2 that when the imaging dose is decreased by 100 times, the

SNR of images reconstructed by FBP is lowered from 40.6 to 20.4, indicating the sensitivity

of the FBP method to image noise and its inability to handle the low dose situation. In

contrast, the SNRs of images reconstructed by TV and EPTV methods are only decreased by

a little compared to images reconstructed by FBP with high dose. With these results, we can

conclude that our EPTV method not only outperforms the TV method on preserving the low

contrast edges, but also inherits the advantage of the TV method on handling the low dose

situation and effectively suppressing image noise.

The experimental results of the Catphan phantom with 20 iterations are shown in Fig. 6. The

low imaging dose in this case is 8mAs, about 2% of that in the high dose scan, by decreasing

the number of projections from 984 to 400 and reducing the mAs/projection from 0.4 to 0.02

mAs/projection. The sixth line pair at which the arrows point clearly demonstrate the

different performances of the three reconstruction algorithms in terms of resolution. For the

FBP reconstruction at low dose, the sixth line pair can still be clearly resolved as in Fig. 6(f).

Compared with the reconstructed image of high dose, the low dose image reconstructed by

FBP deteriorates mainly due to image noise, but still maintains good spatial resolution (6.5

lp/cm). On the other hand, although the TV method performs well in suppressing the image

noise, the spatial resolution is degraded to 4 lp/cm. The sixth pair of lines is blurred and

cannot be visually resolved, see Fig. 6(g). Finally, for the image reconstructed by the EPTV

method, it contains less noise and maintains high spatial resolution (6.5 lp/cm), where the

lines in the sixth pair can be clearly identified from each other in Fig. 6(h). The results of

this test confirm the conclusion that, not only does our EPTV method effectively reduce

image noise in low dose CT reconstruction, but also performs better than TV in maintaining

acceptable spatial resolution. However, the EPTV algorithm prefer to perform less

smoothing on edges, which makes the edges not as smooth as those reconstructed by the TV

algorithm. Therefore, the EPTV algorithm maintains higher spatial resolution at the cost of

the smoothness of the edges.

3.3 Computation efficiency

To speed up our iterative algorithm, we have implemented and tested it on an NVIDIA Tesla

C1060 card. For comparison purpose, the algorithm in C language was also implemented on

a 2.27 GHz Intel Xeon processor. The computation times per iteration of the EPTV

algorithm on CPU and GPU for an axial CT slice are shown in Table. 3, which is case

dependent, as it varies with the number of projections (NP). The total computation time

scales linearly with the number of iterations (NI). When comparing TCPU and TGPU, it is

found that the algorithm is sped up by factors of about 19.6~23.1 by the GPU

implementation. We have also timed some key operations in an iteration step of the EPTV

algorithm, such as the CGLS solver, GD solver, and the post processing to ensure the image

positivity. Within the CGLS solver, different components such as the forward calculation of

computing Pf (FC) and the backward calculation of computing PT y (BC) are also timed.
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The detailed results are shown in Table 4. It is found that the most time-consuming step is

the CGLS used to solve the (P1) problem, which is linearly related to the number of

projections. Since the GD step to solve the (P2) problem and the postprocessing part operate

on the reconstructed image directly, their computation time is independent of the number of

projections. Although currently the reconstruction speed of the EPTV is still lower than that

of the FBP algorithm, it is expected that with other techniques, such as multi-GPU

implementation and multi-resolution reconstruction, the computation time will be further

shortened.

4. Discussion and Conclusions

Two possible ways to reduce the imaging dose of CT scans are to reduce the number of

projections and lower the mAs per projection. However, the common FBP reconstruction

algorithms result in streaking artifacts and obvious image noises in these circumstances,

which can be clearly observed in the experimental results. The iterative algorithm with TV

norm as a regularization term has presented its tremendous power in CT reconstruction with

undersampled projections acquired at low mAs level. However, the low contrast structures

tend to be smoothed out by the TV regularization, posing a great challenge to the TV

method. In this work, we propose an edge-preserving TV norm to solve the problem by

giving adaptive penalty weights to pixels to suppress smoothing near both the strong edges

and low contrast edges, relative to the non-edge pixels. By this adaptive penalization

mechanism, our algorithm could automatically pick out the edges gradually during the

implementation and give them a small weight and thus preferentially performs smoothing on

those non-edge pixels to reduce image noise while keeping those edges unaffected,

especially the low contrast edges. Our EPTV approach has been validated on a digital

NCAT phantom, a physical chest phantom and also a Catphan phantom. The experimental

results have clearly demonstrated the advantage of our approach over the conventional

filtered backprojection algorithm and the TV-based reconstruction algorithm under low dose

context on effectively suppressing image noise and streaking artifact and also maintaining

acceptable signal-to-noise ratio and spatial resolution, which indicates a promising prospect

of our low dose CT reconstruction algorithm in clinical applications for a considerable

reduction of radiation dose exposed to patients.

To further understand the advantages of our EPTV algorithm over the TV algorithm, it is

better to consider how the minimization is performed for the problem (P2) in Eq. (8). This

model essentially tend to enhance image quality of an input image v by utilizing a

regularization function J[f], which is of a total variation form in the conventional TV method

and EPTV term in this paper. It is straightforward to perform the minimization by using a

gradient descent approach, or mathematically equivalently to solve a partial differential

equation (PDE), , where t is a variable to parameterize the evolution of

the solution. In TV case, the variation term on the right hand side is .

This equation is then essentially a diffusion equation with a diffusion constant . During

the evolution according to the PDE, the high frequency signals, such as noise, can be

removed due to the diffusive process. Meanwhile, sharp edges are preserved, as at those

sharp edges |∇f| → ∞ and hence the diffusion constant approaches zero. It is essentially for
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this reason that TV method can be very effective in terms of removing noise while

preserving sharp edges. In a continuous model, apparently sharp edges will be perfectly

preserved since the diffusion constant becomes exactly zero at edges. However, in a discrete

case as in numerical calculation, the diffusion constant will never be exactly zero due to the

use of the finite difference. This means the diffusion process during the optimization will

more or less take place at edges no matter how sharp the edge is. This will lead to blurring

of the edge to a certain extent, though very small for sharp edges. This is even worse for low

contrast edges, as the diffusion is significant. As for our EPTV algorithm, we can perform

the same analysis and obtain . The diffusion constant now becomes

, where it is always true that w < 1 according to its definition. Therefore, the diffusion at

edges is always smaller in EPTV than in TV, leading to better edge preserving. Moreover,

during the optimization, the parameter w is adaptively adjusted so that there is always a

distinction between edge and non-edge, making the algorithm to preferentially perform

smoothing on those non-edge pixels. Besides, note that TV term is a special case of the

EPTV term with all w factors equal to unity and it holds that w < 1 in the EPTV case,

therefore the EPTV term is smaller than the corresponding TV term, which makes the EPTV

term a sparser representation than the original TV term.

GPU is employed in our experiments to improve the speed of this iterative algorithm, which

is always a big challenge for the clinical applications of this type of algorithms. It is found

that the GPU implementation is able to speed up the iterative reconstruction process by

factors of 19.6~23.2 and make it possible to reconstruct an image in seconds instead of

minutes. Though currently the reconstruction speed still cannot compete with the speed of

the conventional FBP, it is hoped that the efficiency can be improved by using multi-GPU

and reconstructing multiple CT slices simultaneously in the near future. We would also

work on optimizing our algorithm to improve the speed further.

The choice of the parameter μ is of central importance to the success of this EPTV

reconstruction method. In this preliminary study, we manually choose this parameter to

adjust the relative weight between the data fidelity term and the regularization term to get

the best reconstructed CT image quality. It is found that the optimal value of this parameter

is case dependent. In future, we would study on the parameter setting try to find an

automatic or semi-automatic way to guarantee a good choice of the parameter.

Lowering mAs level to reduce the patient radiation dose can easily be to done on existing

commercial CT scanners. While, the other method proposed in our paper, namely, reducing

the number of projections to reduce the dose is not straightforward on currently available

commercial CT scanners due to the use of continuous x-ray generation mode. However,

technically it is possible to modify the scanners to operate in high-frequency pulsed

mode(Kang et al., 2010; Myagkov et al., 2009; Yue et al., 2002), if there is a clinical need

(such as the one suggested in this paper).
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Appendix

Appendix I. CGLS algorithm

The conjugate gradient least square (CGLS) method used to solve the minimization problem

, which is a substitution of the subproblem (P1) in Eq. (8), is implemented as

follows.

CGLS Algorithm:

Initialinize: m = 0, u(0) = f(k), r(0) = y − Pu(0), s(0) = PTr(0). Do the Steps 1–5 for M times.

1
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2 u(m+1) = u(m) + a(m)s(m)

3 r(m+1) = r(m) − a(m)Ps(m)

4

5 s(m+1) = PTr(m+1) + b(m)s(m)

6 v(k+1) = u(M)

Appendix II. Derivation of the variation of EPTV and its finite difference

scheme

To derive the functional variation of EPTV, , let us consider the integrations by

parts of the EPTV term:

(A1)

where Ω is the image domain and ∂Ω is its boundary. Assume zero boundary condition, the

first term vanishes. Taking variation of the second term with respect to f leads to Eq. (10).

Numerically, we approximate the functional variation of EPTV by a symmetric finite

difference scheme:

(A2)

where,

(A3)

Such an approximation scheme, though cumbersome, ensures the stability of the algorithm.

Appendix III. Derivation of Eq. (11)

Let f(.): R2 → R and y(.): R → R be two smooth enough functions in the CT slice domain

and in the x-ray projection domain, respectively. The operator PθT
, being the adjoint

operator of the x-ray projection operator Pθ, should satisfy the condition

(A4)

where 〈.,.〉 denotes the inner product. This condition can be explicitly expressed as
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(A5)

Now take the functional variation with respect to f(x) on both sides of equation (A5) and

interchange the order of integral and variation on the right hand side. This yields

(A6)

With help of a delta function, the forward projection can be written as

(A7)

where, (uS, vS) is the coordinate of the x-ray source, l is the distance between the source and

the pixel (u, v) in the CT slice domain. Now substituting (A7) into (A6), we obtain

(A8)

β* is the angular coordinate of the rayline connecting the x-ray source and the pixel (u*, v*)

at the projection angle θ. yθ(β*) is the corresponding detector reading. Changing from

continuous coordinate to discrete coordinate, the ratio of pixel size ΔuΔv on CT slice to the

angular spacing size Δβ of the detector unit is added to the Eq. (A8). Additionally, a

summation over projection angles θ is performed to account for all the x-ray projection

images. So we arrive at the Eq. (11). We have tested the accuracy of such defined operator

PT in terms of satisfying condition expressed in Eq. (A4). Numerical experiments indicate

that this condition is satisfied with numerical error less than 1%, which is found accurate

enough for our iterative CT reconstruction purpose.
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Figure 1.
The flow chart of our GPU-based EPTV reconstruction. Blocks 4~6 correspond to the Steps

1~3 of the EPTV Algorithm.
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Figure 2.
The evolution of the penalty weights, reconstructed image and energy function at different

numbers of iteration (top row) during the reconstruction using our EPTV algorithm with 40

projections.
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Figure 3.
The reconstruction results of NCAT phantom using 40 projections with 50 iterations. (a) is

the ground truth image. (b) ~ (d) show the images reconstructed by FBP, TV, EPTV,

respectively. (e)(f) depict the horizontal intensity profiles through the center of reconstructed

images of TV and EPTV, while (g)(h) are the corresponding vertical intensity profiles. The

profiles of ground truth (GT) are also plotted in solid lines for comparison. The arrows

indicate the area where EPTV is clearly superior to TV.
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Figure 4.
(a)(b) show the relative error and the edge cross-correlation coefficient as functions of the

number of x-ray projections at the 50th iteration; (c)(d) show the evolution curve of the

relative error and the edge cross correlation during the first 50 iterations using 40

projections.
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Figure 5.
Reconstruction results of a physical chest phantom with 30 iterations. For the first two rows,

(1) shows the image reconstructed by FBP at 400mAs (984 projections × 0.407mAs/

projection). (2), (3), and (4) show the images reconstructed by FBP, TV, EPTV,

respectively, at 4mAs (200 projections × 0.0203mAs/projection). The CT images are shown

with display window [−400 1000] and [−900 10] in the first two rows to show the bones and

the details in the dark lung region, respectively. The rectangle indicates an ROI used for

SNR calculation. In the third row, (c1) shows the enlarged lung region of (1), (c2)~(c4)

show the difference of the lung region between (1) and (2),(3),(4), respectively.
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Figure 6.
Reconstruction results of the Catphan phantom with 20 iterations. (a) shows the image

reconstructed by FBP at 400mAs (984 projections × 0.407mAs/projection). (b), (c), and (d)

show the images reconstructed by FBP, TV, EPTV, respectively, at 8mAs (400 projections ×

0.0203mAs/projection). (e)–(h) zoom in the corresponding images on the first row. Arrows

indicate the area where EPTV is clearly superior to TV.
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Table 1

Relative errors of the whole image and subimage of lung region

FBP TV EPTV

ewhole 0.39 0.16 0.15

elung 0.17 0.13 0.10
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Table 2

SNR of the ROI in the reconstructed images of the chest phantom.

FBP FBP TV EPTV

mAs 400 4 4 4

SNR 40.6 20.4 39.9 40.0
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Table 4

The computation time per iteration of each component in the EPTV algorithm. The numbers are in a unit of

ms.

NP CGLS GD Post-processing

NCAT 40 13.21 4.87 0.014

Chest 200 67.34 4.90 0.014

Catphan 400 122.83 4.90 0.014
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