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Abstract

Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which

are essential in the study of conformational flexibility. Given the importance of protein flexibility

in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery

(CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special

emphasis on how the target data used in the parametrization of force fields determine their

strengths and weaknesses. Variations and recent developments such as polarizable force fields are

discussed. The section ends with a brief overview of common force fields in CSBDD.
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1. Introduction

Computational Structure-Based Drug Discovery (CSBDD) involves drug design based on

the three-dimensional structure of the biomolecular target, in most cases a protein. While the

Quantum Chemical (better known as Quantum Mechanics or QM) methods discussed in

section 2.2 are useful for studying the properties of isolated drug-like molecules and for

limited studies on simple models of a protein’s binding site, it is usually desirable to also

perform simulations on the whole protein in the presence of water when applying CSBDD.

Although some pioneering efforts have been made in applying semiempirical methods to

this end,[1] doing so puts severe constraints on the simulation timescale, and semiempirical

energy functions have weaknesses, such as poor treatment of dispersion interactions.

Therefore, the method of choice for protein simulations remains Molecular Mechanics

(MM) force fields, which approximate the quantum mechanical energy surface with a

classical mechanical model, thereby decreasing the computational cost of simulations on

large system by orders of magnitude. Furthermore, MM potential energy functions allow for

a relatively accurate representation of dispersion interactions, which current QM methods

only start recovering at the MP2 and higher levels of theory.[2]
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2. Potential Energy Functions

This subsection will focus mainly on the class I additive potential energy function, which is

the sum of bonded and nonbonded energy terms, as given by equation 1. This potential

energy function, whose terms are described in Table 1, covers the vast majority of force

fields used in CSBDD. Variations and recent developments in these models will be

discussed below.

Bonded (intramolecular, internal), terms

(1)

Nonbonded (intermolecular, external) terms

2.1 Bonded Interactions

The class I potential energy function comprises 4 types of bonded interactions: bond

stretching terms, angle bending terms, dihedral or torsional terms and improper dihedrals.

As shown in equation 1, class I additive force fields approximate the bond stretching and

angle bending contributions to the potential energy as harmonic oscillators as a function of

the bond length and valence angle, respectively. In this approximation, only 2 parameters

are needed for each bond and angle: the reference or equilibrium value (b0 and θ0) and the

force constant (Kb and Kθ). The bond and angle terms dominate the local covalent structure

around each atom and, in theory, when angle bending terms are present for all angles in a

molecule, planar centers are kept planar by the sum of the reference angles θ0 being 360° or

higher so that any deviation from planar geometry would imply an increase in energy.

However, there are cases where angular force constants Kθ that accurately reproduce the

energetics of in-plane angular bending are not high enough to also reproduce the energetics

of out-of-plane motions. Therefore, most if not all class I potential energy functions include

an additional out-of-plane term, usually in the form of an improper dihedral, where the

potential energy is harmonic as a function of the out-of-plane angle φ. Finally, the torsional

energy is represented by a sum of cosine functions with multiplicities n=1,2,3… and

amplitudes Kϕ,n. The phases δn are usually constrained at 0° or 180° so that the energy

surface of achiral molecules is symmetric and so that enantiomers have the same energetic

properties. Note that typically, not all the cosine terms associated with each multiplicity are

suitable for an accurate description of a given torsion; for example, only a 3-fold term (i.e.

n=3) is appropriate for the H-C-C-H dihedral in ethane, while a 2-fold term is typically

required for the treatment of double bonds such as the H-C=C-H dihedral in ethene.

However, two or more multiplicities are often used for a given torsion angle to more
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accurately treat the change in energy of the system as function of rotation about the central

bond in the dihedral. In the end, the ability to correctly reproduce conformational energetics

is an important criterion for the usefulness of a force field, and hence accurate

parametrization of the dihedral terms is essential.

2.2 Anharmonicity and cross-terms

While the internal terms in Class I force fields are primarily harmonic or sinusoidal in

nature, class II and III force fields contain cubic and/or quartic terms in the potential energy

for bond and angles of the form Ebond = Kb(b − b0)2 + Kb′(b − b0)3 + Kb″(b − b0)4 +….

While these higher-order terms allow for a more accurate reproduction of QM Potential

Energy Surfaces (PES) and experimental properties such as vibrational spectra, they also

introduce more parameters in the force field (Kb′, Kb″,…), making optimization of the model

more difficult. Moreover, Molecular Dynamics (MD) simulations associated with CSBDD

are generally performed at room temperature, and the energy in bond and angle vibrations

typically does not become high enough for anharmonicity to have a qualitatively important

influence on the dynamics and energetics. Apart from anharmonic terms, class II and III

force fields contain cross terms that reflect the coupling between adjacent bonds, angles and

dihedrals. For example, a typical bond-bond cross term would be of the form Ecross (b1,b2) =

Kb1,b2(b1 − b1,0)(b2 − b2,0). Bond-angle, angle-angle, bond-torsion and angle-torsion cross

terms can be introduced in a similar fashion. Some force fields (such as Allinger’s MM2,

MM3 and MM4) go even further by introducing cross terms that involve up to three internal

coordinates (eg. bond-angle-bond and angle-torsion-angle).[3–8] A special case is the Urey-

Bradley term, which consists of a harmonic potential as a function of the distance between

the (non-bonded) atoms A and C of an A-B-C angle (i.e., as if there exists an extra bond

stretching term between atoms A and C). This Urey-Bradley term is coupled with the A-B

and B-C bond stretching terms and the A-B-C angle bending term through basic

trigonometric relationships, and is a computationally elegant way of reproducing bond-bond

coupling effects in vibrational spectra. However, compared to the more conventional cross-

terms, it is poorly transferable to various combinations of 3 atoms with different reference

values for the bonds or angle.

While anharmonicity and cross terms do allow for a better reproduction of subtle physical

phenomena, they have the important disadvantage that their inclusion multiplies the amount

of target data needed for meaningful optimization of the parameters. This dramatically

increases the complexity of the parameter optimization process (see subsection 4). The

higher target data requirement may not be a prohibitive hurdle for force fields that focus on

reproducing the energetics of a limited number of small model compounds in vacuum,

because large amounts of uniform and high-quality target data can be obtained through QM

calculations. However, such an approach has proven inappropriate for the biomolecular

force fields used in CSBDD, where nonbonded interactions and precise reproduction of the

behavior of select torsions in the context of a large polymer in the condensed phase (eg.

protein or nucleic acid backbone energetics) are vastly more important than the precise

reproduction of bond and angle vibrations. For this reason, the biomolecular force field

community has until recently refrained from introducing anharmonicity and cross terms,

recognizing that there was still plenty of room for improvements within the framework of
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the class I potential energy function. An exception is the recent introduction of the CMAP

term in the CHARMM protein force field, which essentially is a torsion-torsion cross term

consisting of a Ramachandran plot-like grid of correction energies that is a function of 2

dihedral angles.[9–12]

2.3 Nonbonded Interactions

As shown in equation 1, the electrostatics in class I force fields are simply handled by

Coulomb interactions between fixed point charges qi and qj centered on the atoms, also

known as “partial charges”. This treatment of electrostatic interactions is referred to as

“additive” because the charges do not affect each other and all the individual atom-atom

electrostatic interactions may simply be summed to yield the total electrostatic energy of the

system. Beyond the partial atomic charge model, limited studies have been performed in

which fixed dipole moments were associated with each atom,[13] or with extra point

charges at fixed positions relative to some atoms.[14–17] It was found that as long as

polarization was not included in these models, the improvements in intermolecular

interactions for the elements typically present in bioorganic systems were usually not

proportional to the greatly increased complexity in parametrization. An exception in this

respect is water, for which 4-site models such as TIP4P[18], where a charge site is located

along the H-O-H bisector, yield improved structural and dynamic properties as compared to

3-site models such as TIP3P[18] and SPC,[19] where partial charges are located only on the

three atoms in the molecule.

For the van der Waals interaction component, a classical Lennard-Jones (LJ) 6-12 potential,

defined by the radius Rmin,ij and the well depth εij, is typically used. The LJ potential is

limited in its R-12 treatment of atomic repulsion, though again this limitation is not

significant in CSBDD as the simulations are typically performed at room temperature. Some

alternatives to the Lennard-Jones 6-12 have been proposed,[20–22] but with the exception of

MMFF94’s “buffered-14-7” potential,[23, 24] these have not found widespread application

in CSBDD because of increased computational expense, limited merit, and/or stability

problems during MD simulations.

2.4 Polarization

The biggest disadvantage of the point charge model discussed above is that it does not allow

for polarization. Indeed, molecules are known to have substantially higher dipole moments

in the condensed phase than in the gas phase,[11] depending on the dielectric constant of the

medium as well as other factors. Therefore, the charges used in a given force field are

formally only valid in a given dielectric medium (i.e. one cannot perform condensed phase

simulations with a gas phase force field or vice versa),[25] as the local dielectric constant

inside, for example, a lipid bilayer or a protein is typically lower than in bulk water. To

account for such differences additive force fields, even when highly optimized to take into

account polarization in “the condensed phase,” will represent a compromise between the

different types of dielectrics typically encountered in biomolecular systems. This problem,

which is due to the lack of polarization in the electrostatic portion of the force field, is

starting to become a limiting factor in the accuracy of additive force fields.[25–28] This has

stimulated the development of polarizable force fields by several groups.[29–42]
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There are three common schemes used for the introduction of polarization into an energy

function.[28, 43, 44] These are the fluctuating charge model, the polarizable dipole (a.k.a.

induced dipole) model, and the classical Drude oscillator (a.k.a. Shell or charge-on-spring

(COS)) model. In the fluctuating charge model, the terms in the potential energy function

are essentially the same as in non-polarizable force fields, except that the partial charges on

the atoms in a molecule are allowed to redistribute in response to an external electric field.

In the polarizable dipole model, every site i is given a dipole moment depending on its

polarizability and the external electric field: μinduced,i = αiEi. Finally, in the Drude oscillator

model, a small part of every atom’s total charge is represented by an extra point charge (i.e.

the “Drude oscillator”) that is bound to the parent atom by means of a harmonic force, the

force constant of which is inversely proportional to the atom’s polarizability. One variation

of the model consists of giving the Drude oscillators their own Lennard-Jones potential as to

simulate the Pauli repulsion of the electron clouds. The disadvantage of the latter variation is

a significant increase in the number of parameters to be optimized, which is already high for

polarizable force fields in general when compared to non-polarizable force fields.[26][45]

Regardless of the polarization scheme, it is important to note that when considering two

interacting chemical entities A and B, the electrostatic potential around entity A will

influence the polarization of entity B and hence the electrostatic potential around entity B.

This in turn will influence the polarization of entity A and hence the electrostatic potential

around entity A, and so forth... In theory, the most straightforward way to run useful

calculations with polarizable force fields is to solve this polarization problem in a self-

consistent fashion at every step of a simulation. However, doing so would incur an extreme

computational performance hit. Therefore, extended Lagrangian methods have been

developed,[46, 47] which involve treating the polarizable degrees of freedom as dynamic

variables in the equations of motion. Such methods make it possible to run MD simulations

using polarizable force fields at acceptable speeds, albeit more slowly than non-polarizable

force fields.

Another important consequence of the cross-polarization described above it that the energy

of a system can no longer be written as simple a sum of terms; in other words, the

interaction energy for 3 or more interacting entities does not equal the sum of their pairwise

interactions, as it does for non-polarizable, additive force fields. Such a limitation needs to

be considered in CSBDD, where the energetic contributions of individual groups to binding

are often calculated. While straightforward in an additive force field, this is not possible in

polarizable models.

2.5 United-atom and coarse-grained models

A discussion of biomolecular force fields would not be complete without mentioning united

atom and coarse-grained force fields. In the united atom model, nonpolar hydrogens are not

explicitly represented by dedicated particles; instead, the Lennard-Jones parameters on the

parent atom are optimized to include the (small) steric effect of the hydrogens. For polar

hydrogens, the presence of a separate charged particle is necessary to represent hydrogen

bonds and other polar interactions,[48] and polar hydrogens in united-atom force fields may

be given a Lennard-Jones potential to prevent an infinite negative energy at the location of
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the hydrogen atom.[49] In fact, initial incarnations of OPLS, AMBER, and CHARMM were

united-atom force fields with polar hydrogens,[50–52] and current versions of GROMOS

continue to be so.[25]

Coarse-grained models go one step further in that they represent whole chemical groups by a

single entity, often called a “bead. ”[53–57] The number of atoms in one bead is a tradeoff

between speed and accuracy, and varies from model to model. In the specific case of protein

force fields, popular options include (but are not limited to) the “two-bead” models, where

most amino acids are represented by two beads,[58–65] one for the backbone and one for

the side chain, and the “four-bead” models, where the backbone is represented by three

beads per residue and a fourth bead is used to represent the side chain.[66–70] Some coarse-

grained models use ellipsoid beads, and the beads often have a dipole moment and

sometimes higher multipole moments. Also, sophisticated functions are often used for

bonded interactions, cross terms and hydrogen bonds, in order to recapture physical

phenomena that were lost by aggregating atoms together in beads.

Reducing the number of particles by use of a coarse-grained model can greatly accelerate

simulations, at the cost of accuracy. Coarse-grained models are especially popular for

simulating very large biomolecular systems or studying phenomena that happen at very long

time scales, such as protein folding.[71] However, it can be argued that coarse-grained

models are of limited use for CSBDD because one typically would want to simulate a

biomolecular system interacting with a drug-like molecule, and it would be difficult to

design a set of “beads” that would allow simulating arbitrary drug-like molecules. Also,

drug-target interactions often occur at the atomic level, and coarse-grained models may not

be sufficiently detailed to accurately differentiate structurally similar drug candidates, such

as those that are part of a congeneric series. Finally, as computers are ever getting more

powerful, there is a general trend towards increased accuracy even if it incurs an increase in

computational cost.

3. System preparation

The previous subsection discussed the mathematical functions that represent the energy in

Molecular Mechanics methods. It was shown that these functions contain many parameters.

The current subsection discusses how a typical Molecular Mechanics engine, when run by a

user, determines which parameters to use for which atoms, bonds, angles,... in a molecule.

3.1 Atom typing

In the first stage, an atom type is assigned to each atom in the system under study. Different

atom types are assigned to different elements, but also to different hybridization states of the

same element, and usually even to atoms in the same hybridization state but a different

chemical environment. For example, in the case of protein force fields, Cα would usually get

a different atom type than the other sp3 carbons, a carbonyl carbon would get a different

atom type depending on whether it is part of an amide group or a carboxylate, there would

be many different hydrogen types depending on the nature of the parent atom, and so forth.

In the case of general force fields for organic molecules, atom types are assigned by rules

that take into account the atom’s chemical environment. To fulfill this task, a number of
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atom typers have been published including utilities in the Antechamber toolkit[72]

associated with the General AMBER Force Field (GAFF),[73] the CGenFF program,[74,

75] MATCH[76] and SwissProt,[77] among others. In addition, most if not all commercial

Molecular Mechanics packages include atom typing engines, although little information

about their workings is in the public domain. It should be noted that more atom types make a

force field more accurate, but also more difficult to parametrize and less transferable; this is

discussed in more detail in subsection 3.3.

3.2 Charge assignment

Independently from the atom types, partial charges are assigned to each atom. In force fields

for biopolymers, each monomer typically has a predetermined set of charges (as well as

atom types) which are provided as part of the force field and which can readily be applied to

a protein or nucleic acid. Typically, these monomer charge distributions were initially

assigned using QM target data (see subsection 4.2.5), then further optimized to reproduce X-

ray structures (subsection 4.2.1), dielectric constants (subsection 4.2.4) and/or

thermodynamic properties (subsection 4.2.6). Although these elaborate charge optimization

approaches guarantee high-quality charges, such methods are not practical for large numbers

of drug-like molecules. Instead, most force fields for organic molecules include charge

assignment schemes that are applied “on-the-fly” by the modeling software whenever the

user starts a calculation on a new molecule. Usually, these are either bond charge increment

methods, electronegativity equalization methods, or a combination thereof. A pure bond

charge increment scheme, like the one implemented in MMFF94,[23, 24, 78] would start

with assigning initial “formal” charges, which would be 0 for all atoms except the ones that

belong to a chemical group having a net charge. In the next step, for every bond in the

molecule, an amount of charge would be transferred between the bonded partners depending

on their atom types.[79] Bond charge increments for every combination of atom types would

typically be read from a predetermined table that is stored along with the other force field

parameters (see subsection 3.3 below). A more recent example of a force field that uses a

variation of the bond charge increment methodology for assigning charges on molecules that

were not explicitly parametrized is the CHARMM General Force Field (CGenFF).[75, 80]

Electronegativity equalization schemes come in many flavors, but the basic principle is that

every atom type has a predetermined “inherent electronegativity” and “chemical hardness”,

and the “instantaneous” electronegativity of an atom i in a molecule is given by

, where  is atom i’s inherent electronegativity, ηi its chemical hardness and qi

is the partial charge on the atom. Initial charges are set in a similar fashion as for the bond

charge increment methods, then charge is redistributed between the atoms in an iterative

fashion until all atoms have the same instantaneous electronegativity. Note that the basic

electronegativity equalization scheme as described above does not yield chemically sensible

results, and practical electronegativity equalization methods are significantly more

complicated;[81–83] the specific details of these schemes are beyond the scope of this

chapter. An alternative approach that has become practical in recent years is to do a quick

QM calculation on the molecule of interest prior to the start of an MM simulation, and

derive partial charges from the QM wave function. However, popular charge assignment

schemes that directly perform a per-atom partitioning of the electron density (eg. Mulliken,

NPA, AIM, Hirshfeld aka. stockholder,…) generally fail to reproduce the Electrostatic
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Potential (ESP) around the molecule when translated to atom-centered point charges, and are

hence unsuitable for calculating electrostatic interactions. One workaround for this problem

is to apply empirical bond charge corrections to the charges that result from partitioning.

Since these empirical corrections can in theory be parametrized to correct for multiple

approximations at the same time, they can be combined with a low (often semi-empirical)

level of theory and an inexpensive (often Mulliken) partitioning scheme. One prominent

example of this approach is AM1-BCC,[84] which can be used with the AMBER force

field[85] and GAFF.[72] More sophisticated empirical correction schemes are used in

Cramer, Truhlar et al’s CM1-CM5 models;[86–88] CM1 and CM3 have been validated for

use with the OPLS force field.[89] Conversely, a non-empirical way to derive relevant point

charges from the electron density is to consider the QM ESP on a large number of grid

points around the molecule and optimize the partial charges in an automated fashion to

reproduce this electrostatic potential as closely as possible.[90–92] To prevent this

methodology from producing unphysical charges, in particular on buried atoms, restraints

are often built into the charge optimization procedure. A widely used example of this

approach is the RESP charge fitting procedure[93] as implemented in the Antechamber

toolkit[72] that assigns charges for use with GAFF.[73] None of these charging schemes are

perfect,[94] and assignment of appropriate charges is still considered one of the big

challenges in small molecule force fields.

3.3 Parameter assignment

After assigning atom types and partial charges qi, the other parameters in equation 1 are read

from predetermined tables based on the atom types. Each atom type typically carries its own

εi and Rmin,i value, which are usually averaged between two atoms i and j to obtain the εij
and Rmin,ij to be used to represent the LJ interaction between these atoms. However, some

biomolecular force fields (most notably OPLS-AA and GROMOS; see subsection 5) use the

geometric mean for both quantities, while others (most notably AMBER and CHARMM)

use the Lorentz-Berthelot combining rules, which consist of using the arithmetic mean for

Rmin and the geometric mean for ε. This difference in combining rules (a.k.a. mixing rules)

is one of the reasons why LJ parameters cannot be transferred between force fields. Given

the fact that torsional parameters in many cases serve as compensation for imperfections in

the nonbonded interactions (see subsection 2.1), this implies that torsional parameters also

cannot be transferred between force fields. In essence, the charges, LJ and torsional

parameters in a given force field are largely dependent on one another. This is part of the

rationale for the often-repeated statement that different force fields are usually not

compatible. Finally, it should be noted that the nonbonded interactions between 1–2 and 1–3

atom pairs (i.e. covalently bound to each other for 1–2 or separated by 2 covalent bonds for

1–3) are usually excluded from the potential energy function. Additionally, some force

fields ignore 1-4 nonbonded interactions, scale all 1-4 interactions by a predetermined

factor, or have a second ε and Rmin value for the 1-4 interactions associated with specific

atom types. Regardless of these nonbonded exclusion schemes, 1-4 and longer-range

intramolecular nonbonded interactions vary in energy with the dihedral angles in a molecule,

giving rise to a nonbonded contribution to the dihedral PES. This has important implications

for dihedral parameter optimization; see subsection 4.1.
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As for the bonded parameters, these are usually simply read from tables that contain a

reference distance b0 and force constant Kb for every combination of 2 atoms that might

form a bond, a reference angle θ0 and force constant Kθ for combinations of 3 atoms, and

dihedral and improper parameters (Kϕ,n, δn, Kφ, φ0) for combinations of 4 atoms. In practice,

this implies that the number of bonded parameters in a general organic force field is roughly

proportional to the cube of the number of atom types. Some force fields alleviate this

combinatorial explosion by providing wildcard parameters for which only the two inner

atoms of a dihedral are specified; the wildcards are used when no dihedral parameters are

available for a specific combination of 4 atom types.

As mentioned in subsection 3.1, increasing the specificity of the atom types (and thus their

number) in a force field can in principle improve its accuracy by allowing for more specific

parameters for slightly different chemical groups. On the other hand, the number of atom

types should be limited in order to keep the parametrization feasible; having the ability to

differentiate subtly different chemical groups is of no help if a sufficient number of

parameters to cover all these functional groups cannot be optimized in a reasonable amount

of time. Moreover, having more atom types in a force field increases the chance that a user’s

molecule of interest contains a combination of atom types that was not considered during the

force field’s design, thus decreasing the transferability of the force field from explicitly

parametrized chemical groups to novel moieties. In summary, the number of atom types is a

tradeoff between accuracy on the one hand and feasibility and transferability on the other

hand.

4. Parameter Optimization

As discussed in the previous sections, the two main elements of a force field are its potential

energy function and the set of parameters used in that energy function. It can be argued that

to some extent, the parameters are more important than the potential energy function in

defining the scope and quality of a force field; even the simple class I potential energy

function can produce very accurate results if combined with well-optimized parameters,

while even the most sophisticated potential energy function will fail to produce meaningful

results when given unreasonable parameters, or may even be unstable for the purpose of

running MD simulations. In this subsection, a short overview of the general procedure for

determining these parameters (a.k.a. “parameter optimization” or simply “parametrization”)

is given. Subsequently, the target data for parameter optimization are discussed in detail,

because ultimately, the scope and quality of a set of parameters is largely dependent on the

nature of these target data.

4.1 Optimization Procedure

The procedure for parametrizing force fields is conceptually very simple. First, a set of

model compounds is constructed, consisting of small molecules containing the chemical

groups of interest. Then, target data for these model compounds are collected, which is

discussed in detail in subsection 4.2 below. Large amounts of target data are needed to avoid

an algebraically underdetermined parametrization (see below), and the choice of model

compounds is often inspired by the availability of target data. In the next phase, all

parameters needed for a full force field-based description of the model compounds are set to
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so-called “initial guess” values. In principle, these initial guesses are not critical because

they will be optimized in the next steps, but in practice, a good initial guess can greatly

facilitate the optimization. Then, the following steps are performed:

• calculation of the target data using the force field

• comparison of the force field results with the actual target data

• adjustment of the force field parameters

These three steps are executed repeatedly until the force field reproduces the target data

satisfactorily. However, adjusting all the parameters and recalculating all the target data at

each iteration would be impractical. Therefore, the different parts of the force field such as

the charges, the equilibrium values, the force constants, and the dihedral parameters, are

typically optimized separately. This sequence of partial optimizations, each of which is

iterative, should in turn be repeated several times until no more adjustment of any class of

parameters is needed. However, in practice, optimizing the different parts in a sensible order

may limit the number of iterations to 2 or 3. Specifically, the bonded parameter space

includes “hard” degrees of freedom (bond, angle and improper dihedral parameters) that are

characterized by harmonic functions with relatively high force constants, and “soft” degrees

of freedom (mostly dihedrals) that are responsible for large conformational changes. It is

usually advantageous to optimize parameters in a hard-to-soft order because the hard

degrees of freedom influence the softer ones much more than vice versa. For example in

biphenyl, the reference length and force constant of the central bond as well as the C-C-H

angle force constant strongly modulate the amount of H…H steric clash and electrostatic

repulsion that will occur in the planar conformation, and hence the rotational barrier. Thus,

depending on small variations in these hard degrees of freedom, widely different values for

the dihedral parameter around the central bond may be required in order for the sum of the

nonbonded and bonded dihedral PES to reproduce a target (experimental or QM; see

subsection 4.2) torsional barrier. The intramolecular electrostatic interactions that are part of

the dihedral PES are also strongly dependent on the charges, which would appear to provide

an incentive for optimizing the charges before the bonded parameters. However, most

common charge optimization schemes are performed on a single conformation that is

relevant for simulations; often an MM minimized conformation is selected for this purpose.

The location of this minimum is in turn dependent on the bonded parameters. The authors

propose to work around this by first optimizing the charges on a QM minimized

conformation, then optimizing the bonded parameters in a hard-to-soft order (which will

make the MM minimum approach the QM minimum), and finally re-optimizing the charges

on an MM minimized conformation.[80]

The iterative nature of the force field optimization procedure has a number of important

consequences:

• The parameter set is essentially a large vector consisting of scalar quantities that are

a priori unknown, and the collection of target data is a large vector of known scalar

quantities that can be reproduced by applying a (usually nonlinear) mathematical

function on the parameter set vector. Thus, parameter optimization is formally

equivalent to solving a (very complex) system of equations. This implies that if
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there are less target data points than parameters, the parametrization is algebraically

underdetermined, as more than one different combination of parameters can yield

the same values for the target data. At this point, it should be noted that most real-

life force fields are underdetermined to some extent. This is not necessarily a

problem as long as common sense is applied during the parametrization so that the

parameters have physical values. Indeed, with current force fields, there are enough

parameters available to make it straightforward to determine whether an optimized

parameter is physically meaningful as well as consistent with the remainder of the

force field. This property is more formally exploited in the incremental or “build up

and transfer” parametrization procedure, where the smallest possible model

compound containing a functional group of interest (eg. methanol in the case of

alcohols) is first parameterized, followed by stepwise larger molecules (eg. ethanol,

propanol, isopropanol). At each incremental step, the parameters from the smaller

model compound are retained (insofar that they are in acceptable agreement with

the target data), and only the newly introduced parameters in the larger molecule

are optimized. Nevertheless, if the “undeterminedness” is too high during the

parametrization of any part of the force field, optimizing the parameters becomes a

difficult task. More concrete examples of this problem are given in the discussion

of the target data below.

• The quality of the force field is critically dependent on the target data. Any physical

phenomenon (e.g. condensed phase effects) that is not accounted for in the target

data cannot be expected to be reproduced accurately by the force field.

• The target data should ideally be easy and fast to reproduce using force field

methods. Indeed, the phrase “feasible for the purpose of force field

parametrization” in the discussion of the target data below essentially means:

“feasible to be repeated many times for many different model compounds and

parameter sets”.

4.2 Target Data

In principle, any property of any system in which a relevant model compound is present can

be used as target data for parameter optimization. However, there are criteria that make

some types of data more appropriate or convenient than others. Ideally, target data for force

field parametrization should be:

• representative of the chemical environment in which the final force field will

operate,

• easy to correlate with one parameter, if not a small number of parameters,

• computationally inexpensive to reproduce with the force field, as this is repeated

many times during parameter optimization,

• plentiful, otherwise the force field might be algebraically underdetermined (see

subsection 4.1 above),

• precise
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In practice, some of these criteria turn out to be mutually exclusive to some degree, and

target data rarely satisfy all of them. In the following sections, a few common sources of

target data are discussed in more detail along with their advantages and disadvantages.

Specifically, we will focus on small molecule X-ray crystallography, IR and NMR

spectroscopy, dielectric constants, QM target data and thermodynamic properties. It should

be noted that this list is intended to be representative but not exhaustive; for example,

neutron and X-ray scattering data have been used for specialized purposes such as water and

lipid force field parametrization.[95–98]

4.2.1 Small molecule X-ray crystallography—Small molecule crystal geometries are

a good source of reference values for the “hard” degrees of freedom (i.e. the bonds and

angles). Individual crystals may contain packing artifacts or may simply be biased because

they represent only one conformation, but these deviations tend to cancel out when

averaging values over many different crystal structures. Surveys of large collections of

crystal structures may even provide hints about relative populations of different

conformations and thereby can serve as target data for dihedral optimization. Before

sufficiently high-quality QM methods became computationally accessible for the purpose of

force field optimization, most of the target data for optimizing bond and angle parameters

came from small molecule crystals.[50, 99, 100] Finally, simulating existing crystals of

small organic molecules, short peptides, or even whole proteins if the experimental data is of

adequate resolution, is a good way to validate and fine-tune the force field as a whole.[10,

101, 102]

4.2.2 IR spectroscopy—Crystal geometries provide plenty of useful target data for

optimization of reference or equilibrium parameters, but are of limited use when optimizing

force constants. For this purpose, the most straightforward experimental source is IR

spectroscopy.[103, 104] However, in a typical IR spectrum, only a limited number of signals

can be unambiguously correlated to specific bond stretching or angle bending motions.

Indeed, each peak in an IR spectrum represents one of the normal modes of the whole

molecule, and even if an experimental normal mode consists predominantly of motions of

one particular bond or angle, the composition of the modes might be different in the force

field, and it may not be trivial to use all available IR spectroscopic data for force field

optimization. Lastly, the problem of algebraic underdeterminedness often makes it more

difficult to optimize force constants using vibrational target data, and typically, many

assumptions have to be made during the process. To overcome this, vibrational spectra from

QM methods are of great utility, as discussed in subsection 4.2.5 below.

4.2.3 NMR spectroscopy—Although statistical data from crystal surveys can

successfully be used for optimizing dihedral parameters, a large number of crystal structures

containing the dihedral of interest is needed for the statistics to be sufficiently reliable, and

even then, bias related to the crystal environment or the selection of compounds that were

crystallized can never be ruled out. Therefore, independent validation of the resulting

dihedral parameters is often desired. Conveniently, coupling constant from simple 1D NMR

experiments can be correlated with a singe dihedral’s conformational preferences through

the Karplus equation and variants thereof.[105–109] The most correct way of utilizing this
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target data consists of a solution-phase MD simulation followed by prediction of the

coupling constant using this equation. An example of the use of coupling constants for force

field optimization and validation are studies on proteins and carbohydrates from our

laboratory.[12, 110–112] Similarly, the proximity between atoms during an MD simulation

can be correlated to data from Nuclear Overhauser Effect (NOE)-based NMR techniques

such as NOESY and ROESY for the purpose of validating and fine-tuning force fields.[113]

Additionally, NOE data can be used as target data in a similar fashion as crystallographic

data[114–121] (see subsection 4.2.1). Finally, spin-relaxation data can be correlated to the

effective correlation time in simulations.[122] However, reproducing NMR target data

remains a moderately burdensome process and the data itself is often somewhat

heterogeneous.

4.2.4 Dielectric constants—Dielectric constants, which directly correlate with a

molecule’s dipole moment and therefore its partial atomic charges, can be reproduced using

MD simulations of pure solvents.[123–125] Such approaches are computationally

demanding, requiring simulation times of tens of nanoseconds. However, when performing

high-level optimization of nonbonded parameters on molecules for which dielectric data are

available such calculations are warranted. Efforts towards the development of polarizable

force fields have extensively used reproduction of dielectric constants as target data, as the

dielectric constant is dependent on the polarizability of the model as well as the dipole

moment.[35, 126, 127]

4.2.5 QM target data—As it is usually problematic to collect enough experimental target

data for optimization of all aspects of a force field, results from QM calculations are often

used as target data. Methods and models from the field of theoretical chemistry have been

used for charge assignment since the early days of molecular mechanics, the

electronegativity equalization schemes discussed in subsection 3.2 being a simple example.

More recently, methods such as RESP,[93] based on full electronic structure calculations,

gained prominence. A competing approach for force fields aimed at simulations in aqueous

solution is to construct a system consisting of a model compound and a water molecule,

optimize the distance between these two partners at the QM level, and calculate the QM

interaction energy. If the resulting water interaction distance and energy are properly scaled

to take into account condensed phase effects, they make excellent target data for charge

optimization, especially if the procedure is repeated with multiple water molecules at

different positions around the model compound.[48, 50, 128] The main disadvantage of this

approach is that it is difficult to automate, so the user cannot automatically compute charges

on their compound of interest prior to simulation. However, as discussed in subsection 3.2,

this is not an issue for biopolymers, where predetermined charges for the monomers are

used. Indeed, this approach was applied successfully for charge assignment in the OPLS and

CHARMM biomolecular force fields.[50, 80, 128, 129]

QM methods are also of great utility for the production of target data for bonded parameter

optimization, often supplanting the use of crystal data and IR spectroscopy.[80] This is

largely due to increases in computer power and advances in computational methods making

explicit treatment of electron correlation in QM calculations feasible, allowing for improved
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treatment of dispersion (though limitations in the treatment of dispersion still exist).

Compared to crystal surveys, QM reference bond lengths and angles are more easy to

obtain, especially for unusual species, and more homogeneous than crystal data if calculated

within a carefully designed protocol. The results of a QM vibrational analysis can be

correlated to force constants in the force field more easily than peaks in an experimental

spectrum, owing to the fact that the Potential Energy Distribution (PED) of each normal

mode is known. Finally, dihedral potential energy scans can routinely be applied on small

and medium-sized model compounds, yielding ideal target data for parametrization of

dihedral terms.[130–132] The only disadvantage of the use of QM methods is that, due to

the fact that explicit solvent QM simulations are too costly and current implicit solvent

methods are too unreliable, QM target data are usually determined in vacuum. Although

offsets and scaling factors have been proposed to approximately take into account

condensed phase effects,[48, 50, 128] additional validation and refinement of QM-based

force fields against the abovementioned sources of experimental target data are of great

importance.

4.2.6 Thermodynamic properties—The most difficult term in current force fields to

optimize are the LJ parameters. While it is possible to use crystal geometries and QM

interactions with water molecules[129] and noble gas atoms[133] as sources of target data

for this purpose, it was found that correct van der Waals behavior is critically dependent on

condensed phase and dynamic effects, and exclusive use of crystallographic and QM data is

unreliable.[134] A more accurate way to optimize LJ parameters, pioneered by Jorgensen, is

to use experimental liquid densities and heats of vaporization of small model compounds as

primary target data, optionally in combination with other thermodynamic data and with

guidance from QM data, especially with respect to the relative values of LJ parameters.[50,

133, 135, 136] Liquid densities and heats of vaporization can be reproduced relatively easily

through Monte Carlo (MC) or short MD simulations, and it was found that LJ parameters

obtained in this way exhibit a high degree of transferability towards atoms of the same

element and hybridization state. Indeed, force fields that were parametrized based on this

principle often employ the same LJ parameters for a number of different atom types. One

limit of this approach is that it cannot be applied to species that have a net charge or a

decomposition temperature that is lower than their melting point, as these do not exist as a

bulk solvent. In these cases, crystal lattice parameters, heats of sublimation and free energies

of solvation can be used, which are available for a range of molecules, including charged

species and compounds that are not liquid at room temperature. However, complicated and

computationally expensive free energy perturbation or thermodynamic integration methods

are needed to reproduce free energies of solvation, and this has only recently became

feasible for the purpose of force field optimization.[126, 137–140]

5. Common Force Fields in Structure-Based Drug Discovery

As touched upon earlier in this chapter, each force field has a scope. This is not only true in

the chemical sense, i.e. by targeting a specific range of chemical groups or class of

molecules, but also in a wider sense: force fields can be optimized for performing MD

simulations or more static calculations such as energy minimizations,[141] they can be

parametrized towards reproducing the conformational behavior of single molecules or
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towards reproducing intermolecular interactions, and they can be specialized for gas phase

calculations or for condensed phase simulations.

A primary requirement for force fields for use in CSBDD is that they must support

biomolecules, or at the very least proteins, in a biologically relevant environment. Such

environments are typically aqueous solution, although support for lipid bilayers is desirable,

especially if transmembrane proteins such as G-protein coupled receptors (GPCR) are being

considered. Also, eligible force fields must support drug-like molecules in solution phase

and should be explicitly parametrized to reproduce intermolecular interactions. These

requirements limit the utility of the majority of general force fields for organic molecules

such as UFF,[142] CFF93,[8] and Allinger’s MM2,[4] MM3[3, 5, 6] and MM4[7] force

fields. Indeed, although some of these force fields are very capable for and widely used in

Computational Ligand-Based Drug Design (CLBDD), they are parametrized mainly using

gas-phase target data and (in some cases) condensed-phase target data that are not directly

related to intermolecular interactions, and may therefore be assumed to be unsuitable for

condensed phase studies of protein-drug interactions. An exception is MMFF94,[23] which

was created with the express goal of enabling solution-phase simulations on ligand-

biomolecule systems and obtaining accurate interaction energies. A pioneering effort when

it was published over fifteen years ago, it was the most capable and generally applicable

force field for CLBDD in existence, and its utility was significantly bolstered by the

associated atom typing engine that was able to automatically assign parameters and rate their

qualities for arbitrary drug-like small molecules. Nevertheless, a limitation of MMFF94,

especially for the purpose of CSBDD, was that optimization of its nonbonded parameters

was mainly driven by reproduction of QM interaction geometries and energies, and it was

subsequently shown that using thermodynamic target data (see subsection 4.2.6), though

computationally burdensome (particularly at that time in history) yielded more reliable

nonbonded interactions for the condensed phase.[134] The importance of basing nonbonded

parameters on the use of condensed phase data can be explained by the fact that nonbonded

interactions in additive force fields are summed over atom pairs, while in reality, multi-body

interactions contribute significantly to a system’s condensed phase behavior.[125, 143, 144]

In this sense, nonbonded parameters that are optimized using condensed phase properties

contain an implicit correction for multi-body interactions and are therefore often referred to

as “effective pairwise potentials.” A more fundamental limitation of general force fields is

that accurately reproducing the subtle interactions in biomolecules requires a dedicated

biomolecular force field; covering a wide chemical space inherently compromises accuracy

in representing classes of molecules in a well-defined chemical space, such as proteins. Like

MMFF94, the commercial Tripos force field,[145] CVFF,[146] and Momany and Rone’s

commercial CHARMm force field[147] (not to be confused with the academic CHARMM

force field; note the different capitalization) are general force fields that aim to provide

coverage for proteins, parametrized using similar target data, and thus prone to similar

limitations.

This brings us to the topic of biomolecular force fields, which are highly optimized for

solution phase MD simulations on biomolecules. In this subsection, we will focus on the

widely-used biomolecular protein force fields AMBER[148], CHARMM[12, 102],
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GROMOS [25], and OPLS-AA [149], which account for the majority of recently published

MD simulations of proteins.[150] All four of these force fields have been developed by

academic research groups and, accordingly, the associated parameters have been peer-

reviewed and made publicly available. Though we limit our discussion to these four, we do

note that the ENCAD force field[151, 152] has been used extensively by Daggett and

coworkers to study protein folding via explicit solvent MD simulations [153], and the

ECEPP[154–158] force field of Scheraga and coworkers has been used for protein structure

prediction with an implicit solvent treatment.[159–161]

While it is important to use a well-validated biomolecular force field in CSBDD, in most

cases, practical simulations should also include a drug candidate. Although it is tempting to

represent the biological part of a drug-target system by a biomolecular force field and the

organic part (i.e. the drug) by an organic force field, it is unlikely that this will yield

properly balanced intermolecular interactions, because the nonbonded parameters in

different force fields are developed using different strategies and combining rules (see

subsection 3.3). To overcome this problem, efforts were started to create organic force fields

that are specifically meant to be used with existing, highly optimized and tested

biomolecular force fields. As a result of this effort, AMBER[148, 162] now includes the

General AMBER Force Field (GAFF)[73] and the Antechamber toolkit,[72] which allow the

user to generate an AMBER force field model for an arbitrary input molecule. OPLS-AA,

[163–165] whose optimizations emphasized condensed phase properties of small molecules,

has been extended to cover a diverse set of small molecule model compounds and may be a

good choice, though atom type assignment must be done by hand (although there exists a

commercial implementation of OPLS-AA with atom typing functionality[166]). CHARMM

has been extended with the CHARMM General Force Field (CGenFF), which covers a wide

range of chemical groups present in biomolecules and drug-like molecules including a large

number of heterocyclic scaffolds,[80, 113] and a web interface for automatic atom typing

and assignment of parameters and charges by analogy has recently been published.[74, 75]

Finally, the GROMOS force field atom type palette, which derives from parameters for

biopolymers, also provides a reasonable amount of diversity for the construction of force

field models of small molecules.[25] While varying ranges of drug-like organic molecules

are covered by these force fields, they typically represent extrapolations of those force

fields. Accordingly, the issue of transferability of the force field becomes important, such

that the more significant the extrapolation from chemical moieties explicitly optimized in

the force field, the less reliable the resulting parameters. For this reason, tools such as the

CGenFF parameter and charge assignment interface return penalty scores that roughly

reflect the degree of extrapolation. The general non-transferability of force fields also makes

it necessary for the user to validate the parameters using one or more of the methods

discussed in subsection 4 above.

6. Summary

Molecular mechanics based theoretical methods are widely applied to CSBDD. Central to

the utility of empirical force fields in CBSDD is computational efficiency due to the simple

form of the potential energy function, while at the same time achieving a suitable level of

accuracy as well as coverage. Suitable for CBSDD are those force fields highly optimized
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for biomolecular systems and then extended to drug-like compounds. However, the

transferability of molecular mechanics parameters must always be considered and

appropriate tests of the model undertaken when applied to new molecules. Concerning the

future, improvements in the range of molecular entities covered by additive force fields can

be expected as well as more automated methods for force field validation and optimization.

In addition, over the next several years it is anticipated that models that include the explicit

treatment of polarization will be become available. While these will initially be limited to

biomolecules, they will certainly be extended to drug-like molecules, offering the potential

for improvements in the accuracy of empirical force fields in the context of CSBDD.
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Table 1

Force field parameters in the class 1 additive potential energy function (equation 1). The Lennard-Jones

parameters are further explained in subsection 3.3.

Symbol Meaning

b0 Reference bond length

Kb Bond force constant

θ0 Reference valence angle

Kθ Angle force constant

φ0 Improper dihedral angle reference value (usually 0)

Kφ Improper dihedral force constant

n Dihedral multiplicity

δn Dihedral phase

Kϕ,n Dihedral amplitude

qi,qj Partial charges

Rmin,ij Lennard-Jones radius

εij Lennard-Jones well depth
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