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Abstract

Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma
lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid
metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E2/2 mice
were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque
area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression
were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12
apoE2/2 mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization
of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to
controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid
(C20:4n-6) and oleic acid (C18:1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma
concentration of IL-1b, IL-6, TNF-a and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged,
accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity.
These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE2/2 mice and attenuate risk factors related to
atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids
or fatty acids.

Citation: Parolini C, Vik R, Busnelli M, Bjørndal B, Holm S, et al. (2014) A Salmon Protein Hydrolysate Exerts Lipid-Independent Anti-Atherosclerotic Activity in
ApoE-Deficient Mice. PLoS ONE 9(5): e97598. doi:10.1371/journal.pone.0097598

Editor: Andrea Cignarella, University of Padova, Italy

Received November 20, 2013; Accepted April 22, 2014; Published May 19, 2014

Copyright: � 2014 Parolini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from NordForsk, grant no. 070010, MitoHealth; the Research Council of Norway, grant no. 190287/110; and the
European Community’s Seventh Framework Programme (FP7/2007-2013) AtheroRemo, grant no. 201668. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cinzia.parolini@unimi.it (CP); rita.vik@k2.uib.no (RV)

. These authors contributed equally to this work.

Introduction

Cardiovascular disease (CVD) is responsible for approximately

16–17 million deaths annually, making it the leading cause of

mortality in Western countries [1,2]. The disease encompasses

conditions such as coronary artery disease, carotid and cerebral

atherosclerotic disease and peripheral artery atherosclerosis

resulting in chronic and acute ischemia in affected organs. The

underlying pathological process is lipid accumulation leading to

atherosclerosis, a slowly progressing chronic disorder of large and

medium-sized arteries that can lead to intravascular thrombosis

with subsequent development of complications like myocardial

infarction (MI), stroke and acute ischemia of the limb [3]. In the

last years, inflammation has emerged as an additional key factor in

the development of atherosclerosis and seems to be involved in all

stages, from the small inflammatory infiltrate in the early lesions,

to the inflammatory phenotype characterizing an unstable and

rupture-prone atherosclerotic lesion [4]. In fact, today atheroscle-

rosis is regarded as a disorder characterized by a status of non-

resolved inflammation, with bidirectional interaction between

lipids and inflammation as a major phenotype. Inflammation in

atherosclerosis leads to activation of endothelial cells, enhanced

expression of adhesion molecules, inflammatory cytokines and

macrophage accumulation.

Liver is the main organ regulating lipid metabolism, affecting

blood lipids, especially plasma triacylglycerols (TAG) [5]. Recent-

ly, investigators have suggested that the liver plays a key role in the

inflammatory state of an individual [6,7], and that dietary

cholesterol absorbed by the liver contributes to inflammation

[8]. Research into atherosclerosis has led to many compelling

discoveries about the mechanisms of the disease and together with

lipid abnormalities and chronic inflammation, oxidative stress has

a crucial involvement in the initiation and progression of

atherosclerosis [9].

Improvement of life style and dietary habits can reduce some

risk factors such as high levels of low density lipoprotein (LDL)-

cholesterol, TAG and inflammatory molecules [10]. Fish con-

sumption is consider health beneficial as it lowers plasma lipids
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and attenuates inflammation [11]. This is linked to the long-

chained n-3 polyunsaturated fatty acids (PUFA) content, in

particular eicosapentaenoic acid (EPA) and docosahexaenoic acid

(DHA). However, fish protein is a rich source of bioactive peptides

with valuable nutraceutical and pharmaceutical potentials beyond

that of n-3 PUFAs [11]. Fish protein hydrolysates are generated by

enzymatic conversion of fish proteins into smaller peptides, which

normally contain 2–20 amino acids. In recent years, fish protein

hydrolysates have attracted much attention from food scientists

due to a highly balanced amino acid composition, as well as the

presence of bioactive peptides [12]. The organic acid taurine is

mainly found in marine proteins, and is suggested to induce

cholesterol-lowering effect by increasing excretion through bile,

thus potentially exerting an anti-atherosclerotic effect [13]. Recent

studies show TAG-lowering effects [14,15], antioxidant capacity

[12], antihypertensive [11] and cholesterol-lowering effects

[16,17], and potential to reduce markers of reactive oxygen

species [18] from fish protein. Therefore, fish protein hydrolysates

have been implicated in several processes with potential anti-

atherogenic effects. In this study, we examined the anti-athero-

sclerotic potential of a salmon protein hydrolysate (SPH) on

atherosclerotic development in apolipoprotein E-knockout

(apoE2/2) mice.

Materials and Methods

Experimental Design
The study was conducted according to national (D.L. 116, G.U.

Suppl. 40, February 18, 1992, Circolare No. 8, G.U July 1994)

and international laws and policies (EEC Council Directive 2010/

63, September 22, 2010: Guide for the Care and Use of

Laboratory Animals, United States National Research Council,

2011). The Italian Ministry of Health approved the protocol (nu
04/2012).

24 female apoE2/2 mice from the breeding strain C57BL/6, 8

weeks old, were purchased from Charles River Laboratories

(Calco, Italy), and kept under standard laboratory conditions (12

hours light cycle, temperature 2261uC, humidity 5565%), with

free access to standard chow and tap water. After 1 week of

acclimatization under these conditions, mice were randomly

divided into two groups of 12 mice. Although apoE2/2 mice

spontaneously develop atherosclerosis, both groups were fed a

high-fat diet (23.7% w/w) consisting of 21,3% lard (Ten Kate

Vetten BV, Musselkanaal, Netherlands) and 2.4% soy oil (Dyets.

Inc., Betlehem, PA, USA) to accelerate the atherosclerotic

formation. The control diet contained 21% w/w casein as protein

source, whereas 5% casein was replaced with an equal amount of

salmon protein hydrolysate (SPH) (Marine Bioproducts, Storebø,

Norway) in the intervention diet. The SPH was produced by

enzymatic hydrolysis from salmon by-products (spine) using

controlled autolysis with an alkaline protease and a neutral

protease, and the resulting protein hydrolysate was then subjected

to a second enzymatic treatment with an acid protease A. The

final hydrolysate was fractionated using micro- and ultra- filtration

and the size distribution of the peptides was analysed. The final

preparation consisted of peptides ,1200 Da and 25% of the

peptides were below 200 Da. The diets were isocaloric containing

21% protein, 24% fat, 42% carbohydrates and 6% micronutrients,

and administered for 12 weeks. Other diet ingredients were from

Dyets. Inc., and the full composition of the diets, as well as amino

acid composition, is given in Table S1.

Harvesting of Tissue
During the treatment period, blood samples were collected at

day 1 and after 77 days from the retro-orbital plexus into tubes

containing 0.1% (w/v) EDTA after an overnight fast. Blood

samples were chilled on ice for at least 15 minutes and stored at 2

80uC until analyses.

After 12 weeks of treatment, mice were sacrificed under general

anaesthesia with 2% isoflurane (Forane, from Abbot Laboratories

Ltd, Illinois, USA) and blood was removed by perfusion with

phosphate-buffered saline (PBS). Aorta was rapidly dissected from

the aortic root to the iliac bifurcation, periadventitial fat and

connective tissue was removed as much as possible. Aorta was

longitudinally opened pinned flat on a black wax surface in ice-

cold PBS, photographed unstained [19] for subsequent plaque

quantification (see En face analysis), and then immediately put in a

tissue-freezing medium, snap-frozen in liquid nitrogen and stored

at 280uC. For histological/immunohistochemical analysis, six

hearts from each group were removed, fixed in 10% formalin for

30 min and transferred into PBS containing 20% sucrose (w/v)

overnight at 4uC before being embedded in OCT compound

(Sakura Finetek Euope B.V., Alphen aan den Rijn, The Nether-

lands) and stored at280uC. An equal subset of hearts and all livers

were immediately snap-frozen in liquid nitrogen for subsequent

analyses.

En Face Analysis
Aorta images were recorded with a stereomicroscope-dedicated

camera (IC80 HD camera, MZ6 microscope, Leica Microsystems,

Germany) and analysed using ImageJ image processing program

(http://rsb.info.nih.gov/ij/). An operator blinded to dietary

treatment quantified the atherosclerotic plaques.

Aortic Sinus Histology/immunohistochemistry
Serial cryosections (7 mm thick) of the aortic sinus were cut.

Approximately 25 slides with 3 cryosections/slide were obtained,

spanning the three cusps of the aortic valves. Every fifth slide was

fixed and stained with hematoxylin and eosin (Bio-Optica, Milano,

Italy) to detect plaque area. Plaque area was calculated as the

mean area of those sections showing the three cusps of the aortic

valves. Adjacent slides were stained to characterize plaque

composition. Specifically, Masson’s Trichrome (04-010802, Bio-

Optica, Milano, Italy) was used to detect extracellular matrix

deposition and Oil red O staining (Sigma-Aldrich, St. Louis, MO,

USA) was used to detect intraplaque neutral lipids.

Macrophages and T-lymphocytes were detected using an anti-

F4/80 antibody (ab6640, Abcam, Cambridge, UK), and an anti-

CD3 antibody (ab16669, Abcam, Cambridge, UK), respectively.

A biotinylated secondary antibody was used for streptavidine-

biotin-complex peroxidase staining (Vectastain Abc Kit, Vector

Laboratories, Peterborough, UK). 3,39-Diaminobenzidine was

used as chromogen (Sigma-Aldrich, St. Louis, MO, USA), and

sections were counterstained with hematoxylin (Gill’s Hematox-

ylin, Bio-Optica, Milano, Italy). To acquire and process digital

images an Aperio ScanScope GL Slide Scanner (Aperio Technol-

ogies, Vista, CA, USA), equipped with a Nikon 206/0.75 Plan

Apochromat objective producing a 0.25 mm/pixel scanning

resolution with a 406magnification and the Aperio ImageScope

software (version 8.2.5.1263) was used. A blinded operator to the

study quantified plaque area, extracellular matrix and lipid

deposition, as well as inflammatory cell infiltrate. The amount of

extracellular matrix, lipids, macrophages and T-lymphocytes was

expressed as percent of the stained area over the total plaque area.

Salmon Protein Hydrolysate Reduces Atherosclerosis
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Plasma Lipid and Fatty Acid Composition Measurements
Enzymatically measurements of plasma lipids were performed

with an automated method for direct measurement of lipids on a

Hitachi 917 system (Roche Diagnostics GmbH, Mannheim,

Germany) using triacylglycerol (GPO-PAP), total- and free

cholesterol kits (CHOD-PAP) from Roche Diagnostics, and

phospholipids FS kit and a non-esterified fatty acids (NEFA) kit

from DiaSys (Diagnostic Systems GmbH, Holzheim, Germany).

Total plasma fatty acid composition was analyzed as previously

described [20].

Gene Expression in Liver, Heart and Aorta
Total cellular RNA was purified from 20 mg liver, total

homogenized heart and pooled aorta samples from six mice using

the RNeasy kit and the protocol for purification of total RNA from

animal cells and fibrous tissue (Qiagen GmbH, Hilden, Germany),

as described by Vigerust et al. and Strand et al., respectively

[21,22]. cDNA was obtained as described by Strand et al. [22].

Real-time PCR was performed on an ABI prism 7900 H sequence

detection system (Applied Biosystems, Foster City, CA, USA) using

384-well multiply PCR plates (Sarstedt Inc., Newton, NC, USA)

and probes and primers from Applied Biosystems, Foster City,

CA, USA as described by Strand et al. [22]. The primers used are

listed in Table S2. Six different reference genes were included for

liver: 18s (Kit-FAM-TAMRA (Reference RT-CKFT-18s)) from

Eurogentec (Seraing, Belgium), ribosomal protein, large, P0

(Rplp0, AX-061958-00-0100), hypoxanthine guanine phosphor-

ibosyltransferase 1 (Hprt1, AX-045271-00), ribosomal protein,

large, 32 (Rpl32, AX-055111-00), polymerase (RNA)II(DNA

directed) polypeptide A, (Polr2a, AX-046005-00) and TATA-box

binding protein (Tbp, AX-041188-00) all five from Thermo Fisher

Scientific Inc. (Waltham, MA, USA). For the heart 18s, Rplp0 and

Hprt1 were used, and for aorta 18s, Rplp0, Rpl32 and Hprt1. The

software GeNorm (http://www.gene-quantification.de/hkg.html)

was used to evaluate the reference genes, and data normalized to

Rplp0 and Rpl32 for liver, Hprt1 for heart and Rplp0 and Hprt1 for

aorta, are presented.

Hepatic Enzyme Activities
Livers were homogenized and the post-nuclear fraction isolated

as described earlier [23]. The assay for carnitine palmitoyltrans-

ferase (CPT)-2 was performed according to Bremer [24] and

Skorve et al. [25], but with some modifications: the reaction mix

contained 17.5 mM HEPES pH 7.5, 52.5 mM KCl, 5 mM KCN,

100 mM palmitoyl-CoA and 0.01% Triton X-100. The reaction

was initiated with 100 mM [methyl-14C]-L-carnitine (1100 cpm/

gmol), and 35 mg total protein was used. Palmitoyl-CoA oxidation

was measured in the post-nuclear fraction from liver as acid-

soluble products [26]. The activity of fatty acyl-CoA oxidase

(ACOX)-1 and acyl-CoA: cholesterol transferase (ACAT) were

measured in post-nuclear fractions as described by Madsen et al.

[26] and Field et al. [27], respectively.

Measurements of Plasma Inflammatory Markers
Levels of interleukin (IL)-1b, IL-6, IL-10, tumor necrosis factor

(TNF)-a and granulocyte-macrophage colony-stimulating factor

(GM-CSF) were analyzed on plasma samples collected at day 77 of

treatment by Multiplex suspension technology using a customized

Bio-Plex Pro Mouse assay (Bio-Rad Laboratories, Hercules, CA).

Statistical Analysis
The results are presented as mean with standard deviation (SD)

for 4–12 mice per group. Normal distribution was assessed by the

Kolmogorov-Smirnov test. Unpaired Student’s t-test was used to

evaluate statistical differences between groups; Mann-Whitney test

was applied when data were not normally distributed. A value of

P,0.05 was considered statistically significant. Statistical analyses

were performed using Prism Software (GraphPad Prism version

5.0; GraphPad Prism, San Diego, CA, USA).

Results

The SPH-diet Decreased Atherosclerotic Plaque
Development
After 12 weeks on a high-fat diet, 5% SPH-fed mice displayed a

weight gain similar to the control group. At sacrifice, the average

weight gain was 5.9861.78 g (mean 6 SD) in controls and

5.0460.88 g in SPH mice (P.0.05). A significantly lower plaque

development was observed in the aortic arch in SPH-fed mice

compared to control mice (0.5560.33 vs. 1.6360.996106 mm2;

Fig. 1, corresponding to 0.9160.55 vs. 2.7261.72% of the aortic

surface covered by plaque). There were no differences in thoracic

(1.0860.47 vs. 0.8560.416106 mm2; Fig. 1, corresponding to

1.7160.84 vs. 1.4160.68% of the aortic surface covered by

plaque) or abdominal aorta sections (0.8160.53 vs.

0.7860.536106 mm2; Fig. 1, corresponding to 1.3660.89 vs.

1.2960.88% of the aortic surface covered by plaque).

A significant reduction in lesion area was observed at the aortic

sinus of mice fed SPH compared to controls (1.2760.416105 mm2

vs. 2.0260.316105 mm2; Fig. 2A–C). Plaque stability is an

important factor concerning the severity of atherosclerosis.

However, histological/immunohistochemical characterization of

atherosclerotic lesions displayed no significant difference in plaque

composition between mice fed SPH and controls, showing a

comparable percentage of area occupied by extracellular matrix

(34.5660.56% vs. 30.31618.25%; Fig. 2D–F), lipids

(74.0667.48% vs. 79.6866.45%; Fig. 2G–I), macrophages

(64.4764.47% vs. 60.5763.71%; Fig. 2J–L), and lymphocytes

(27.36611.73% vs. 22.6267.24%; Fig. 2M–O).

Inflammation and oxidative stress are strong contributing

factors in atherosclerosis, thus gene expression of inflammatory

markers and redox regulators in aorta and heart were measured.

Accompanied by decreased plaque area in sinus and aortic arch,

mRNA level of intracellular adhesion molecule (Icam1) was

decreased with 59.54%, in addition to a small decrease in

expression of vascular cell adhesion molecule (Vcam1) and

monocyte chemoattractant protein 1 (Mcp1) in pooled aortic arch

from six mice, whereas mRNA level of inducible nitric oxidase 2

(Nos2) was not modified by the dietary treatment with SPH

(Fig. 3A). In contrast, no changes were found in gene expression

in the heart of Icam1, Vcam1, Mcp1, Nos2 or Tnfa, nor of the

antioxidant markers superoxide dismutase 1, soluble (Sod1),

superoxide dismutase 2, mitochondrial (Sod2) or catalase (Cat)

(data not shown).

Decreased Plasma Levels of Inflammatory Markers
To further elucidate the potential anti-inflammatory effects of

SPH in this experimental model of atherosclerosis, we examined

plasma levels of inflammatory mediators. As shown in Fig. 3B–F,
levels of IL-1b, IL-6, IL-10, TNF-a and GM-CSF were

significantly lower in SPH-treated mice compared to controls.

SPH-intervention Affected Hepatic mRNA Expression
Involved in Lipogenesis
Hyperlipidemia is closely linked to atherosclerotic development.

Liver is the main tissue regulating lipid metabolism, and

mitochondrial b-oxidation is important in regulating plasma

Salmon Protein Hydrolysate Reduces Atherosclerosis
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TAG. Hepatic gene expression showed a significant downregula-

tion in mRNA level of Acaca in SPH-fed mice (Fig. 4A). Moreover,

the mRNA level of Scd1 was significantly downregulated as well

(Fig. 4B).

Noteworthy, SPH administration had no effect on palmitoyl-

CoA oxidation in the presence and absence of malonyl-CoA (Fig.
A in Table S1), nor on mitochondrial and peroxisomal fatty acid

oxidation as the enzyme activities of CPT2 and ACOX1,

respectively, were unchanged (Fig. B and C in Figure S1).
ACAT activity, involved in cholesteryl ester synthesis, was also

unaltered (Fig. D in Figure S1).

Effects of SPH on Lipid Concentration and Fatty Acid
Composition in Plasma
In order to evaluate the effect of SPH treatment on plasma lipid

concentration, blood was collected for enzymatic measurement of

lipid profile after 77 days of dietary treatment. As shown in

Table 1, plasma total- and free-cholesterol, as well as TAG,

cholesteryl esters and phospholipids concentrations displayed

comparable levels between SPH-group and control group at the

end of treatment period, whereas NEFAs increased in SPH-fed

mice vs. controls (Table 1). Moreover, no difference was observed

between the two groups in the relative amount of saturated fatty

acids (SFA) (Table 2). The relative amount of monounsaturated

fatty acids (MUFA) in SPH-fed mice was slightly lower than

controls at day 77, mainly due to a small decrease in 18:1n-9 (oleic

acid) and 18:1n-7 (vaccenic acid) (Table 2). Total n-6 PUFAs

displayed a higher amount after 77 days of treatment in the SPH-

group, probably due to the increase of C18:2n-6 (linoleic acid) and

C20:4n-6 (arachidonic acid) compared to controls. In contrast, no

differences were detected in the weight % of n-3 PUFAs between

the two groups. As a consequence, a small reduction in n-3/n-6

ratio was observed after 77 days. Overall, the effect of the SPH-

diet on plasma lipids and fatty acids was modest.

Discussion

Fish intake is inversely correlated to CVD-risk factors in both

observational and clinical interventional trials [28]. Particular

attention has been drawn to the cardio-protective effects of fatty

fish species with high levels of omega-3 PUFAs through their lipid-

lowering, anti-inflammatory, antiplatelet and antiarrhythmic

mechanisms [29,30]. Marine organisms are also a rich source of

bioactive proteins and peptides that may induce health benefits

through antihypertensive and antioxidative [28], immunomodu-

lating [31] and lipid-lowering effects [14,17]. Thus, marine

proteins and peptides have been shown to influence the two

major risks for atherosclerotic development, namely hyperlipid-

emia and inflammation. Therefore, it was of interest to investigate

a potential anti-atherosclerotic effect of SPH-diet in apoE2/2 mice

fed a high-fat diet. Although these mice spontaneously develop

atherosclerosis on a standard rodent diet, a high-fat diet regimen,

Figure 1. Atherosclerotic plaque level in apoE2/2 mice fed a high-fat diet (control) or a diet with 5% SPH. After 12 weeks of dietary
treatment, whole aorta was collected and en-face analysis was performed to quantify aortic surface covered by atherosclerotic plaques. Bars represent
means 6 SD of 12 mice for each diet. Unpaired t-test was used to detect statistical significance (*P,0.05).
doi:10.1371/journal.pone.0097598.g001
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combined with female mice, was preferred to accelerate the

progression. We showed that apoE2/2 mice fed a high-fat diet

containing 5% (w/w) SPH for 12 weeks developed less athero-

sclerotic plaques compared to controls. In particular, we observed

a significant reduction of plaque area in the aortic arch as well as

in the aortic sinus. The pathophysiological complication of

atherosclerosis is plaque rupture causing heart attack and stroke

in humans. Vulnerability of plaque rupture is an important

element in the fatal outcomes of atherosclerosis, and content and

stability of the plaque is therefore of interest. However, there was

no change in aortic sinus plaque composition of connective tissue,

macrophages or lymphocytes, indicating that SPH had no effect

on plaque stability. Unfortunately, apoE2/2 mice are not

susceptible to the progress of plaque rupture unless treated with

a high-fat diet for over a year, thus studying plaque stability in this

model is limited.

During plaque development, accumulation of adhesion mole-

cules contributes to foam cell formation. In addition to decreased

plaque area in aortic arch, a decrease in expression of the adhesion

molecule Icam1, as well as a small reduction in Vcam1 and the

chemokine Mcp1, was detected in pooled aortic arch of SPH-

treated mice, suggesting a local anti-atherosclerotic effect of the

SPH-diet. The plaque area decreased, but no reduction in number

of macrophages was observed with immunostaining in the aortic

sinus. This could be due to a simultaneous decrease in number of

macrophages and plaque area, which would not be reflected in a

percentage measurement. The mRNA level of inflammatory

markers in heart was unaltered, and could explain the unchanged

levels of macrophages. However, mRNA levels were measured in

total heart that may weaken a potential reduction of these

inflammatory markers. The decrease in sinus plaque area, without

a change of macrophages could also be explained by shrinkage of

the lipid-rich core due to fewer lipids, thus the macrophages

decrease in size.

Liver is the main organ regulating lipoprotein metabolism,

including plasma TAG and cholesterol levels, and a high dietary

cholesterol intake has been reported to elevate liver inflammation

[8]. Noteworthy, the plasma concentrations of cholesterol and

TAG were not affected by SPH-treatment. This was accompanied

by unchanged fatty acid oxidation and ACAT activity. These

results are in contrast with previous reports showing cholesterol-

lowering effects of fish protein hydrolysates in both rats and mice

[14,16]. Although gene expressions of Acaca and the D9-desaturase
Scd1 were decreased, it did not affect plasma TAG in apoE2/

2mice. This lack of effect could be explained, at least partially, by

the lower amount of fish protein used in the present study (5%)

compared to previous studies, where 10–25% fish protein

hydrolysate were applied [14,16,17]. In C57BL/6 mice fed 5%

Figure 2. Histological and immunohistochemical characterization of plaques in the aortic sinus in apoE2/2 mice fed a high-fat diet
(control) or a diet with 5% SPH for 12 weeks. Representative photomicrographs and quantification of maximum plaque area (panels A–C).
Representative photomicrographs and quantification of extracellular matrix deposition (panels D–F), Lipid deposition (panels G–I), Macrophages
(panels J–L) and T lymphocytes (panels M–O). The amount of extracellular matrix, lipids, macrophages and T-lymphocytes is expressed as percentage
of the stained area over the total plaque area. Bar in panel A = 100 mm. Positive area (%) refers to the percentage of the plaque area occupied by
connective tissue, lipids, macrophages and T lymphocytes, respectively. Data are shown as means 6 SD for 6 mice for each diet and unpaired t-test
was used to detect significance (*P,0.05).
doi:10.1371/journal.pone.0097598.g002
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SPH for 6 weeks, a 32% decrease in plasma TAG has been found,

but no change in plasma cholesterol (data to be published). Thus,

in the present study, the disturbed plasma lipid transport in the

apoE2/2 mouse model might have interfered with the potential

TAG-lowering mechanism of SPH, while cholesterol-lowering

effect might not be expected at this dose. A lower cholesterol level

has been observed in animal studies when taurine was added in the

diets [32,33]. However, in our study, the cholesterol level was not

affected after intervention despite the presence of taurine in the

SPH-diet.

The plasma level of NEFAs was unchanged by SPH adminis-

tration and only minor alterations were observed in plasma fatty

acid composition. During the 12 weeks of feeding the plasma level

of MUFAs was slightly lower in the SPH-fed group, but this was

probably not of biological significance. Total n-6 PUFAs in plasma

was higher in SPH-fed mice at the end-point measurement.

Figure 3. Levels of mRNA expression in aorta and inflammatory mediators in plasma in apoE2/2 mice fed a high-fat diet (control) or
a diet with 5% SPH for 12 weeks. (A) The gene expressions of the inflammatory markers Icam1, Vcam1, Nos2 and Mcp1 were measured in pooled
aortic arch from six mice. Inflammatory markers in blood samples collected at day 77 of treatment were analysed (B) IL-1b, (C) IL-6, (D) IL-10, (E) TNF-a,
(F) GM-CSF and bars represent means6 SD of 4 pooled samples of 3 mice for each diet. Unpaired t-test was used to assess statistical significance and
results significantly different from control are indicated (*P,0.05, **P,0.01).
doi:10.1371/journal.pone.0097598.g003

Figure 4. Hepatic gene expression in apoE2/2 mice fed a high-fat diet (control) or a diet with 5% SPH for 12 weeks. Hepatic mRNA
levels of (A) Acaca and (B) Scd1. Data for gene expressions are shown as mean values relative to control6 SD for 4 mice for each diet. Mann-Whitney
test was used to assess statistical significance (*P,0.05).
doi:10.1371/journal.pone.0097598.g004
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Arachidonic acid and oleic acid was increased and decreased in

the SPH group and controls, respectively, after the feeding period.

The increase in arachidonic acid and linoleic acid with a

simultaneously decrease in oleic acid might be due to increased

synthesis of arachidonic acid and linoleic acid from their precursor

oleic acid. Although arachidonic acid is considered pro-inflam-

matory [34], we detected reduction in plaque area in aortic arch

and sinus, suggesting that SPH reduced atherosclerotic activity

independent of the plasma arachidonic acid level. n-3 PUFAs, the

n3/n6 ratio and anti-inflammatory index were not affected by

SPH feeding, which is in contrast to previous findings [35].

However, as stated previously, in the current study we used a

smaller amount of fish protein (5% vs. 15%) and the mouse model

could also influence the effect on fatty acid composition. Knockout

of the apoE gene causes an abnormal plasma lipid composition

and metabolism, which apparently this SPH-diet cannot counter-

act.

Cytokines play a key role in the progression of atherosclerosis

and it was of interest to note that the reduction in plaque area in

the aortic arch was accompanied by a lowering of inflammatory

markers in plasma, as reported in another study using salmon

protein on inflammatory bowel disease in rats [18]. Peroxisome

proliferator-activated receptors (PPAR), which are ligand-depen-

dent transcriptional factors regulating both fatty acid [36] and

amino acid metabolism [37], are shown to exert anti-inflammatory

potential by inhibiting expression of cytokines and other pro-

inflammatory factors [38]. The mechanism is unclear, but Zhu

et al. has recently shown that marine peptides may act as PPAR-

agonists and exert an anti-inflammatory effect [39]. Altogether,

these results suggest that SPH administration might prevent

atherosclerotic development by inhibiting activation of systemic

inflammation.

A small dose of SPH 3.5% in rats has been shown to potentially

exert antioxidant activities by reducing markers for oxidative stress

in colon [18]. In the current study, gene expressions of the

Table 1. Plasma lipids in apoE2/2 mice fed a high-fat casein diet (control) or a high-fat diet with 5% SPH after 77 days of dietary
treatment.

1Lipid class Day 77

Control SPH

Cholesterol 1260.9 1161.0

TAGs 1.460.1 1.360.1

Phospholipids 3.060.1 3.060.1

NEFAs 0.860.2 1.160.1*

Cholesteryl esters 8.160.8 7.960.8

Free Cholesterol 3.760.1 3.460.2

1mmol/L.
Data are shown as mean 6 SD (n= 4).
Abbreviations: NEFA, non-esterified fatty acid; SPH, salmon protein hydrolysate; TAG, triacylglycerol.
*P,0.05 vs. control.
doi:10.1371/journal.pone.0097598.t001

Table 2. Plasma fatty acid composition in apoE2/2 mice fed a high-fat casein diet (control) or a high-fat diet with 5% SPH after 77
days of dietary treatment.

1Fatty acids Control SPH

gSFAs 3260.5 3460.5

gMUFAs 3160.4 3060.4*

C18:1n-9 (oleic acid) 2560.4 2460.5

C18:1n-7 (vaccenic acid) 1.360.0 1.260.0*

n-6 PUFAs 2860.4 3060.4**

C18:2n-6 (linoleic acid) 1560.1 1660.2***

C20:4n-6 (arachidonic acid) 1260.4 1360.2*

n-3 PUFAs 6.460.3 6.360.3

C20:5n-3 (eicosapentaenoic acid) 0.5360.0 0.460.0

C22:6n-3 (docosahexaenoic acid) 5.060.3 5.060.2

n-3/n-6 0.260.0 0.260.0*

1Fatty acids (% w/w).
Data are shown as mean 6 SD (n= 4).
Abbreviations: MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids; SPH, salmon protein hydrolysate.
*P,0.05 vs. control.
**P,0.01 vs. control.
***P,0.001 vs. control.
doi:10.1371/journal.pone.0097598.t002
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antioxidants Sod1, Catalase and Nos2 in the heart were unchanged

by SPH administration, suggesting that SPH did not affect the

antioxidant defence system in the heart of apoE2/2 mice.

Although the present study has some limitations, such as absent

protein data on inflammatory mediators within the aortic lesions,

it gives indication that a salmon protein source may have a

protective role in atherosclerotic development through mecha-

nisms linked to inhibition of inflammation, and not directly related

to plasma lipid changes. Although the apoE2/2 mice model has

been used extensively in experiments studying atherosclerosis as it

gives the opportunity to study genetic influence on atherosclerosis

without using a high-fat diet rich in cholesterol, it is also a

challenging model to use. These mice develop severe atheroscle-

rosis due to accumulation of VLDL in plasma carrying most of the

cholesterol. VLDL, containing apoB-48, is considered more

atherogenic than the apoB-100-containing LDL. High plasma

levels of LDL are also most present in humans with atherosclerosis,

therefore in future studies it would be of interest to test this SPH in

LDLr2/2 mice.
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Krüger for excellent technical assistance, and Eline Milde Nevdal for

assisting with the animal experiment.

Author Contributions

Conceived and designed the experiments: CP BB TB JS RKB GC.

Performed the experiments: RV MB SH TB SM GSG BH. Analyzed the

data: RV BB FD. Contributed reagents/materials/analysis tools: CRS

JEN. Wrote the paper: CP RV BB PA RKB.

References

1. Lloyd-Jones DM (2010) Cardiovascular risk prediction: basic concepts, current

status, and future directions. Circulation 121: 1768–1777.

2. Woollard KJ (2013) Immunological aspects of atherosclerosis. Clinical Science

125: 221–235.
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