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Abstract

Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified
the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously
identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in
women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like
and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list
of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using
quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding
the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P,0.001) and osteoclast-like
cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1
receptor, in Saos-2 osteoblast-like cells (P,0.001). Other findings included down-regulation of the TNFRSF11B gene,
encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003–
0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA
knockdown in osteoclast-like cells (P,0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number
of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both
osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3
and RHOA genes in bone metabolism.
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Introduction

Osteoporosis is a common and debilitating bone disease that is

characterised by a low bone mineral density (BMD), which leads to

an increased risk of fracture [1]. The disease is particularly

prevalent in postmenopausal women due to a reduction in

oestrogen production, with subsequent effects on bone as well as

intestinal and renal calcium handling [2]. In addition to the effects

of oestrogen, calcium and other environmental factors on bone

structure, there is a strong genetic effect on peak bone mass

(attained in early adult life), bone loss and fracture rates [3,4].

Twin and family studies suggest that 50–90% of the variation in

peak bone mass [5–7] and 25–68% of the variance in osteoporotic

fracture is heritable [4,8,9]. The genome-wide linkage scanning

approach has identified at least 11 replicated quantitative trait loci

(QTL) for BMD [10–12], including the 3p14-p22 region of the

human genome (LOD 1.1–3.5) [11–14].

We have previously identified significant associations between

variation in the RHOA and ARHGEF3 genes, which are both

located within the 3p14-p22 region, and BMD in women [15,16].

The functions of these genes are related, with the product of the

ARHGEF3 gene (the Rho guanine nucleotide exchange factor

(GEF) 3) specifically activating two members of the RhoGTPase

family: RhoA (encoded for by the RHOA gene) and RhoB [17].

RhoA is involved with regulating cytoskeletal dynamics and actin

polymerisation [18] and has been shown to have a role in

osteoblast differentiation [19,20] and osteoclastic bone resorption

[21].

Given the associations that we have previously identified

between the RHOA and ARHGEF3 genes and BMD, coupled

with the evidence in the literature suggesting a role for RhoA in

osteoblasts and osteoclasts, we decided to further investigate the

role of these genes in these particular cell types. Knockdown of the

RHOA and ARHGEF3 genes was achieved using small interfering

RNA (siRNA) in a human osteoblast-like cell line and in osteoclast-

like cells derived from a donor, with subsequent microarray

analysis to identify genes that were differentially regulated.

Replication of selected significant findings was then conducted in

additional human osteoblast-like cell lines and in osteoclast-like

cells from additional donors.
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Materials and Methods

Ethics Statement
All subjects that donated blood samples for isolation of

peripheral blood mononuclear cells (PBMCs) provided written

informed consent and the institutional ethics committee of Curtin

University approved the experimental protocol.

Experimental Approach
To identify genes involved in osteoblast and osteoclast function

that are potentially influenced by the RHOA and ARHGEF3 genes,

we examined the influence of knockdown of these two genes on

264 candidate genes in an osteoblast-like cell line and osteoclast-

like cells obtained from a donor, in triplicate, by microarray

analysis. The microarray results showed significant alterations in

the expression of a number of the candidate genes, 7 of which

were studied in greater detail to validate the findings, based on

quantitative real-time PCR (qRT-PCR) studies of the 7 genes in 3

additional osteoblast-like and osteoclast-like cell cultures/lines.

Cell Culture
The osteoblast-like cell lines used for the gene knockdown

experiments included: Saos-2, derived from osteosarcoma tissue

(American Type Culture Collection (ATCC) Nu HTB-85) [22];

hFOB 1.19, derived from immortalised foetal osteoblasts (ATCC

Nu CRL-11372) [23]; and MG-63, derived from osteosarcoma

tissue (ATCC Nu CRL-1427) [24]. These cell lines are all human

in origin and were cultured in DMEM (Sigma-Aldrich, St. Louis,

USA) pH 7.4 supplemented with 4.77 g/l HEPES, 3.7 g/l

NaHCO3, 10% (v/v) foetal bovine serum (FBS) and 1% (v/v)

penicillin/streptomycin (100 units penicillin and 100 mg strepto-

mycin per ml of media). The osteoclast-like cells used in these

studies were differentiated from PBMCs (process described below)

and were cultured in a-MEM (Invitrogen, Carlsbad, USA) pH 7.4

supplemented with 2.2 g/l NaHCO3, 10% (v/v) FBS and 1% (v/

v) penicillin/streptomycin. All cells were cultured at 37uC with 5%

CO2 and the medium was changed every 2–3 days. Total RNA

was harvested from each culture using the RNeasy Mini Kit

(Qiagen, Hilden, Germany) and reverse transcription of the RNA

was performed using the QuantiTect Reverse Transcription Kit

(Qiagen, Hilden, Germany). Quantitation of total RNA was

performed using an ND-1000 spectrophotometer (NanoDrop

Technologies, Wilmington, USA).

Isolation of Peripheral Blood Mononuclear Cells and
Osteoclastogenesis
Osteoclast-like cells were differentiated from PBMCs isolated

from 4 male donors of European descent aged 48615 years (mean

6 SD). Each batch of cells was isolated from 30 ml whole blood

collected in 10 ml K2EDTA Vacutainer tubes (Becton, Dickinson

and Company, Franklin Lakes, USA). Anti-coagulated whole

blood samples were centrifuged at 2,200 rpm for 10 min at room

temperature before buffy coats were collected and diluted to a total

volume of 4 ml with 16phosphate buffered saline (PBS). The cell

suspension was then gently layered over 3 ml of Ficoll-Paque

(Pfizer, New York, USA) before being centrifuged again at

1,600 rpm for 40 min at room temperature. The PBMC layer was

collected and washed by re-suspension in 6 ml 16 PBS and

centrifuged at 800 rpm for 10 min at room temperature. The

wash step was repeated on the cell pellet before the cells were re-

suspended in 5 ml medium supplemented with 10 ng/ml macro-

phage colony stimulating factor (M-CSF) (Invitrogen, Carlsbad,

USA) and seeded directly into either a 24-well tissue culture plate

or 25 cm2 tissue culture flask. After two days, the medium was

replaced with medium supplemented with 10 ng/ml M-CSF and

100 ng/ml receptor activator of nuclear factor kappa-B ligand

(RANKL) (Invitrogen, Carlsbad, USA). The cells were then grown

using this medium formulation for 17 days while osteoclastogenesis

occurred.

Osteoclast-like cells were stained for tartrate resistant acid

phosphatase (TRAP) using a chromogenic TRAP enzyme

substrate to confirm production of the TRAP enzyme as an

indicator of the osteoclast phenotype. This involved washing the

cells with 16 PBS, fixation with 4% (v/v) paraformaldehyde for

15 min, washing 3 times with 16 PBS before incubation with

filtered TRAP stain solution at 37uC for 25 min. The stained cells

were then washed 3 times with 16PBS prior to visualisation using

light microscopy.

siRNA Knockdown
Transfection of cells with siRNA sequences was used to

knockdown expression of the ARHGEF3 and RHOA genes.

Transfections were performed using HiPerFect Transfection

Reagent (Qiagen, Hilden, Germany). Two different siRNA

sequences were used in tandem to knockdown expression of each

gene. There is evidence to suggest that the RhoA protein has a

half-life of up to 31 h [25], therefore a minimum gene knockdown

period of 48 h was used to ensure an effect at the protein level.

Negative controls treated with AllStars Negative Control siRNA

(Qiagen, Hilden, Germany) were included in each experiment. All

knockdown experiments were performed in triplicate. Knockdown

of the ARHGEF3 and RHOA genes did not appear to influence the

proliferation or viability of any of the cell types studied.

Knockdown in Osteoblast-like Cells
siRNA knockdown experiments were performed in 24-well

tissue culture plates. For the Saos-2, hFOB 1.19 and MG-63

osteoblast-like cell lines, each well was seeded with 56104 cells.

Cells were grown for 24 h before fresh medium was added to each

culture and transfections were performed using a final siRNA

concentration of 30 nM with 6 mL transfection reagent per well.

Cells in each well were incubated with the transfection mix for

48 h at 37uC prior to washing with 16PBS and extraction of total

RNA.

Knockdown in Peripheral Blood Mononuclear Cells/
Osteoclast-like Cells
500 mL of freshly isolated PBMCs were aliquoted into 24-well

tissue culture plates. Osteoclastogenesis was stimulated and

confirmed microscopically and biochemically as described previ-

ously by TRAP staining. siRNA knockdown experiments were

performed using a final siRNA concentration of 100 nM with

6 mL transfection reagent per well. Cells in each well were

incubated with the transfection mix for 48 h at 37uC prior to

washing with 16PBS and extraction of total RNA.

RNA Extraction and Microarray Analysis
A total of 18 RNA samples, 9 from Saos-2 and 9 from

osteoclast-like cell cultures (donor 1) were used for the microarray

analysis. Each set of 9 was comprised of 3 cultures treated with

siRNA specific for ARHGEF3, 3 treated with siRNA specific for

RHOA and 3 treated with negative control siRNA. Total RNA was

extracted from each culture using the RNeasy Mini Kit (Qiagen,

Hilden, Germany). The quality and quantity of all RNA samples

was checked prior to microarray analysis using a 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, USA). 10 mL of each RNA

sample was amplified using the TotalPrep RNA Amplification Kit

Influence of ARHGEF3 and RHOA Knockdown
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(Applied Biosystems, Foster City, USA) before microarray analysis

was performed using the HumanHT-12 v3 Expression BeadChip

Kit (Illumina, San Diego, USA). The HumanHT-12 BeadChip

profiles the expression of more than 25,000 annotated genes

derived from NCBI RefSeq (Build 36.2) [26]. The complete results

from the microarray analyses performed in this study have been

submitted to The University of Western Australia’s Research Data

Online resource.

Gene Selection
While data were generated for most of the .25,000 genes

included on the microarray, only 264 candidate genes were

selected for statistical analysis in order to limit the potential for

false positives. These candidate genes were selected on the basis of

the following criteria: genes thought to have potentially important

roles in osteoblast (n = 45) or osteoclast function (n= 62), or genes

thought to play a role in the RhoA/ARHGEF3 signalling pathway

(n = 157).

Quantitative Real-time PCR
qRT-PCR was used to determine the degree of gene

knockdown achieved and to validate microarray results for

selected targets. Reverse transcription of RNA samples was first

performed using the QuantiTect Reverse Transcription Kit

(Qiagen, Hilden, Germany). The resulting cDNA was then

amplified using the QuantiFast SYBR Green Kit (Qiagen, Hilden,

Germany) in conjunction with an iQ5 Multicolor Real-Time PCR

Detection System (Bio-Rad, Hercules, USA). cDNA samples were

diluted in 16TE buffer before analysis. QuantiTect Primer Assays

(Qiagen, Hilden, Germany) were used to amplify most gene

transcript sequences. Bioinformatics analysis revealed that the

QuantiTect Primer Assay for the candidate gene ACTA2 amplifies

only one of the two transcript variants for this gene. Therefore, a

custom primer pair was designed for this gene using the web-based

Primer3 software package [27]. The human 18S ribosomal RNA

gene (RRN18S) was selected as an internal reference for this work

to allow for normalisation of the data for variations in the quantity

of cDNA added to each reaction. The reaction efficiency of each

primer pair was calculated by amplifying a 10-fold dilution series

of target sequence across 5 orders of magnitude. This was

performed to confirm that the amplification efficiency of each gene

of interest is no more than 10% from that of the internal reference

as recommended by Schmittgen and Livak [28]. The log template

dilution (x-axis) was plotted against the cycle threshold (CT) value

obtained for each dilution (y-axis) with the slope of the line used

for calculation of amplification efficiency using the equation m=2

(1/log E), where m is the slope of the line and E is the reaction

efficiency. A reaction efficiency of 2.0 equates to a perfect doubling

of amplicon product during each PCR cycle. All reactions were

performed in triplicate with the mean CT value used in the

statistical analysis. Melting-curve analysis was performed on all

real-time PCR products to confirm amplification of a single DNA

sequence. A random selection of PCR products were also

subjected to agarose gel electrophoresis for additional confirma-

tion of the specificity of amplification.

Microarray Statistical Analysis
Differential expression analysis of the microarray data using the

Illumina custom error model was performed using the BeadStudio

v3.4.0 software package (Illumina, San Diego, USA). Samples

treated with the negative control siRNA were specified as the

reference group. The raw microarray gene expression data were

normalised using the quantile normalisation algorithm [29], which

adjusts the sample signals to minimise the influence of variation

arising from non-biological factors (eg. pipetting variation) [30].

Background subtraction was performed on the data to minimise

the variation in background noise between arrays and to remove

signal resulting from non-specific hybridisation [31]. Once

background subtraction has been performed on the data, the

expected signal for unexpressed targets is zero. The data were

corrected for multiple testing using the Benjamini-Hochberg False

Discovery Rate algorithm [32].

Real-time PCR Statistical Analysis
Gene expression ratios were calculated using the comparative

CT method as described by Schmittgen and Livak [28]. Briefly, the

DCT (CT of the test gene2CT of the internal reference) was

calculated for each gene of interest in each sample in the test and

control groups. This figure was then entered into the equation

22DC
T with the mean 6 standard error calculated for each of the

test and control groups. 22DC
T values for test and control groups

were analysed using an unpaired t-test to determine whether

differences in expression were statistically significant. Combined

22DC
T values for the osteoclast-like cells were examined by 2-way

analysis of variance (ANOVA) (note that this combined analysis

was not performed for the osteoblast-like cells due to potential

variation in the maturation state and gene expression profile of

each cell line). Significant associations are defined as P,0.05.

Results

Osteoblast Microarray Results
Knockdown of the ARHGEF3 and RHOA genes was validated in

the Saos-2 cells by qRT-PCR prior to microarray analysis. For the

ARHGEF3 and RHOA genes, 81% and 79% knockdown was

achieved respectively in these cells (Fig. 1A and B). Of the 202

candidate genes examined in the osteoblast-like cells, gene

knockdown resulted in significant changes in expression of 10

genes after adjustment for multiple testing (Table 1). Knockdown

of ARHGEF3 resulted in significant changes to the expression of 8

genes: TNFRSF11B, SP7, ALPL, ANGPTL2, GNA11, MYO9B,

GNAI2 and PFN1. For RHOA knockdown, 2 genes were affected:

PTH1R and ACTA2. Table S1 contains the microarray results for

all of the candidate genes examined in the Saos-2 cells (P values

corrected for multiple testing).

qRT-PCR Validation and Replication of Microarray Results
for Targeted Genes in Osteoblast-like Cell Lines
Both of the differentially regulated genes in the RHOA

knockdown group (PTH1R and ACTA2) and 2 from the ARHGEF3

knockdown group (TNFRSF11B and ALPL) were then selected for

confirmatory and replication studies using qRT-PCR. While the

microarray results suggested that 8 of the 202 genes examined

could potentially be regulated by ARHGEF3, the TNFRSF11B and

ALPL genes were selected based on a number of factors including

their importance to bone metabolism, their level of expression in

the cell type and the size and statistical significance of the

regulatory effect. These 4 genes were thus examined in one

additional replication study experiment in Saos-2 cells as well as in

two additional osteoblast-like cell lines, hFOB 1.19 and MG-63.

For the ARHGEF3 and RHOA genes, 75% and 68% knockdown

was achieved respectively in the replication batch of Saos-2 cells,

75% and 77% respectively in the hFOB 1.19 cells and 84% and

83% respectively in the MG-63 cells (Fig. 1A and B). The average

knockdown achieved across all of the osteoblast-like cell lines as

determined by qRT-PCR was 76.8% for RHOA and 78.7% for

ARHGEF3 (Fig. 1A and B).

Influence of ARHGEF3 and RHOA Knockdown
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The influence of gene knockdown on TNFRSF11B, ALPL,

PTH1R and ACTA2 expression is shown in Fig. 2A–D. A highly

significant down regulation of ACTA2 was observed in response to

RHOA knockdown in each of the osteoblast-like cell lines examined

Table 1. Genes significantly influenced in microarray analysis of ARHGEF3 and RHOA gene knockdown in Saos-2 osteoblast-like
cells.

Knockdown Gene
Gene
product

Mean
knockdown
*FU

Mean
control
*FU

Expression
ratio P

ARHGEF3 TNFRSF11B Osteoprotegerin 235 308 0.76 ,0.001

SP7 Osterix 434 381 1.14 0.007

ALPL Alkaline
phosphatase

19262 17173 1.12 0.03

ANGPTL2 Angiopoietin-like 2 81 50 1.64 ,0.001

GNA11 Guanine nucleotide binding
protein alpha 11

352 469 0.75 0.002

MYO9B Myosin IXB 165 212 0.78 0.005

GNAI2 Guanine nucleotide binding
protein alpha inhibiting activity polypeptide 2

1106 1330 0.83 0.006

PFN1 Profilin 1 7458 8220 0.91 0.02

RHOA PTH1R Parathyroid hormone 1 receptor 1166 492 2.37 0.002

ACTA2 Alpha 2 actin, smooth muscle 3059 7812 0.39 ,0.001

Expression ratios are given as expression of the gene in the knockdown cultures relative to the negative control cultures. P adjusted for multiple testing.
*FU, fluorescence units.
doi:10.1371/journal.pone.0098116.t001

Figure 1. qRT-PCR validation of ARHGEF3 and RHOA gene knockdown in each cell type. (A) ARHGEF3 mRNA expression in osteoblast-like
cells. (B) RHOA mRNA expression in osteoblast-like cells. (C) ARHGEF3 mRNA expression in osteoclast-like cells. (D) RHOA mRNA expression in
osteoclast-like cells. Data displayed as mean 22DC

T 6 SEM from three biological replicates. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0098116.g001
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(P,0.001). The qRT-PCR results also confirmed the up-regula-

tion of the PTH1R gene in response to RHOA knockdown

observed in the microarray screen (P,0.001); however, neither the

hFOB 1.19 nor the MG-63 cell lines expressed this particular

gene. The qRT-PCR studies showed ARHGEF3 knockdown had a

significant influence on TNFRSF11B expression in the Saos-2 and

hFOB 1.19 cell lines (P= 0.003–0.02), however little influence was

seen in the MG-63 cells. ARHGEF3 knockdown had no consistent

influence on ALPL expression.

Osteoclast Microarray Results
The osteoclastic phenotype of the cells was confirmed by

expression of the genes encoding the osteoclastic biochemical

markers TRAP (ACP5), cathepsin K (CTSK) and calcitonin

receptor (CALCR) from the microarray output. The ACP5 and

CTSK genes were found to be expressed at particularly high levels

in this cell type (mean microarray signal .14,000 fluorescence

units).

Knockdown of the ARHGEF3 and RHOA genes was validated in

the osteoclast-like cells by qRT-PCR prior to microarray analysis.

For the ARHGEF3 and RHOA genes, a mean knockdown of 63%

and 84% was achieved respectively in the osteoclast-like cells from

donor 1 (Fig. 1C and D). Of the 219 candidate genes examined in

this cell type, gene knockdown resulted in significant changes in

expression of 17 genes after adjustment for multiple testing

(Table 2). ARHGEF3 knockdown was found to significantly

influence the expression of 12 genes: CCL5, HLA-C, SNCA, TNF,

OSCAR, CD44, BIRC3, ITGB7, ITGAE, ITGAL, ITGA3 and

ITGAM. For RHOA knockdown, 9 genes were found to be

significantly influenced: TNF, THBS2, CCL5, ITGB7, ARHGDIA,

IGF1, ACTA2, MYL9 and ITGAE. Of these, the effect of RHOA

knockdown on the ACTA2 gene was also observed in the

osteoblast-like cells. Table S2 contains the microarray results for

all of the candidate genes examined in the osteoclast-like cells (P

values corrected for multiple testing).

qRT-PCR Validation and Replication of Microarray Results
for Targeted Genes in Osteoclast-like Cells
In the osteoclast studies, two of the differentially regulated genes

from each of the knockdown experiments were selected for

validation and replication analysis by qRT-PCR in osteoclast-like

cells from 3 additional donors. These included the CCL5 and

OSCAR genes for ARHGEF3 knockdown, and ARHGDIA and

ACTA2 genes for RHOA knockdown (Fig. 3A–D).

For the ARHGEF3 and RHOA genes, 41% and 36% knockdown

was achieved respectively in the donor 2 cells, 52% and 45%

respectively in the donor 3 cells and 25% and 32% respectively in

the donor 4 cells (Fig. 1C and D). The efficiency of knockdown of

ARHGEF3 and RHOA averaged 45.3% and 49.3% respectively in

this cell type, substantially lower than that observed in the

osteoblast-like cells (76.8% vs 49.3% for RHOA, P= 0.07; 78.7% vs

45.3% for ARHGEF3, P= 0.007). The knockdown was consider-

ably lower than desired, however there was some evidence from

the overall analysis to suggest that knockdown of RHOA reduces

Figure 2. qRT-PCR validation of selected genes in response to ARHGEF3 and RHOA gene knockdown in osteoblast-like cells. (A)
TNFRSF11B mRNA expression in osteoblast-like cells. (B) ALPL mRNA expression in osteoblast-like cells. (C) PTH1R mRNA expression in osteoblast-like
cells. (D) ACTA2 mRNA expression in osteoblast-like cells. Data displayed as mean 22DC

T 6 SEM from three biological replicates. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0098116.g002
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the expression of ACTA2 in this cell type (P=0.002 by ANOVA).

RHOA knockdown also caused a significant overall reduction in

ARHGDIA expression in the osteoclast-like cells (P,0.001 by

ANOVA). While some significant changes were seen for cells from

particular donors, the influence of ARHGEF3 knockdown on CCL5

and OSCAR was inconsistent.

Discussion

We previously reported associations between polymorphism in

the RHOA and ARHGEF3 genes and bone density in women and

in this study investigated the potential role of these genes in the

regulation of bone cells. The knockdown of these two genes

showed clear effects on the expression of a number of potentially

relevant genes and pathways in two of the major bone cell types –

osteoblasts and osteoclasts. Greater gene knockdown levels were

achieved in the osteoblast-like cells than in the osteoclast-like cells.

Concerning the studies performed in the osteoblast-like cells,

expression of the ACTA2 gene was found to be significantly down-

regulated by RHOA knockdown in all three osteoblast-like cell lines

examined (Saos-2, hFOB 1.19 and MG-63), with an average

expression ratio of 0.35 seen in knockdown cell cultures relative to

control cell cultures by qRT-PCR. The ACTA2 gene encodes the

alpha 2 actin cytoskeletal protein, which is a major component of

the smooth muscle cell contractile apparatus and accounts for

around 40% of the total protein and around 70% of the total actin

in smooth muscle cells [33,34]. There have been few studies on the

role of the ACTA2 gene product in bone metabolism, however

there is evidence in the literature to suggest that the ACTA2 gene is

regulated by RhoA signalling. Mack et al. [35] found that

expression of constitutively active RhoA in rat smooth muscle

cell cultures increased the activity of the Acta2 promoter, whereas

inhibition of RhoA decreased the activity of the promoter. They

also found that stimulation of actin polymerisation in these smooth

muscle cells increased the activity of the Acta2 promoter by 13-fold

[35]. In addition, Zhao et al. [36] reported that static tensile forces

applied to rat fibroblasts stimulates the promoter activity of the

Acta2 gene through the Rho signalling pathway. Collectively, these

data suggest that expression of the ACTA2 gene may be regulated

through the RhoA signalling pathway, and the results presented

here support this.

Knockdown of the ARHGEF3 gene in both the discovery and

replication experiments with Saos-2 cells resulted in significant

down-regulation of the levels of TNFRSF11B (osteoprotegerin)

mRNA. This effect was replicated in the hFOB 1.19 cells, but not

in the MG-63 cell line. It is not clear why this effect was not seen in

the MG-63 cells, it may be an effect specific to that cell line.

Table 2. Genes significantly influenced in microarray analysis of ARHGEF3 and RHOA gene knockdown in osteoclast-like cells from
donor 1.

Knockdown Gene Gene product

Mean
knockdown
*FU

Mean
control
*FU

Expression
ratio P

ARHGEF3 CCL5 Chemokine ligand 5 4402 588 7.48 ,0.001

HLA-C Major histocompatibility complex,
class I, C

235 87 2.71 ,0.001

SNCA Synuclein, alpha 129 260 0.49 ,0.001

TNF Tumour necrosis
factor alpha

420 156 2.69 ,0.001

OSCAR Osteoclast associated
Ig-like receptor

1950 1244 1.57 0.01

CD44 CD44 molecule 2279 3360 0.68 0.03

BIRC3 Baculoviral IAP repeat-containing 3 496 321 1.55 0.04

ITGB7 Integrin, beta 7 588 106 5.54 ,0.001

ITGAE Integrin, alpha E 256 483 0.53 ,0.001

ITGAL Integrin, alpha L 145 79 1.85 0.003

ITGA3 Integrin, alpha 3 107 221 0.48 0.003

ITGAM Integrin, alpha M 1033 1699 0.61 0.004

RHOA TNF Tumour necrosis
factor alpha

345 156 2.21 ,0.001

THBS2 Thrombospondin 2 89 43 2.05 ,0.001

CCL5 Chemokine ligand 5 891 588 1.52 0.006

ITGB7 Integrin, beta 7 246 106 2.32 ,0.001

ARHGDIA Rho GDP dissociation
inhibitor alpha

579 998 0.58 ,0.001

IGF1 Insulin-like growth factor 1 121 42 2.86 ,0.001

ACTA2 Alpha 2 actin, smooth muscle 545 965 0.56 0.001

MYL9 Myosin, light chain 9, regulatory 22 49 0.46 0.04

ITGAE Integrin, alpha E 342 483 0.71 0.04

Expression ratios are given as expression of the gene in the knockdown cultures relative to the negative control cultures. P adjusted for multiple testing.
*FU, fluorescence units.
doi:10.1371/journal.pone.0098116.t002
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TNFRSF11B mRNA levels were significantly higher in the MG-63

cells than in the hFOB 1.19 and Saos-2 cells, in line with studies by

Pautke et al. [37]. There are well described differences in the

expression patterns between osteoblast-like cell lines reported

elsewhere [37–39].

In addition to these findings, knockdown of the RHOA gene in

both the discovery and replication batches of Saos-2 cells resulted

in significant up-regulation of PTH1R (parathyroid hormone 1

receptor) mRNA levels, although expression of this gene was not

detected in the hFOB 1.19 or MG-63 cell lines. Both PTH1R and

TNFRSF11B have a major role in the stimulation of osteoclasto-

genesis upon exposure to parathyroid hormone (PTH), suggesting

that the ARHGEF3 and RHOA genes may be involved in this

process. Radeff et al. [40] found that treatment of UMR-106 rat

osteoblast-like cells with Clostridium difficile toxin B, which

specifically inhibits the Rho proteins (including RhoA) through

glucosylation of the nucleotide binding site [41], reduced PTH-

induced expression of the Il6 gene, the product of which has been

shown to promote osteoclastogenesis [42]. The authors concluded

that the Rho proteins are an important component of PTH

signalling in osteoblasts and may have a role in the activation of

the intracellular messenger protein kinase C alpha [40]. Another

study published by Wang and Stern [43] found that UMR-106 rat

osteoblast-like cells transfected with dominant negative RhoA and

treated with PTH and/or calcitriol increased production of

TNFSF11 mRNA (encoding RANKL) and reduced production

of TNFRSF11B mRNA, stimulating osteoclastogenesis of co-

cultured RAW 264.7 mouse monocyte/macrophage-like cells

[43]. However, when these cells were transfected with constitu-

tively active RhoA and treated with PTH and/or calcitriol, the

levels of TNFSF11 and TNFRSF11B mRNA did not change

significantly and osteoclastogenesis of the RAW 264.7 cells failed

to occur [43]. These results led the authors to suggest that RhoA

signalling can inhibit hormone-stimulated osteoclastogenesis

through effects on RANKL and osteoprotegerin expression in

osteoblasts [43]. No consistent effect of ARHGEF3 knockdown on

ALPL expression could be found, however a higher expression of

this gene in Saos-2 cells was found compared to the other cells

investigated, including the MG-63 cells, in line with the findings of

Pautke et al. [37].

One limitation of the gene expression data in the osteoclast-like

cells was that consistently high gene knockdown (.60%) was not

achieved in some of our experiments, and a greater level of

knockdown may show more substantial changes than seen in our

studies. Nevertheless, some interesting results were obtained.

Expression of the ARHGDIA and ACTA2 genes was found to be

significantly reduced in response to RHOA gene knockdown. The

product of the ARHGDIA gene is a Rho GDP dissociation inhibitor

(GDI) which acts as a negative regulator of several of the

RhoGTPases [44]. RhoGDIs maintain the Rho proteins in their

inactive GDP-bound state by inhibiting the exchange of GDP for

GTP [45] and by restricting membrane anchoring [46]. The

Figure 3. qRT-PCR validation of selected genes in response to ARHGEF3 and RHOA gene knockdown in osteoclast-like cells. (A) CCL5
mRNA expression in osteoclast-like cells. (B) OSCARmRNA expression in osteoclast-like cells. (C) ARHGDIAmRNA expression in osteoclast-like cells. (D)
ACTA2 mRNA expression in osteoclast-like cells. Data displayed as mean 22DC

T 6 SEM from three biological replicates. *P,0.05, **P,0.01, {
determined as significant by ANOVA.
doi:10.1371/journal.pone.0098116.g003
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down-regulation of ARHGDIA expression seen in the RHOA

knockdown osteoclast-like cells in this study could be a compen-

satory mechanism for the reduced expression of the RHOA gene.

The influence of RHOA knockdown on expression of the ACTA2

gene adds further support to the earlier suggestion that expression

of this gene is regulated by the RhoA signalling pathway.

In conclusion, knockdown of the ARHGEF3 and RHOA genes in

bone cells of human origin reveals important regulatory changes

including significant down-regulation of the ACTA2 gene, encod-

ing the cytoskeletal protein alpha 2 actin, in both osteoblast-like

and osteoclast-like cells in response to RHOA knockdown. RHOA

knockdown also resulted in up-regulation of the PTH1R gene in

the Saos-2 osteoblast-like cell line and down-regulation of

ARHGDIA in osteoclast-like cells, whereas ARHGEF3 knockdown

caused down-regulation of the TNFRSF11B gene in the Saos-2 and

hFOB 1.19 osteoblast-like cells. These findings add further

evidence to previous studies suggesting a role for the RHOA and

ARHGEF3 genes in bone metabolism. Future work in this area

could include confirmatory studies investigating the influence of

over-expression of the ARHGEF3 and RHOA genes in these cell

types and examination of effects at the protein level.
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