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Viscoelasticity of Tau Proteins Leads to Strain Rate-Dependent Breaking
of Microtubules during Axonal Stretch Injury: Predictions from a
Mathematical Model

Hossein Ahmadzadeh,” Douglas H. Smith,* and Vivek B. Shenoy'™*

TDepartment of Materials Science and Engineering and *Penn Center for Brain Injury and Repair and Department of Neurosurgery,
University of Pennsylvania, Philadelphia, Pennsylvania

ABSTRACT The unique viscoelastic nature of axons is thought to underlie selective vulnerability to damage during traumatic
brain injury. In particular, dynamic loading of axons has been shown to mechanically break microtubules at the time of injury.
However, the mechanism of this rate-dependent response has remained elusive. Here, we present a microstructural model
of the axonal cytoskeleton to quantitatively elucidate the interaction between microtubules and tau proteins under mechanical
loading. Mirroring the axon ultrastructure, the microtubules were arranged in staggered arrays, cross-linked by tau proteins. We
found that the viscoelastic behavior specifically of tau proteins leads to mechanical breaking of microtubules at high strain rates,
whereas extension of tau allows for reversible sliding of microtubules without any damage at small strain rates. Based on the
stiffness and viscosity of tau proteins inferred from single-molecule force spectroscopy studies, we predict the critical strain
rate for microtubule breaking to be in the range 22-44 s, in excellent agreement with recent experiments on dynamic loading
of micropatterned neuronal cultures. We also identified a characteristic length scale for load transfer that depends on microstruc-
tural properties and have derived a phase diagram in the parameter space spanned by loading rate and microtubule length that
demarcates those regions where axons can be loaded and unloaded reversibly and those where axons are injured due to

breaking of the microtubules.

INTRODUCTION

Mild traumatic brain injury (mTBI), alternatively called
“concussion”, is now recognized as a major health issue.
Selective damage to axons throughout the white matter is
thought to be the key pathological substrate of mTBI, with
significant work devoted to characterizing the biochemical
degradation of the axons after injury (1,2). However,
emerging evidence suggests that primary mechanical forces
play an important role in triggering these biochemical
cascades (1,3,4). In particular, it has been observed that
the axonal ultrastructure can rupture during dynamic
loading at strain rates found in TBI, resulting in transport
interruption (5-7). This mechanical vulnerability of axons
is thought to be due to their uniquely viscoelastic properties,
with the axonal cytoskeleton consisting of microtubule
bundles that are cross-linked by the microtubule-associated
protein (MAP), tau (Fig. 1).

Over several years, a micropatterned cell culture system
has been used to examine the immediate effects of dynamic
stretch applied exclusively to axons (5-10). Under slow
loading rates of stretch (strain rates ~0.01 s_l), axons easily
tolerate stretching up to twice their original length and re-
turned back to their prestretch length with no evidence of
damage. However, under dynamic loading conditions (strain
rates > 26 s~ '), multiple regions of undulating distortions
were observed along the length of the axons (6). Notably,
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undulating axonal profiles are also found in the white matter
acutely following TBI in humans (7), suggesting the same
mechanical mechanism of cytoskeletal disruption occurs
in real-world conditions.

To characterize the mechanical damage to the axonal
ultrastructure that follows stretch injury in vitro, longitudi-
nal sections of the axons were examined using transmission
electron microscopy (5). Interestingly, significant alter-
ations of microtubule configurations were found in the
undulated regions of the axon. Specifically, physical breaks
of microtubules were observed at the peak of the undula-
tions, with the conspicuous free ends displaying a frayed
appearance similar to a microtubule undergoing cata-
strophic depolymerization (Fig. 1). The breaking and
buckling of microtubules were found to physically impede
relaxation of the axon until the regional microtubules
were subsequently chemically depolymerized (4). In
consideration of constructing a mathematical model of
this process, in what follows, the same mechanical loading
conditions are employed as well as strain-rate-dependent
responses of whole axons that have been reported by other
authors (11-13).

Notably, these studies show that although microtubules
are the stiffest structural components of axons (14), they,
nonetheless, become the weakest-link at large strain rates
(5). To examine the mechanism behind this mechanical
breaking of microtubules, we developed a viscoelastic
micromechanical model of the axon to study its response
to dynamic loading. It has previously been shown that the
overall response of the axon to mechanical forces during
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FIGURE 1

(A) Electron microscopy image of porcine brain MTs polymerized with tau protein. (Arrows) Cross-linkers between the MTs. Scale bar =

100 nm. (Reprinted with permission from ©1988 Rockefeller University Press. Originally published in Hirokawa et al. (8).) (B) Experimental results for
injury of cultured 2-mm-long axons (5). A controlled air pulse (with duration <50 ms) is applied to the axon and the increase in the length is used to infer
tensile stretch of the axon. (Arrows) Intact straight MTs inside the axon; (asterisk) broken ends of the MTs at the peak of the generated undulations. (C) Due
to the interruption of the axonal transport, swelling starts to appear at the end of the broken MTs (asterisks) (D) The swelling grows and becomes more
apparent in the transmission electron microscopy micrographs (taken at 1-2 h after injury). Scale bars in panels B—D = 500 nm. Reprinted with permission

from Tang-Schomer et al. (5).

stretch and stretch growth is viscoelastic (15,16). This
observed viscoelastic response has been modeled by treating
the axon with spring and dashpot models that do not account
for the internal structure (15,16). The model we have devel-
oped here to study failure, consists of staggered arrays of
microtubules cross-linked by MAP tau proteins, mimicking
the normal architecture in vivo (17).

Although we treat microtubules as elastic elements, the
tau protein is treated as a viscoelastic spring, based on previ-
ous characterization (18). The viscosity of tau, representing
the rate dependence of the breaking of intramolecular bonds
in the protein, has been recently measured using single-
molecule force spectroscopy studies (18). By including these
components, we derive a set of coupled partial differential
equations to study the competition between stretching of
the microtubules and the sliding of microtubules relative to
their neighbors. We find that the former dominates over the
latter at large strain rates, providing a quantitative mecha-
nism of why microtubules can break, despite being much
stiffer than the other cytoskeletal components. Our equations
allow us to study the variation of the stretch along the length
of the microtubule, hence enabling us to determine the loca-
tions where breaks in the microtubule lattice occur. We also
predict the critical strain rate at which microtubules break as
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a function of their length by only using material parameters
determined from experimental measurements (8,19-21).

MODEL AND GOVERNING EQUATIONS

As discussed in detail in Burgoyne (17) and Brady et al.
(22), the axon structure consists of microtubules (MTs)
cross-linked with short side-arm biopolymers called tau pro-
teins. Among the components of the neuronal cytoskeleton,
MTs serve both as organelle transport tracks and neuronal
structural elements (22). For simplicity, we have not
included another major cytoskeletal structure, neurofila-
ments, because the MTs are larger and stiffer than neurofila-
ments. Indeed, recent work has shown that the mechanical
stiffness of the axon was most reduced in MT-disrupted
axons compared to neurofilament-disrupted axons, confirm-
ing that MTs contribute the most to the mechanical proper-
ties of the axon (23). Because the focus of this work is on the
mechanical response and failure of the axon during dynamic
loading, following previous work (24), we adopt a hexago-
nal microtubule lattice cross-linked by tau proteins shown in
Fig. 2 a.

As suggested by electron micrography studies (17), we
assume a staggered distribution of MTs, where alternate
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FIGURE 2 (a) The microstructure of the axon consists of MTs cross-linked by tau proteins (springs). The unit cell used in the mathematical analysis with
staggered neighbors is also shown. The viscoelastic model considered for the tau protein consists of a spring (stiffness K) and a dashpot (viscosity w).
(Free-body diagram) Axial and shear components of forces acting on the MTs. (b) The response of the tau protein to different pulling rates at five different
strains, £1—€s. (Red dots) Intramolecular bonds; (green solid-curve) backbone of the tau protein. At slow strain rates, the intramolecular bonds rupture at
smaller force levels (magnitude of the force is proportional to arrow lengths), whereas at fast strain rates, larger force levels are needed to stretch the protein.
(Blue segment) Section of the protein backbone that stretches at fast rates of pulling, whereas its length is nearly constant at slow rates. To see this figure in

color, go online.

rows of MTs are staggered with respect to their neighbors
by a distance L (refer to Fig. 2 a). For each MT, a hollow
cylindrical cross-section with outer and inner radii Ry
and R, respectively, and Young’s modulus E,, (typically
Ro = 125 nm, R; = 7 nm, and E,;, = 1.9 GPa (19)),
is assumed. Each MT is surrounded by near-neighbor
MTs, where the «-value of four and six results in the
square and hexagonal distribution of the MTs in the
axon. The distance between neighboring MTs is denoted
by d,, (typically 23-38 nm (20)) and the spacing between
the adjacent tau proteins is denoted by dy (typically
20-40 nm (8)).

To study the mechanical response of the axon for
different loading rates, a viscoelastic shear-lag model for
tau-mediated sliding of the microtubules is derived and
numerically solved. As we discuss below, recent experi-
ments (18) clearly show that the mechanical response of
tau proteins is characterized by both elastic and viscous
contributions. To capture these features of the mechanical
response, a Kelvin viscoelastic model (shown in Fig. 2 a)
consisting of a spring with stiffness K in parallel with a
dashpot with viscosity u is used for tau proteins. For this
viscoelastic element, the force F-displacement ¢ relation
satisfies

. F
mo+o =4, 6]

where the dot represents the time derivative, and

n = u/K. )

As the axon is loaded, forces are transferred from one
MT to neighboring MTs through the stretching of the tau
proteins, which leads to sliding of the MTs relative to
each other. To compute the shear stress on the surface of
the MTs due to stretching of the tau-proteins, we place a
Cartesian coordinate system at the center of one MT, in
such a way that the x axis is oriented along the length of
the MT (refer to Fig. 2 a). We define a unit cell made up
of two adjacent staggered MTs, with longitudinal displace-
ment fields denoted by u;(x,f) and u,(x,7). With this defini-
tion, the elongation of the tau protein connecting the two
points of the two adjacent MTs is

o=uy(x,t) — uy(x,1). 3)

From this elongation, the force generated in each tau protein
can be converted to a shear stress 7(x,f) acting on the surface
of the MTs through the relation (Fig. 2 a)

F

1) = 2(Ro — R)) dy

cos(6), “

where ( is the angle between the tau protein and the MT.
Next, by considering force balance in the axial direction
of the MT, this shear stress can be converted to the
normal/axial stress, o(x,f), in the MTs by using the relation
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(see the free-body diagram shown in Fig. 2 a and also
Ahmadzadeh et al. (25))

doy(x,t)  doar(x,t) 2a
o ox  m(Ro+R))

T(x,0).  (5)

Combining Egs. 1-5 results in the governing system of

partial differential equations,

0%uy (x, 1)
ox?

0%uy(x, 1)

—212 = 2I?
[& c a X2

=n(v(x,t) —vi(x,1))

+up(x, ) — uy(x, 1),

(6)
where v(x,t) = ity (x,1) and v,(x,f) = it (x,t) and
_ (RS~ R) diEw
L. = < 2aK cos(B) ) ' ™

As we discuss below, L. gives the length over which
stresses are transferred between the microtubules. To allow
us to determine the dimensionless combination of material
parameters that govern mechanical response, we rescale
the spatial and temporal coordinates using the equations
X = x/L and T = ét. Similarly, the displacement and fields
are rescaled as U;(X,T) = u;(x,H)/L and V(X,T) = u;(x,t)/
Le, respectively (i = 1,2). In terms of these variables,
Eq. 6 can be rewritten as

2Lfazul(x,T) 2L§62U2(X,T)

) Y ) €
- Vl (Xa T)) + UZ(Xv T) - UI(X7 T)

®)

= né(Vz(X7 T)

The mechanical response of the model can be obtained
by specifying the displacement of one end of the unit cell
as a function of the strain rate, while holding the other
end fixed. Specifically U;(0,7) = 0 and U,(1,T) = T,
where ¢ is the applied strain rate. In addition, at the
two free ends of the MTs present in the unit cell, the
traction-free boundary conditions dU,(0,7)/0X = aU,(1,T)/
0X = 0 are applied.

A recent computational model for the mechanical
response of the axon (24), dealt with the rate-independent
response of the axon to axial strains. In this study, the
following sets of parameters were adopted:

Ro = 12.5nm, R; = 7.5 nm, E); = 1.5 GPa,
a = 6,dr = 25nm,dy; = 20nm, § = 60°,
L = 2um, and K = 0.039 N/m,

which gives L. = 0.22 um (Eq. 7), and ¢ = 0.13
(Eq. A2). For these parameters, Eq. Al of our model
predicts the normalized Young’s modulus E(T)/¢E,
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of ~0.8, which agrees well with the corresponding normal-
ized Young’s modulus ~1.2 for strains close to 1%. To go
beyond the quasi-static regime and to study dynamic effects
not considered in any previous computational studies,
we solve the governing Eq. 8 numerically with the
finite element-package COMSOL 4.3a (COMSOL, Palo
Alto, CA).

Model response depends on two dimensionless
parameters

Based on the scaled governing equations (see the expres-
sions in Eq. 8), we can infer that the mechanical response
of the axon depends on two dimensionless parameters,
namely, L/L. (scaled half-length of the MTs) and 7né (scaled
rate of loading); note that the boundary conditions are
independent of these parameters. Each of these parameters
depends on the geometric and material parameters of the
axon (Eqgs. 2 and 7). We present estimates for these param-
eters, obtained primarily from experiments, in Table 1 (see
also Janmey et al. (20)).

The lengths of the axons in the brain are in the range 1-
10 um (27). In this case the MT length distribution has been
extensively studied by Yu and Baas (21), who analyzed
axons (~60 um in length) from embryonic rat hippocampal
neurons. They showed that the lengths of MTs in the axon
vary between 0.05 and 40.14 um (with an average length
of 4.02 um, and a standard deviation of 5.28 um). Based
on this work, we consider MT length that is in the range
2L = 2-10 pm.

To observe the onset of MT failure and axotomy in our
simulations, we have to consider the critical strain at which
MTs break. Janmey et al. (26) examined a MT network
deformed under shear and showed that MTs in this
network can withstand 50% of extensional strain before
failure. Other studies with dual-optical tweezers on the
fluorescently-labeled MTs obtain a 30% failure strain for
MTs, which is consistent with the work of Janmey et al.
(26), because it is known that fluorescently labeling the
MTs reduces their mechanical strength to some degree
(28). Schaap et al. (29) examined the effect of the MT incu-
bation with tau protein on the mechanical strength of the
MT wall and showed that the tau protein forms a 1-nm layer

TABLE 1 List of symbols in the viscoelastic shear-lag model
Parameter Quantity Value Ref.
Ro MT outer radius 12.5 nm (19)
R; MT inner radius 7 nm

Ey MT Young’s modulus 1.9 GPa (19)
dy MT spacing 23-38 nm (20)
dr Tau protein spacing 2040 nm (8)
2L MT length 2-10 um 21)
— MT rupture tensile strain 50% (26)
K Tau protein spring constant 0.25 pN/nm (18)
n Tau protein dashpot timescale 0.35s (18)
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circumferentially along the outer ridges of the MT protofila-
ments. Whereas this added layer does not change the radial
spring constant of the MTs in the indentation experiments,
due to the stabilizing effect of the tau protein the failure
load modestly increases by15%. These studies suggest that
the maximum strain the MTs can withstand before failure
is close to 50%.

The other key parameters in our model are the stiffness and
viscosity of the tau protein. Recently, Wegmann et al. (18)
carried out AFM based single-molecule force microscopy
on nonaggregated human tau proteins and derived the force-
elongation behavior of the longest tau isoform (hTau40 with
441 residues and contour length of 151 * 14 nm). They
pulled a single tau molecule with an AFM tip until the tip de-
tached from the molecule. During this process, they observed
the rupture of the intramolecular bonds within the tau protein
in the form of sharp peaks in the force-extension curve. We
used the breaking statistics of these intramolecular bonds to
deduce the viscoelastic properties of tau proteins. As shown
schematically in Fig. 2 b, under slow rates of pulling the pro-
tein, these intramolecular hydrogen bonds rupture easily,
leading to overall elongation of the protein without the need
to stretch the backbone. On the other hand, under a fast pulling
rate, the stiffness of these intermolecular bonds increases
rapidly; according to Bell’s theory (30), the rupture force of
intermolecular bonds increases logarithmically with loading
rate. Thus, for fast loading, the strain applied to protein elon-
gation is accommodated by elongation of the backbone, re-
sulting from variations in the bond angles and lengths.

Both the stiffness and viscosity of the protein can be
inferred from the mentioned AFM experiment (18). From
the average slopes of the force-elongation curve of the tau
protein, we estimate the stiffness to be K = (.25 pN/nm,
which is comparable to stiffness of related proteins reported
in the literature (31,32). The viscosity of the elastic response
arises from the rate dependence of rupture of intermolecular
bonds within the protein. For each of the observed force
peaks, by analyzing the statistics of unbinding events, an in-
trinsic unfolding rate at zero applied force (ko ~ 0.14 s~ ")
and the distance between the bound and transition energy
states (x, ~ 0.14 nm) have been extracted in Wegmann
et al. (18). These values have been used to obtain the rate
constant k, for rupture at each of the peak forces, using
the Bell equation (30),

F,x,
<= K exp(k"T), ©)
B

where F), is the peak force, kg is the Boltzmann constant,
and T is the absolute temperature. As shown in Bell (30),
the average rate for breaking of each of the unfolding events
provides a direct estimate for the viscoelastic parameter 7;
based on the rates given in Wegmann et al. (18), we obtain
n ~ 0.35 s, comparable to viscoelastic timescales observed
for related proteins (31,32).
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Experiments on dynamic stretching of axons (5,6) show
that, under quasi-static loading (strain rate= 0.01 s~ "), the
axon can be stretched up to 100% strain without any
evidence of damage of MTs, whereas MTs break at strain
rates in the range ¢ = 22-44 s ' and when strains exceed
65%. Using these values of strain rates and n (Table 1),
we determined that én = 8-15 should simulate dynamic
loading conditions (Smith et al. (6)) that would lead to
axotomy, whereas én = 0.001 should correspond to
quasi-static loading response.

Finally, for the hexagonal lattice of MTs, the number
of neighbors as & = 6, and estimating the angle § = 60°,
and spacing of tau proteins dy = 30 nm (Fig. 2 a and Ta-
ble 1), we obtain the characteristic length for load transfer
to be L. = 3.57 um. Then, based on the two MT lengths
considered here, namely, 2L = 2 um and 2L = 10 um, we
obtain L/L. = 0.28 and L/L. = 1.40, respectively. In the
next section, we use these parameter values to study the
response of the axon to mechanical loading at different
strain rates.

RESULTS

Relative sliding versus stretching of the MTs is
controlled by L/L. and &y

As the axon is stretched, the deformation can be accommo-
dated either by relative sliding of the MTs (caused by
stretching of tau proteins) or by the stretching of the MTs.
The dimensionless form of the governing equations
(Eq. 8) show that the particular mode of deformation
depends on two dimensionless parameters, L/L. and & 7.
We first study the variation of the stretch of the tau proteins
along the length of the MTs. To this end, we consider two
MT lengths, one short L/L. = 0.28, and the other long
L/L. = 1.40. The MTs are pulled at quasi-static én =
0.001, rate and dynamic loading rates én = 15. The dis-
tribution of the elongation of the tau proteins and the
stretching of the MTs at an overall strain level of 10% is
plotted in Fig. 3.

We find a strong dependence of the stretch of the tau pro-
teins on 1), their position relative to the ends of the MTs, 2),
the overall length of the MTs, and 3), the strain rate. While
the tau proteins located at X = 0 and X = 1 (which corre-
spond to the ends of the two adjacent MTs) elongate consid-
erably, the elongation is smaller at the center, X = 0.5. The
extent to which the strain of the tau proteins at the center is
smaller than the strain at the ends depends on both the rate
of stretch and the length. This decrease in the stretch of the
cross-linking proteins in regions between the force-free ends
of the MTs is a general feature of shear-lag models (25). For
quasi-static loading, the length scale over which this transfer
takes place is the characteristic length, L. (Eq. 7); when the
microtubules are smaller or comparable to this characteristic
length, there is no drop in the stretch of the tau proteins
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(black curve in Fig. 3 a) and the load transfer is primarily
due to the sliding of the MTs. On the other hand, for longer
MTs, sliding of the MTs is greater at the free ends and the
mode of load transfer transitions to a stretching of the
MTs, as seen in Fig. 3 b.

With increasing strain rate, the effective stiffness of the
tau proteins increases due to contributions from the visco-
elastic effects. Because the characteristic length scale for
transitioning from sliding of MTs to stretching of MTs
(Eq. 7) decreases with the effective stiffness of the tau pro-
teins, stretching of the MTs becomes the dominant load-
bearing mechanism over the MT sliding. This is clearly
seen for the case of long MTs (L/L. = 1.40), under fast
loading, én = 15, where the tau proteins in the region
0.2 < X < 0.8 have negligible elongation. On the other
hand, at low rates of deformation, the sliding of the MTs
is larger; by decreasing the applied strain rate from én =
15 to én = 0.001, the MT sliding is increased by 250%
(Fig. 3 a) and 500% (Fig. 3 b) for short and long MTs,
respectively. This result shows that under a quasi-static
loading, MTs start to slide and transfer the load in the
axon through the tau protein elongation.

Plots of the axial strains in the MTs as a function of strain
rate for different lengths are shown in Fig. 3, ¢ and d.
Consistent with the discussion in the preceding paragraph,
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stretch in the MTs is larger at larger strain rates and longer
MTs experience larger stretch. Further, our calculations
show that the stretch in the microtubules vanishes at the
free ends and is largest at the center. Thus, longer MTs
are more prone to breaking by initiation of failure at their
midpoints. Next, we load the axon at different rates to
determine the threshold strain at which the MTs break,
resulting in axotomy (disconnection).

MTs break at fast strain rates

The maximum strain in the MTs, dU,(0,7)/0X, as a function
of the overall axonal strain for short L/L. = 0.28 and long
L/L. = 1.40 MTs loaded at different strain rates is shown
in Fig. 4, a and b. When the axons contain short MTs,
they can easily be elongated to very large strains under
quasi-static loading conditions. In this case, the deformation
is accommodated by sliding of the MTs and strain in the
MTs is negligible, which allows for reversible loading and
unloading of axons as observed in experiments. On the other
hand for dynamic loads, én = 15, MTs fail at the overall
axon strain of 75% (Fig. 4 a), consistent with experimental
observations (5,6).

Also, for the axons with longer MTs, strain in the MTs is
larger and therefore these longer MTs are more prone to
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FIGURE 3 Elongation of tau proteins along the MTs, U,(X,T) — U(X,T), with (a) L/L. = 0.28 and (b) L/L. = 1.40 and also axial strain along microtubules,
AU,(X,T)/0X, with (¢) L/L. = 0.28 and (d) L/L. = 1.40, when overall elongation of the axon is 10%. The centers of the MTs stretch more with increasing strain

rate and increasing length. To see this figure in color, go online.
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failure. In this case, L/L. = 1.40, under quasi-static
loading, the axon can be stretched up to 82% strain without
failure (Fig. 4 b). However, under dynamic loading, strains
close to 29% result in the breaking of the MTs (Fig. 4 b)
with swelling at the axon. Our results also show that
when the MTs in axon have different lengths, longer
MTs are more susceptible to failure compared to the
shorter MTs.

Critical strain for microtubule failure increases
with decrease in the linear density of tau proteins
along the MTs

Another key parameter that controls the characteristic
length scale for load transfer, L. (Eq. 7), is the spacing
between tau proteins. In this section, we consider the effects
of increasing this spacing on the critical strain for axon
failure. Because the characteristic length scale increases
with increasing spacing between the tau proteins, sliding
of the MTs becomes more prevalent over stretching
compared to the case studied earlier. Subsequently, the
failure of the MTs occurs at larger overall strain levels
applied to the axon. By doubling the spacing of the tau pro-
teins compared to the previous subsection, the magnitude of
L. increases to 5.06 um; for MT lengths 2L = 2 um and

2L = 10 um, we obtain L/L. = 0.20 and L/L. = 1.00, respec-
tively. In this case, the axial strain in the MTs as a function
of the overall applied strain for short and long MTs is
plotted in Fig. 4, ¢ and d.

Fig. 4, ¢ and d, shows that upon decreasing the linear den-
sity of tau proteins, the threshold strain for MT failure
generally increases in all the cases. This increase is more
pronounced when the loading is quasi-static and when the
MT length is small; when the loading rate is fast and the
MTs are long, this increase is less apparent. As an example,
when the MT’s length is L = 5 pum, an increase in the tau
protein spacing by a factor of two does not alter the dynamic
threshold strain for breaking of the MTs. This fact can be
explained based on our previous observations, where, for
the long MTs and under fast loading rates, many of the
tau proteins are force-free and redundant, particularly those
distal from the free MT ends. Therefore, decreasing the
density of tau proteins does not have a significant impact
on the failure strains.

DISCUSSION

In summary, we have implemented a viscoelastic shear-lag
model to elucidate the mechanical response of the axon
under dynamic loading conditions. We assumed that the
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axon structure consists of uniformly staggered MTs cross-
linked by tau proteins, which we treat as a Kelvin visco-
elastic element as suggested by recent AFM experiments
(18). We then studied the mechanical response and breaking
of the MTs for slow (strain rate = 0.01 s~ ') and fast loading
rates (strain rate = 44 s~ ') relevant for axonal stretch injury.
The key predictions of our models can be summarized as
follows:

1. The tau proteins located at different points along a MT
stretch to differing extents: the proteins located at the
end of the MTs elongate considerably, whereas the elon-
gation of proteins located away from the free-ends is less
in long MTs and at fast loading rates.

2. The applied strain is accommodated along the axon by
either sliding (due to the elongation of tau proteins) or
stretching of the MTs. When the axon is loaded quasi-
statically, MT sliding is more pronounced and the axial
strain in the MTs is small. On the other hand, under
fast loading of the axon, MT stretch is large and the
sliding of the MTs is negligible.

3. Under quasi-static loading, axons can withstand large
uniaxial strains without failure of the MTs, whereas fast
loading leads to mechanical breaking of the MTs. In
addition, when the average length of the MTs inside an
axon is larger, this threshold strain for axotomy is smaller.

4. Based on the stiffness and viscosity of tau proteins
deduced from AFM experiments (18), our model predicts
that MTs will break when loaded at strain rates in excess
of 22-44 s~ in excellent agreement with observations
(5,6). Thus, our model is able to predict the transition
from reversible loading-unloading of the axons to failure
with no fitting parameters.

5. For a given level of axonal strain and strain rate, stretch-
ing of the longer MTs in an axon is larger compared to
that of short MTs. Subsequently, longer MTs fail before
the short ones and we predict failure to occur away from
the free ends and near the midpoints of the MTs.

Based on our numerical simulations and the asymptotic
analysis for the mechanical response in limiting cases (pre-
sented in Eq. A2), we have obtained a phase diagram that
demarcates regions where axons can be stretched and where
microtubules in the axons break (Fig. 5).

The model presented in this article takes into account the
microstructure of the axon (Fig. 2) to mimic the axonal
failure in TBI. To capture the interruption of the cargo trans-
port in TBI, it is essential to consider the actual load-transfer
mechanism between the MTs (mediated by tau proteins).
The amount of load transferred between the microtubules
varies along their length, which behooves us to consider a
model that reflects the ultrastructure of the axon. We believe
that the model shown in Fig. 2 (motivated by experimental
micrographs in Fig. 1) represents the simplest possible
model of the axonal microstructure. Based on this model,
we have shown that the response of the axon to stretch
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FIGURE 5 Phase-diagram that demarcates regions where MTs break and
where axon can be reversibly deformed. The symbols (red = MT breaking,
blue = MT sliding) are from numerical solutions presented in Fig. 4. To see
this figure in color, go online.

depends only on two variables, as shown in a phase diagram
form in Fig. 5. None of the more generic models, including
inelastic wormlike chain or generic binding site models, can
predict strain rate-dependent failure criteria for the axon
because they lack microstructural details necessary to
capture load distribution.

In our model, we assume that the tau proteins remain
bound to MTs and participate in the load-transfer mecha-
nism over the entire duration of the loading process.
Makrides et al. (33) have shown that tau proteins can either
be bound tightly to the MT lumen forming irreversible
bonds with a half-life on the order of several hours, or alter-
natively bind to the surface of the MT and form a dynamic
bond with a very fast association (k,, = 294 uM_l.s_l) and
relatively slow dissociation (ko = 2.5 sfl) rates (33).
Indeed the electron micrographs in Fig. | clearly show tau
proteins penetrating the lumen of the MTs, which is consis-
tent with our assumption that the tau proteins remain bound
during the loading process. In the latter case, where tau can
potentially dislodge from the MT, the time needed for sub-
sequent rebinding is ~1 ms (for a physiological concentra-
tion 1 uM of tau), which is much faster than the
characteristic cross-over loading timescale of 1/20 s for
breaking of MTs.

Thus, even in this case, our assumption is reasonable
because of the fast rebinding timescales. Also, at low strain
rates, the axon can stretch more than what we predict based
on this model because the tau proteins have enough time to
unbind over the timescales of loading. However, this is not
directly relevant to our work here, because our interest is in
large-strain rate response, where tau proteins will not unbind
over the timescales of loading. In addition to binding and
unbinding, diffusion of tau proteins along MTs has recently
been observed by Hinrichs et al. (34). For the loading rates
of 20 s~ !, the diffusion length (v/2Dt, where ¢ is time and D
is diffusion constant ~ 0.15 ,umz.sfl (34)) over the relevant
timescale of ~0.05 s is 120 nm, which is negligible
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compared to the overall length of the axon. Therefore, we
are justified in neglecting the effect of diffusion of tau
proteins that are not bound to the MT lumens at fast rates
of loading. The MTs bound to the lumens (which is the
case for majority of the proteins shown in Fig. 1) of course
cannot diffuse along the MTs.

In our model, the lengths and elastic moduli of the MTs in
the axon are assumed to be constant throughout the course
of the stretching. However, it is well known that the MTs
constantly alternate between polymerization (or rescue)
and depolymerization (or catastrophe) states (35). In
addition, different stabilizing drugs (such as taxol) and
destabilizing drugs (such as nocodazol) are shown to alter
the instability dynamics of MTs (36). Future extensions of
the model should consider coupling between microtubule
polymerization and mechanical effects to shed light on the
role of MT stabilizing/destabilizing agents. As an example,
it is known that the structural MAPs (such as tau proteins)
promote MT stability and inhibit MT catastrophe con-
siderably. The reported polymerization rate (growth rate)
and depolymerization rate (shrinkage rate) for the MTs in
the presence of the tau protein is ~1.5 um/min and
0.088 um/min, respectively (37).

It is evident that these timescales are much larger than the
timescales for failure at large strain rates and, therefore, for
this case the effect of polymerization dynamics on failure
should not be significant. However, at quasi-static strain
rates (with duration 1-2 min), the growth/shrinkage of the
MTs should be relevant. A simple approach to handle this
effect is to assume a time-dependent MT half-length
(L(?)), obtained from MT dynamics) and to solve the govern-
ing equation (Eq. 8) numerically. A more involved approach
may be to carry out stochastic simulations that account for
the statistics of MT catastrophes. We hope to address these
extensions of our model in future publications.

Diffuse axonal injury is the one of the most common and
important consequences of all severities of TBI and is
thought to be the predominant pathological feature of
mTBI (concussion). While it is generally accepted that
accelerations or sudden loads to the head cause diffuse
axonal injury throughout the white matter, how this load
at the macroscale leads to the damage at the cellular level
is poorly understood. Most computational models of TBI
treat the white and gray matter uniformly as viscoelastic,
hyperelastic, or fiber-reinforced materials (3,27,38). How-
ever, the origin of viscoelasticity, nonlinearity, or the cause
of injury are not typically linked to vulnerable cellular con-
stituents, such as focusing down to the micro- and nanoscale
level of white-matter axons. Therefore, we have developed
an approach that includes fundamental mechanical units
of specific subcellular structures, microtubules, and tau
proteins that contribute to the rate dependence of failure.

By incorporating the information on the failure criteria
and the analytical solutions in the limiting cases (Eq. A2)
summarized in the phase diagram (Fig. 5) in three-
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dimensional finite-element models of head injury (38), it
may be possible to extrapolate the patterns of failure or re-
covery at the subcellular level to the macroscale response to
tissue loading. Note that the state of strain in head models
can be complex; however, what matters for injury is the
component of the strain tensor projector along the axonal
axis. Thus, the injury criterion can be applied if the strain
rate in Fig. 5 is replaced by the projected strain rate.

APPENDIX I: YOUNG’S MODULUS FOR THE AXON

The instantaneous Young’s modulus for the axon E(T), at a specific strain
T = &1, can be calculated from the generated effective average stress to
the overall strain € = ¢ t, of the axon as

_ ¢01(07T) _ EﬂaUl (07T)

2¢ 2T  dX (A

E(T)

Here ¢ is the volume fraction of the MTs in the axon, which in the case of
the hexagonal distribution of the MTs is

5o 2rlE =)
3(dy + 2Ro)’ — 2R}

(A2)

APPENDIX II: ANALYTICAL SOLUTIONS FOR
ELASTIC FIELDS IN LIMITING CASES

As discussed earlier, the mechanical response of the axon to loading at
different strain rates depends on two dimensionless parameters, L/L. and
né. If we take the extreme limits of these two parameters, analytical solu-
tions to the governing equations (Eq. 8) can be obtained. The goal of this
section is to derive a phase diagram for axon response based on these
analytical solutions. Specifically, for very fast n¢ >> 0, and quasi-static
né = 0 loading rates, we consider the response of very long L/L. >> 1
and a very short L/L, << 1 MTs and find the analytic solution to Eq. 8.

né = 0

In this case, the axon is subjected to a static strain rate, and the tau
protein element (Fig. 2 a) is reduced to an elastic spring with stiffness K.
Mathematically, by ignoring the first term on the right-hand side of Eq.
8, we obtain

L20*U,(X,T)

L20*U,(X,T)

L X L X
Uy(X,T) — Uy (X, T).

(A3)

This form of the governing equations is identical to the classic shear-
lag model where the cross-linkers between the MTs are assumed to
be elastic. The general displacement field in the classic shear-lag model
is (25)

U, (X,T) = x//{X + % {sinh (Xé) + coth <2LL(>
(A4)

<(en())])
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Lc . L L
U,(X,T) = x//{X -7 [smh <X1:> + coth (2_L>
(A5)

« (1 —cosh(Xi))} } LTy

Here,  is the axial strain in the MTs (in the range 0 < ¢ < T), and can be
obtained as

V= r . (A6)

2L, L

With the above solution in hand, we now consider two extreme values for
the MT length, as follows:

L/L, << 1 (very short MTs)

In this case, one can show that = 0, which means that MT stretch is
zero and

Ui(X,T) =0, (AT)

U,(X,T) = T. (A8)

In this limit, MT sliding is the main load transfer mechanism in the axon.
This fact has also been observed in our numerical results, where for the
short MTs and under quasi-static loading the MT sliding is found to be large
(Fig. 3 a, n¢ = 0.001) and the stretch in the MT is negligible (Fig. 3 c,
né = 0.001).

L/L;, >> 1 (very long MTs)

Taking the limit of the above displacement fields (Eqs. A4 and A5) for
L/L. >> 1 results in = T and

U(X,T) = Uy(X,T) = TX. (A9)

This solution shows that MT stretching is the primary mechanism for load
transfer in the axon and the MT sliding is negligible in this limit. This
behavior has already observed in our numerical simulations, where, under
the quasi-static loading rates, the axon with longer MTs show larger MT
stretches (Fig. 3 d, né = 15).

née >> 1

In this case, the axon is subjected to a very rapid dynamic strain, and
accordingly the dashpot presented in the tau protein unit (Fig. 2 a) will
not have enough time to respond. Here, the governing Eq. 8 simplifies to

FUX,T)  FUX,T)

=0
ax? aX? ’

(A10)

Ui(X,T) = Us(X,T). (AL1)

We can find the displacement fields obtained from this equation with the
boundary conditions U,(0,7) = 0, Ux(1,7) =T,
U(X,T) = Uy(X,T) = TX. (A12)
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These solutions show that the MT stretch is the primary load-transfer
mechanism and that the displacement fields are independent of the MT
length. In our numerical results we see that for both the long and short
MTs under a dynamic loading, MT sliding is negligible (Fig. 3, a and b,
for né¢ = 15) and MT stretch is pronounced (Fig. 3, ¢ and d, for né = 15).

Based on these results, we can conclude that the approximate criterion
that demarcates regions where MTs break and regions where they slide is

L.
—ne=0(1),

2 (A13)

where the right-hand side is a constant of order unity. A phase diagram that
shows the response of the axon as a function of the scaled length of the MTs
and the scaled rate of stretching is given in Fig. 5. We find that this phase
diagram satisfactorily captures the trends observed in the numerical
calculations presented in Fig. 4.
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