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Noise and Information Transmission in Promoters with Multiple Internal
States
Georg Rieckh* and Ga�sper Tka�cik
Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
ABSTRACT Based on the measurements of noise in gene expression performed during the past decade, it has become
customary to think of gene regulation in terms of a two-state model, where the promoter of a gene can stochastically switch
between an ON and an OFF state. As experiments are becoming increasingly precise and the deviations from the two-state
model start to be observable, we ask about the experimental signatures of complex multistate promoters, as well as the func-
tional consequences of this additional complexity. In detail, we i), extend the calculations for noise in gene expression to pro-
moters described by state transition diagrams with multiple states, ii), systematically compute the experimentally accessible
noise characteristics for these complex promoters, and iii), use information theory to evaluate the channel capacities of complex
promoter architectures and compare them with the baseline provided by the two-state model. We find that adding internal states
to the promoter generically decreases channel capacity, except in certain cases, three of which (cooperativity, dual-role regu-
lation, promoter cycling) we analyze in detail.
INTRODUCTION
Gene regulation—the ability of cells to modulate the expres-
sion level of genes to match their current needs—is crucial
for survival. One important determinant of this process is the
wiring diagram of the regulatory network, specifying how
environmental or internal signals are detected, propagated,
and combined to orchestrate protein level changes (1).
Beyond the wiring diagram, the capacity of the network to
reliably transmit information about signal variations is
determined also by the strength of the network interactions
(the ‘‘numbers on the arrows’’ (2)), the dynamics of the
response, and the noise inherent to chemical processes
happening at low copy numbers (3–6).

How do these factors combine to set the regulatory power
of the cell? Information theory can provide a general mea-
sure of the limits to which a cell can reliably control its
gene expression levels. Especially in the context of develop-
mental processes, where the precise establishment and
readout of positional information has long been appreciated
as crucial (7), information theory can provide a quantitative
proxy for the biological function of gene regulation (8). This
has led to theoretical predictions of optimal networks that
maximize transmitted information given biophysical
constraints (8–13), and hypotheses that certain biological
networks might have evolved to maximize transmitted in-
formation (14). Some evidence for these ideas has been pro-
vided by recent high-precision measurements in the gap
gene network of the fruit fly (15). In parallel to this line of
research, information theory has been used as a general
and quantitative way to compare signal processing motifs
(16–29). Further theoretical work has demonstrated a rela-
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tionship between the information capacity of an organism’s
regulatory circuits and its evolutionary fitness (30–32).

Previously, information theoretic investigations primarily
examined the role of the regulatory network. In this study,
we focus on the molecular level, i.e., on the events taking
place at the regulatory regions of the DNA. Little is known
about how the architecture of such microscopic events
shapes information transfer in gene regulation. Yet it is
precisely at these regulatory regions that the mapping
from the ‘‘inputs’’ in the network wiring diagram into the
corresponding ‘‘output’’ expression level is implemented
by individual molecular interactions. In this bottleneck
various physical sources of stochasticity—such as the bind-
ing and diffusion of molecules (33–35), and the discrete
nature of chemical reactions (36)—must play an important
role. In the simplest picture, gene expression is modulated
through transcriptional regulation. This involves molecular
events such as the binding of transcription factors (TFs) to
specific sites on the DNA, chemical events that facilitate
or block TF binding (e.g., through chromatin modification),
or events that are subsequently required to initiate transcrip-
tion (e.g., the assembly and activation of the transcription
machinery).

Although the exact sequence of molecular events at the
regulatory regions often remains elusive (especially in
eukaryotes), quantitative measurements have highlighted
factors that contribute to the fidelity by which TFs can affect
the expression of their target genes. These findings have
been succinctly summarized by the so-called ‘‘telegraph
model’’ of transcriptional regulation (37): the two-state
promoter switches stochastically between the states ‘‘ON’’
and ‘‘OFF,’’ with switching rates dependent on the concen-
tration(s) of the regulatory factor(s). This dependence can
either be biophysically motivated (e.g., by a thermodynamic
http://dx.doi.org/10.1016/j.bpj.2014.01.014
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model of TF binding to DNA), or it can be considered as
purely phenomenological. The switching itself is indepen-
dent of mRNA production but determines the overall pro-
duction rate. The production of mRNA molecules from
one state is usually modeled as a Poisson process, with a
first-order decay of messages; this is usually followed by a
birth-death process in which proteins are translated from
the messages. This two-state model is well-studied theoret-
ically (37–43) and has been used extensively to account for
measurements of noise in gene expression (44–47). An
increasing amount of information about molecular details
has motivated extensions to this model by introducing
more than two states in specific systems (48–55), and recent
measurements of noise in gene expression provided some
support for such complex regulatory schemes (56–59).

In this article we address the general question of the func-
tional effect of complex promoters with multiple internal
states. How does the presence of multiple states affect infor-
mation transmission? Under what conditions, if any, can
multistate promoters perform better than the two-state
model? We consider a wide spectrum of generic promoter
models, such that many molecular ‘‘implementations’’ can
share the same mathematical model. With this framework
in hand, we derive the total noise in mRNA expression
and discuss how measurements of this function can be
diagnostic of the underlying mechanism of regulation. To
answer the main question of this paper—namely if addi-
tional complexity at the promoter can lead to an im-
provement in controlling the output level of a gene—we
compute the information transmission from transcription
factor concentrations to regulated protein expression levels
through two- and three-state promoters. Finally, we analyze
in detail three complex promoter architectures that outper-
form the two-state regulation.
METHODS

Channel capacity as a measure of regulatory
power

We start by considering a genetic regulatory element—e.g., a promoter or

an enhancer—as a communication channel, shown in Fig. 1 A. As the con-

centrations of the relevant inputs (for example, transcription factors)

change, the regulatory element responds by varying the rate of target

gene expression. In steady state, the relationship between input k and

expression level of the regulated protein g is often thought of as a ‘‘regula-

tory function’’ (60). Although attractive, the notion of a regulatory function

in a mathematical sense is perhaps misleading: gene regulation is a noisy

process, and so for a fixed value of the input we have not one, but a distri-

bution of different possible output expression levels, PðgjkÞ (see Fig. 1 B).

When the noise is small, it is useful to think of a regulatory function as

describing the average expression level, gðkÞ ¼ R
dg gPðgjkÞ, and of the

noise as inducing some random fluctuation around that average. The vari-

ance of these fluctuations, s2gðkÞ ¼
R
dgðg� gðkÞÞ2PðgjkÞ, is thus a mea-

sure of noise in the regulatory element; note that its magnitude depends

on the input, k.

The presence of noise puts a bound on how precisely changes in the input

can be mapped into resulting expression levels on the output side—or
inversely, how much the cell can know about the input by observing the

(noisy) outputs alone. In his seminal work on information theory (61),

Shannon introduced a way to quantify this intuition by means of mutual

information, which is an assumption-free, positive scalar measure in bits,

defined as follows:

Iðk; gÞ ¼
ZZ

dk dg PðkÞPðgjkÞlog2
�
PðgjkÞ
PðgÞ

�
: (1)

In Eq. 1, PðgjkÞ is a property of the regulatory element, which we compute

below, whereas PðkÞ is the distribution of inputs (e.g., TF concentrations)

that regulate the expression; finally, PðgÞ ¼ R
dk PðgjkÞPðkÞ is the resulting

distribution of gene expression levels. With PðgjkÞ set by the properties of

the regulatory element and the biophysics of the gene expression machin-

ery, there exists an optimal choice for the distribution of inputs, P�ðkÞ,
that maximizes the transmitted information. This maximal value,

I�ðk; gÞ ¼ maxPðkÞIðk; gÞ, also known as the channel capacity (62), summa-

rizes in a single number the ‘‘regulatory power’’ intrinsic to the regulatory

element (10–14).

Our goal is to compute the channel capacity between the (single) regula-

tory input and the target gene expression level for information flowing

through various complex promoters. Under the assumption that noise is

small and approximately Gaussian for all levels of input, the complicated

expression for the information transmission in Eq. 1 simplifies, and the

channel capacity I�ðk; gÞ can be computed analytically from the regulatory

function, gðkÞ, and the noise, s2gðkÞ. The result (10–14) is as follows:

I�ðk; gÞ ¼ log2
Zffiffiffiffiffiffiffiffi
2pe

p ; with (2)

Z kmax jdg=dkj Z gmax dg

Z ¼

0

dk
sgðkÞ ¼

gmin
sgðgÞ; (3)

where in the last equality we changed the integration variables to express

the result in terms of the average induction level, g, using the regulatory

function g ¼ gðkÞ. This integral is graphically depicted in Fig. 1 C (inset).

Finally, we will use this to explore the dependence of I�ðk; gÞ on parameters

that define the promoter architecture (see Fig. 1 D), looking for those

arrangements that lead to large channel capacities and thus high regulatory

power.

Information as a measure of regulatory power has a number of attractive

mathematical properties (for review, see (8)); interpretation-wise, the

crucial property is that it roughly counts (the logarithm of) the number of

distinguishable levels of expression that are accessible by varying the

input—also taking into account the level of noise in the system. A capacity

of 1 bit, therefore, suggests that the gene regulatory element could act as a

binary switch with two distinguishable expression levels (note that this is

different from saying that the promoter has two (or any other number) of

possible internal states); capacities smaller than 1 bit correspond to (biased)

stochastic switching, whereas capacities higher than 1 bit support graded

regulation. An increase of information by 1 bit means that the number of

tunable and distinguishable levels of gene expression has roughly doubled,

implying that changes of less than a bit are meaningful. Careful analysis of

gene expression data for single-input single-output transcriptional regula-

tion suggest that real capacities can exceed 1 bit (14). Increasing this

number substantially beyond a few bits, however, necessitates very low

levels of noise in gene regulation, requiring prohibitive numbers of

signaling molecules (10).
Multistate promoters as state transition graphs

To study information transmission, we must first introduce the noise model

in gene regulation, which consists of two components: i) the generalization
Biophysical Journal 106(5) 1194–1204
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FIGURE 1 A genetic regulatory element as an information channel. (A) Mutual information I is a quantitative measure of the signaling fidelity with which

a genetic regulatory element maps inputs (e.g., TF concentrations) into the regulated expression levels. In this schematic example, the properties of the

element are fully specified by two parameters (q1; q2; e.g., the switching rates between promoter states). (B) In steady state, the input/output mapping

can be summarized by the regulatory function gðkÞ (solid black line) for target protein expression (equivalently, mðkÞ for target mRNA expression, not

shown); noise, sgðkÞ (respectively smðkÞ for mRNA), induces fluctuations around this curve (inset and error bars on the regulatory function). (C) The ‘‘noise

characteristic’’ (noise vs. mean expression) is usually experimentally accessible for mRNA using in situ hybridization methods and can reveal details about

the promoter architecture. The maximal transmitted information (channel capacity I�, see Eqs. 2 and 3) is calculated from the area under the inverse noise

curve for the target protein, s�1
g ðgÞ (inset). (D) Channel capacity I� is, in this example case, maximized for a specific choice of parameters q1; q2 (blue peak).

To see this figure in color, go online.

A B

FIGURE 2 Promoters as state transition graphs. (A) A state transition

graph for an example three-state promoter. Active state a (double circle)

expresses mRNAm at rate r, which are then degraded with rate d. Transition

into a (green arrow) is affected by the input that modulates rate k ¼ k1a.

Stochastic transitions between promoter states fa; 1; 2g are an important

contribution to the noise, smðkÞ. (B) A possible mechanistic interpretation

of the diagram in (A): state 1 is an unoccupied promoter, state 2 is an inac-

cessible promoter (occupied by a nucleosome or repressor, solid square).

Transition to the active state (green arrow) is modulated by changing the
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of the random telegraph model to multiple states, and ii), the model for

input noise that captures fluctuations in the number of regulatory molecules.

Starting with the first component, we compute the mean and variance for

regulated mRNA levels, since these quantities are experimentally acces-

sible when probing noise in gene expression. We assume that the system

has reached steady state and that gene product degradation is the slowest

timescale in the problem, i.e., that target mRNA or protein levels average

over multiple state transitions of the promoter and that the resulting distri-

butions of mRNA and protein are thus unimodal. Whereas for protein levels

these assumptions hold over a wide range of parameters and include many

biologically relevant cases, there exist examples where promoter switching

is very slow and the system would need to be treated with greater care (e.g.,

(38,50,63)).

Let us represent the possible states of the promoter (and the transitions

between them) by a state transition graph as in Fig. 2 A. Gene regulation

occurs when an input signal modifies one (or more) of the rates at which

the promoter switches between its states. To systematically analyze many

promoter architectures, we choose not to endow from the start each graph

with a mechanistic interpretation, which would map the abstract promoter

states to various configurations of certain molecules on the regulatory re-

gions of the DNA (as in Fig. 2 B). This is because there might be numerous

molecular realizations of the same abstract scheme, which will yield iden-

tical noise characteristics and identical information transmission. In Fig. 3

and Fig. S1 in the Supporting Material, we discuss known examples related

to different promoter architectures.

Given a specific promoter architecture, we would like to compute the first

two moments of the mRNA distribution under the above assumptions. Here,

we only sketch the method for the promoter in Fig. 2 A; for a general

description and details see the Supporting Material. We will denote the

rate of mRNA production from the active state(s) by r and its degradation

rate by d. Let further pi be the fractional occupancy of state i˛fa; 1; 2g and
kij the rate of transitioning from state i to j; isj. Here, a is the active state,

and 1, 2 are the nonexpressing states. Equations 4 and 5 then describe the

behavior of the state occupancy and mRNA level m:

vtp ¼ Kpþ x; vtm ¼ rpa � dmþ xm; with (4)

2�ðka1 þ ka2Þ k1a k2a
3

concentration c of activators (solid triangles) that bind their cognate site

(open triangles) at the promoter with the rate ckþ. To see this figure in color,
go online.
K ¼ 4 ka1 �ðk1a þ k12Þ k21
ka2 k12 �ðk2a þ k21Þ

5; (5)
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and p ¼ ðpa; p1; p2ÞT ; x ¼ ðxa; x1; x2ÞT and xm are Langevin white-noise

random forces (36,64) (see the Supporting Material). In this setup it is

easy to compute the mean and the variance in expression levels given a

set of chosen rate constants. Using the assumption of slow gene product

degradation, d � kij, we can write the noise in a generic way:

s2
m ¼ m

h
1þ r

d
pactD

i
; (6)

where pact is the occupancy of the active states (pa or pa þ pb), and the

dimensionless expression for D depends on the promoter architecture and

can be read out from Fig. 3 A for different promoter models. The expression

for noise in Eq. 6 has two contributions. The first, where the variance is

equal to the mean ðs2m ¼ mþ.Þ is the ‘‘output noise’’ attributable to the

birth-death production of single mRNAmolecules (also called ‘‘shot noise’’

or ‘‘Poisson noise’’). The second contribution to the variance in Eq. 6 is

attributable to stochastic switching of the promoter between internal states,
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FIGURE 3 Mean expression level and noise for different promoter models. (A) Expressions for the mean (first row,m) and the variance (second row, s2m) of

the mRNA distribution in steady state for different promoter architectures. In the limit of k12/0 (respectively ka2; kab/0), the expression for the two-state

model is obtained from the models with three states. The names of the topologies indicate the position of the expressing state: E(nd), M(iddle), D(ouble). (B)

Noise characteristics (pa on the x axis vs. the Fano factor, s2m=m, on y axis) for different promoter models. Here, in all models k ¼ k1a is modulated (green

arrow) to achieve different mean expression levels. For all rates (except k) equal to 1 (blue lines), the functional form of the noise characteristics is very

similar. This remains true for a variation of ka1 of 510% (blue dashed lines). Making the rates in/out of the third state (state 2 or b) slower by a factor

of 5 (purple lines, dashed 510%) yields qualitatively different results. Insets show the induction curve, pactðkÞ, where k is the modulated rate. A full table

and possible molecular interpretations of different promoter schemes are given in Fig. S1 (74–80). (C) Possible interpretations of the modulation schemes.

Triangles represent activators, squares are repressors, and circles are histones. The dotted shapes denote (empty) binding sites. Cited references use similar

models. To see this figure in color, go online.

Noise and information: Complex promoters 1197
referred to as the ‘‘switching noise.’’ This term does depend on the promoter

architecture and has a more complicated functional form than being simply

proportional to the mean. A first glance at the expressions for noise seems to

imply that going from two to three promoter states can only increase the

noise (and by Eq. 3 decrease information), since new, positive contributions

appear in the expressions for s2m; we will see that, nevertheless, transmitted

information can increase for certain architectures.
Input noise

In addition to the noise sources internal to the regulatory mechanism, we

also consider the propagation of fluctuations in the input, which will

contribute to the observed variance in the gene expression level. Can we

say anything general about the transmission of input fluctuations through

the genetic regulatory element? Consider, for instance, the modulated

rate k that depends on the concentration c of some transcription factor, as

in k ¼ kþc, where kþ is the association rate to the TF’s binding site. Since

the TF itself is expressed in a stochastic process, we could expect that there

will be (at least) Poisson-like fluctuations in c itself, such that s2cfc; this
will lead to an effective variance in k that will be propagated to the output

variance in proportion to the ‘‘susceptibility’’ of the regulatory element,

ðvg=vkÞ2. Extrinsic noise would affect the regulatory element in an analo-

gous way, as suggested in a previous study (65). Independently of the noise

origin, we can write

s2
g ¼ .þ v

�
vg

vk

�2

k; (7)
where ð.Þ indicate output and switching terms from Eq. 6 and v is the

proportionality constant ðs2k ¼ vkÞ that is related to the magnitude of the

input fluctuations and, possibly, their subsequent time averaging (5).

Even if there were absolutely no fluctuations in the total concentration

c of TF molecules in the cell (or the nucleus), the sole fact that they need

to find their target by diffusion puts a lower bound on the variance of the

local concentration at the regulatory site (33,34,66). This diffusion noise

represents a substantial contribution to the total, as was shown by the

analysis of high-precision measurements in gene expression noise

(35,45). For this biophysical limit set by diffusion, we find yet again

that the variance in the input is proportional to the input itself, and that

the values of v are of order one when expressed in units of the relevant

averaging time (see the Supporting Material and (66–68)). This, in

sum, demonstrates that Eq. 7 can be used as a generic model for diverse

kinds of input noise.
RESULTS

Experimentally accessible noise characteristics

Could complex promoter architectures be distinguished by
their noise signatures, even in the easiest case where the
input noise can be neglected (as is often assumed (45))?
The expressions for the noise presented in Fig. 3 A hold
independently of which transition rate the input is modu-
lating. We can specialize these results by choosing the
Biophysical Journal 106(5) 1194–1204
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modulation scheme, that is, making one (or more) of the
transition rates the regulated one. This allows us to
construct the regulatory function (insets in Fig. 3 B).
Additionally, we can also plot the noise (shown in
Fig. 3 B as the Fano factor, s2m=m) as a function of the
mean expression, m, thus getting the noise characteristic
of every modulation scheme. These curves, shown in
Fig. 3 B, are often accessible from experiments (44,69),
even when the identity of the expressing state or the mech-
anism of modulation is unknown. We systematically orga-
nize our results in Fig. 3 B (for the case when k ¼ k1a is
modulated) and provide a full version in Fig. S1; we also
list four molecular schemes implementing these architec-
tures in Fig. 3 C, while providing additional molecular
implementations in Fig. S1. We emphasize that very
different molecular mechanisms of regulation can be
represented by the same architecture, resulting in the
same mathematical analysis and information capacity.

Measured noise-vs.-mean curves have been used to
distinguish between various regulation models (44,69,70).
For this, two conditions have to be met (45,71). First, it
must be possible to access the full dynamic range of the
gene expression in an experiment, and this sometimes seems
hard to ensure. The second condition is that the input noise
is not the dominant source of noise: input noise can mimic
promoter switching noise and can, e.g., provide alternative
explanations for noise measurements in (44) that quantita-
tively fit the data (not shown).

Even if these conditions are met, it would be impossible
to distinguish between certain promoter architectures (e.g.,
2-a1 vs. 3E-a1) with this method, whereas some would
require data of a very high quality to distinguish (e.g., acti-
vating 3E-1a vs. repressing 3E-12, see Fig. S1), at least in
certain parameter regimes. On the other hand, there exist
noise characteristics that can only be obtained with multiple
states (e.g., 3M-1a).

One feature that can easily be extracted from the
measured noise characteristics is the asymptotic induc-
tion: it can be equal to 1 (e.g., in 2-1a), or bounded
away from 1 (e.g., in 3M-1a). Although this distinction
between architectures cannot be inferred from the shapes
of the regulatory functions, the effect on the noise charac-
teristics is unambiguous: in the case where the expressing
state is never saturated, the Fano factor does not drop to
the Poisson limit of 1 even at the highest-expression
levels (which seems to have been the case in a previous
study (44)).

Taken together, when the range of promoter architectures
is extended beyond the two-state model, distinguishing
between these architectures based on the noise characteris-
tics seems possible only under restricted conditions, empha-
sizing the need for dynamical measurements that directly
probe transition rates (e.g., (59,72)), or for the measure-
ments of the full mRNA distribution (rather than only its
second moment). We note that dynamic rates are often re-
Biophysical Journal 106(5) 1194–1204
ported assuming the two-state model, as they are inferred
from the steady-state noise measurements (e.g., (44,47)),
and only a few experiments probe the rates directly (e.g.,
(73)); for a brief review of the rates and their typical magni-
tudes, see the Supporting Material.
Information transmission in simple gene
regulatory elements

Protein noise

In most cases the functional output of a genetic regulatory
element is not the mRNA, but the translated protein.
Incorporating stochastic protein production into the noise
model does not affect the functional form of the noise,
but only rescales the magnitude of the noise terms. To
see this, we let proteins be produced from mRNA at a
rate r’ and degraded or diluted at d’, such that d0 � d
is the slowest timescale in the problem. Then the mean
protein expression level is gðkÞ ¼ ðr0=d0ÞmðkÞ. The output
and promoter switching noise contributions are affected
differently, so that the protein level noise can be written
as (45):

s2
g ¼ g

�
ð1þ wÞ þ r0

d0 pactD
0
�
þ ðinput noiseÞ; (8)

where w ¼ r0=d is the burst size (the average number
of proteins translated from one mRNA molecule),
D0 ¼ ðr=dÞðd0=dÞD and the other quantities are as defined
in Eq. 6.

Information transmission in the two-state model

To establish the baseline against which to compare complex
promoters, we look first at the two-state promoter (2-1a).
Here the transition into the active state is modulated by
TF concentration c via k ¼ k1a ¼ kþc, as it would be in
the simple case of a single TF molecule binding to an
activator site to turn on transcription. Adding together the
noise contributions of Eqs. 8 and 7, we obtain the following
model for the total noise:

s2
g ¼ g

�
ð1þ wÞ þ rr0

dka1
ð1� paÞ2 þ v

ka1

rr0

dd0
ð1� paÞ3

�
: (9)

To compute the corresponding channel capacity, we use
Eq. 3 with the noise given by Eq. 9 as follows:

Z ¼
Z gmax

gmin

dg

sgðgÞ ¼ ffiffiffiffiffiffiffiffiffi
Nmax

p Z pmax
a

0

dpa

� p�1=2
a

�
1þ 1

~k�
ð1� paÞ2 þ ~v

~k�
ð1� paÞ3

��1=2
(10)

¼ ffiffiffiffiffiffiffiffiffi
Nmax

p
Z0: (11)
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Here, Nmax ¼ ðrr0Þ=½ðdd0Þð1þ wÞ� and ~k� ¼ ka1=ðd0NmaxÞ is
the dimensionless combination of parameters related to the
off-rate for the TF dissociation from the binding site. Nmax

can be interpreted as the number of independently produced
output molecules when the promoter is fully induced
(11–13). In the case where mRNA transcription is the
limiting step for protein synthesis, Nmax corresponds to the
maximal average number of mRNA synthesized during a
protein lifetime: Nmax ¼ r=d0 w=ð1þ wÞzr=d0. With this
choice of parameters, Nmax affects Z multiplicatively and
thus simply adds a constant offset to the channel capacity
I� (see Eq. 2) without affecting the parameter values
that maximize capacity. In what follows we therefore dis-
regard this additive offset, and examine in detail only
I� ¼ log2Z0. We also only use dimensionless quantities (as
above, e.g., the rates are expressed in units of d’), but leave
out the tilde symbols for clarity.

Optimizing information transmission

What parameters maximize the capacity of the two-state
promoter 2-1a given by Eq. 10? Given that the dynamic
range of input (e.g., TF concentration) is limited (10–13),
k˛½0; kmax�, and given a choice of v that determines the
type and magnitude of input noise, the channel capacity I�

for the two-state promoter only depends nontrivially on
the choice of a single parameter, k�. Fig. 4 shows the trade-
off that leads to the emergence of a well-defined optimal
value for k��: at a fixed dynamic range for the input,
k˛½0; kmax�, the information-maximizing solution chooses
k�� that balances the strength of binding (such that the
dynamic range of expression is large), while simultaneously
A B

FIGURE 4 Finding k� that optimizes information transmission in a two-

state promoter. The strength of the input noise is fixed at v ¼ 2 and the input

dynamic range for k is from 0 to kmax ¼ 10. (A) The integrand of Eq. 10 is

shown for the optimal choice of k� (blue), and for two alternative k� values:

a factor of 5 larger (red) or smaller (green) than the optimum. Although

increasing k� lowers the noise, it also decreases the integration limit, and

vice versa for decreasing k�. (B) The effect on the regulatory function

(solid, left axis) and the noise (dashed, right axis), of choosing different

k� values. Optimal k� (blue curves) from (A) leads to a balance between

the dynamic range in the mean response (the maximal achievable induc-

tion), and the magnitude of the noise. Higher k� (red curves), in contrast,

lead to smaller noise, but fail to make use of the full dynamic range of

the response. The gray part of the regulation curves cannot be accessed,

since the input only ranges over k˛½0; kmax�. To see this figure in color,

go online.
keeping the noise as low as possible. If this abstract pro-
moter model were interpreted in mechanistic terms where
a TF binds to activate gene expression, then choosing the
optimal k� would amount to choosing the optimal value
for the dissociation constant of our TF; importantly, the ex-
istence of such a nontrivial optimum indicates that, at least
in an information-theoretic sense, the best binding is not the
tightest one (10–13,27,81,82). This tradeoff between noise
and dynamic range of outputs (also called ‘‘plasticity’’)
has also been noticed in other contexts (83,84).
Improving information transmission with
multistate promoters

We would like to know if complex promoter architectures
can outperform the two-state model in terms of channel ca-
pacity. To this end, we have examined the full range of
three-state promoters, summarized in Fig. S1, and found
that generally—as long as only one transition is modulated
and only one state is active—extra promoter states lead to a
decrease in the channel capacity relative to two-state regu-
lation. However, by relaxing these assumptions, architec-
tures that outperform two-state promoters can be found.

Cooperative regulation

The first such pair of architectures is illustrated in Fig. 5 A
and B: three-state promoters with one (or two) expressing
states, where two transitions into the expressing states are
simultaneously modulated by the input. A possible molecu-
lar interpretation of these promoter state diagrams is an
AND-architecture cooperative binding for the model with
one expressing state, and an OR-architecture cooperative
activation for the model with two expressing states. In
case of an AND-architecture, a TF molecule hops onto the
empty promoter (state 2) with rate 2k (since there are two
empty binding sites), whereas a second molecule can hop
on with rate rk (called ‘‘recruitment’’ if r>1), bringing the
promoter into the active state. The first of two bound TF
molecules falls off with rate 2g�1k� (called ‘‘cooperativity’’
if g>1), bringing the promoter back to state 1, and ulti-
mately, the last TF molecule can fall off with rate k�. The
dynamics are now described (see Eq. 5) by the matrix

K ¼
2
4�ð2g�1k�Þ rk 0

2g�1k� �ðk� þ rkÞ 2k
0 k� �ð2kÞ

3
5; (12)

and p ¼ ðpa; p1; p2ÞT , respectively p ¼ ðpb; pa; p1ÞT. To
compute the noise, we can use the solutions for the generic
three-state model 3E from Fig. 3 A by making the following
substitutions: ka1 ¼ 2g�1k�; k1a ¼ rk; k12 ¼ k�; k21 ¼ 2k.

To simplify our exploration of the parameter space, we
choose r ¼ 1 (i.e., no recruitment), but keep k� (unbinding
rate) and g (cooperativity) as free parameters; the modu-
lated rate k is proportional to the concentration of TF
Biophysical Journal 106(5) 1194–1204
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FIGURE 5 Improving information transmission via cooperativity. (A,B)

The state transition diagram for the AND-architecture three-state promoter

(at left, one active state) and OR-architecture (at right, two active states).

(C,D) The information planes showing the channel capacity (color code)

for various combinations of k� and g at a fixed maximum allowed

kmax ¼ 10, for the AND- and OR-architectures and v ¼ 2. (E,F) The regu-

latory functions of various models selected from parameters denoted by

dots in the information planes in (B,C). Solutions that maximize the infor-

mation denoted with a solid blue line. Colors indicate the channel capac-

ities. The gray part of the regulation curves cannot be accessed, since the

input only ranges over k˛½0; kmax�. For comparison, we also plot the regu-

lation curve of the 2-1a scheme (with its optimal k��). (G,H) Channel capac-
ity I�3 (dashed lines, axes at right) and the advantage of the multistate

scheme over the best two-state promoter, I�3 � I�2 (solid lines, axes at

left), of the AND and OR models, as a function of the maximal input range,

kmax, and the strength of the input noise (v, color). Since there is no globally

optimal choice for g for the AND-architecture, we fix g ¼ 10 in (G), and

optimize only over k� values. To see this figure in color, go online.
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molecules and is allowed the range k˛½0; kmax�. For every
choice of ðk�;gÞ, we computed the regulatory function
and the noise, and used these to compute the capacity,
I�ðk; gÞ, using Eqs. 2 and 3. This information is shown in
Fig. 5 C and D for the AND- and OR-architecture,
respectively.

In the case of an AND-architecture, where both molecules
of the TF have to bind for the promoter to express, there is a
ridge of optimal solutions: as we move along the ridge in the
Biophysical Journal 106(5) 1194–1204
direction of increasing information, cooperativity is
increased and thus the doubly occupied state is stabilized,
while the unbinding rate increases as well. This means that
the occupancy of state 1 becomes negligible, and the regula-
tion function becomes ever steeper, as is clear from Fig. 5 E,
while maintaining the same effective dissociation constant
(the input k ¼ k1=2 at which the promoter is half induced,
i.e., paðk1=2Þ ¼ 0:5). In this limit, the shape of the regulation
function must approach a Hill function with the Hill coeffi-
cient of 2, paðkÞ ¼ k2=ðk2 þ k21=2Þ. Surprisingly, information
maximization favors weak affinity of individual TF
molecules to the DNA, accompanied by strong cooperativity
between these molecules. The OR-architecture portrays a
different picture: here, the maximum of information is
well-defined for a particular combination of parameters
ðk�;gÞ, as shown in Fig. 5 D. As g/0 (increasing destabi-
lization for g<1), the second active state (b) is never occu-
pied, and the model reverts to a two-state model.

For both architectures we can assess the advantage of the
three-state model relative to the optimal two-state promoter.
Fig. 5 E and F show the information of the optimal solutions
as a function of the input noise magnitude as well as the
input range, kmax. As expected, the information increases
as a function of kmax since the influence of input and switch-
ing noise can be made smaller with more input molecules.
This increase saturates at high kmax because output noise
becomes limiting to the information transmission—this is
why the capacity curves converge to the same maximum,
the v ¼ 0 curve that lacks the input noise altogether. The
advantage (increase in capacity) of the three-state models
relative to the two-state promoter is positive for any combi-
nation of parameters kmax and v. It is interesting to note that
increasing kmax and decreasing v have very similar effects on
channel capacity, since both drive the system to a regime
where the limiting factor is the output noise.

Regulation with dual-role TFs

In the second architecture that we consider a transcription
factor can switch its role from repressor to activator, de-
pending on the covalent TF modification state or formation
of a complex with specific co-factors. A well-studied
example is in Hedgehog (Hh) signaling, where the TF Gli
acts as a repressor when Hh is low, or as an activator
when Hh is high (85–87). Fig. 6 A shows a possible dual-
role signaling scheme where the total concentration of
dual-role TFs is fixed (at kmax), but the signal modulates
the fraction of these TFs that play the activator role (k)
and the remaining fraction that act as repressors
ðkmax � kÞ, which compete for the same binding site. The
channel capacity of this motif is depicted in Fig. 6 B as a
function of promoter parameters kA and kR, showing that a
globally optimal setting (denoted ‘‘A’’) exists for these
parameters; with these parameters, the input/output func-
tion, shown in Fig. 6 C, is much steeper than what could
be achieved with the best two-state promoter, and that is
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FIGURE 6 Improving information transmission via dual-role regulation.

(A) The signal k increases the concentration of TFs in the activator role that

favor the transition (green) to the expressing state, while simultaneously

decreasing the rate of switching (red) into the inactive state with the

repressor bound. (B) Channel capacity (color) as a function of off-rates

ðkA; kRÞ shows a peak at A. kmax ¼ 10 and v ¼ 4. (C) The regulatory func-

tions for the optimal solution A (solid blue line) and other example points

(B to E) from the information plane, show that this architecture can access a

rich range of response steepnesses and induction thresholds. For compari-

son, we also plot the regulation curve of the scheme 2-1a (with its optimal

k��). (D) The channel capacity (dashed line) and information advantage over

the optimal two-state architecture (solid line), as a function of kmax. To see

this figure in color, go online.

A B

C D

FIGURE 7 Improving information transmission via cycling. (A) Pro-

moter cycles through two active states (a, b) expressing at identical produc-

tion rates before returning to inactive state (1), from which the transition

rate back into the active state (green) is modulated. For each value of

kmax, we look for the optimal choice of kab ¼ kb1. The information and

advantage relative to the optimal two-state model is shown in (C). (B,D)

A similar architecture where turning the gene on is a multistep regulated

process. This architecture always underperforms the optimal two-state

model, indicated by a negative value of the advantage for all choices of v

and kmax. To see this figure in color, go online.
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true despite the fact that the molecular implementation of
this architecture uses only a single binding site. The ability
to access such steep regulatory curves allows this architec-
ture to position the midpoint of induction at higher inputs
k, thus escaping the detrimental effects of the input noise
at low k, while still being able to induce almost completely
(i.e., make use of the full dynamic range of outputs) as the
input varies from 0 to kmax. This is how the dual-role regu-
lation can escape the tradeoff faced by the two-state model
2-1a (shown in Fig. 4). Sharper transition at higher input
would lead us to expect that the advantage of this architec-
ture over the two-state model is most pronounced when
input noise is dominant (small kmax, large v), which is indeed
the case, as shown in Fig. 6 D.

Promoter cycling

In the last architecture considered in this article, promoters
‘‘cycle’’ through a sequence of states in a way that does not
obey detailed balance, e.g., when state transitions involve
expenditure of energy during irreversible reaction steps. In
the scheme shown in Fig. 7 A, the regulated transition
puts the promoter into an active state a; before decaying
to an inactive state, the promoter must transition through
another active state b. Effectively, this scheme is similar to
the two-state model in which the decay from the active state
is not first-order with exponentially distributed transition
times, but rather with transition times that have a sharper
peak. The benefits of this architecture are maximized
when the transition rates from both active states are equal.
Although it always outperforms the optimal two-state
model, the largest advantage is achievable for small kmax.
At large kmax the advantage tends to zero: this is because
the optimal off-rates are high, causing the dwell times in
the expressing states to be short. In this regime the gamma
distribution of dwell times (in a three-state model) differs
little from the exponential distribution (in a two-state
model). Note that this model would not yield any informa-
tion advantage if the state transitions were reversible.

Fig. 7 C and D show that irreversible transitions alone
do not generate an information advantage: a promoter that
needs to transition between two inactive states (1, 2) to
reach a single expressing state a from which it exits in a
first-order transition, is always at a loss compared with a
two-state promoter. This is because here the effective tran-
sition rate to the active state in the equivalent two-state
model is lower (since an intermediate state must be tra-
versed to induce), necessitating the use of a lower off-rate
ka1, which in turn leads to higher switching noise.

It is interesting to note that recent experimental data
on eukaryotic transcription seem to favor models in
which the distribution of exit times from the expressing
state is exponential, whereas the distribution of times from
the inactive into the active state is not (59), pointing to
the seemingly underperforming architecture of Fig. 7 B.
Biophysical Journal 106(5) 1194–1204
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The three-state promoter suggested in this study is probably
an oversimplified model of reality, yet it nevertheless makes
sense to ask why irreversible transitions through multiple
states are needed to switch on the transcription of eukaryotic
genes (88,89) and how this observation can be reconciled
with the lower regulatory power of such architectures.
This is the topic of our ongoing research.
DISCUSSION

When studying noise in gene regulation one is usually
restricted to the use of phenomenological models, rather
than a fully detailed biochemical reaction scheme. Simpler
models, such as those studied in this paper, also allow
us to decouple questions of mechanistic interpretation
from the questions of functional consequences. Here, we
extended a well-known functional two-state model of gene
expression to multiple internal states. We introduced state
transition graphs to model the ‘‘decision logic’’ by which
changes in the concentrations of regulatory proteins drive
the switching of our genes between various states of expres-
sion. This abstract language allowed us to systematically
organize and explore nonequivalent three-state promoters.
The advantage of this approach is that many microscopi-
cally distinct regulatory schemes can be collapsed into
equivalent classes sharing identical state transition graphs
and identical information transmission properties.

The functional description of multistate promoters con-
fers two separate benefits. First, it is able to generate
measurable predictions, such as the noise vs. mean induc-
tion curve. Existing experimental and theoretical work using
the two-state model has demonstrated how the measure-
ments of noise constrain the space of promoter models
(44), how the theory establishes the ‘‘vocabulary’’ by which
various measured promoters can be classified and compared
with each other (90), and how useful a baseline mathemat-
ical model can be in establishing quantitative signatures of
deviation that, when observed, must lead to minimal model
revisions able to accommodate new data (59). Alternative
complex promoters presented here could explain existing
data better either because of the inclusion of additional
states (see (52)), or because we also included and analyzed
the effects of input (diffusive) noise, which can mimic the
effects of promoter switching noise but is often neglected
(45). As a caveat, it appears that in many cases discrimi-
nating between promoter architectures based on the noise
characteristics alone would be very difficult, and thus
dynamical measurements would be necessary.

The second benefit of our approach is to provide a conve-
nient framework for assessing the functional impact of noise
in gene regulation, as measured by the mutual information
between the inputs and the gene expression level. We are
interested in the question whether multistate promoters
can, at least in principle, perform better than the simple
ON/OFF two-state model. We find that generically, i.e.,
Biophysical Journal 106(5) 1194–1204
for all three-state models where one state is expressing
and only one transition is modulated by the input, the multi-
state promoters underperform the two-state model. Higher
information transmission can be achieved when these condi-
tions are violated, and biological examples for such viola-
tions can be found. For example, we find that a multistate
promoter with cooperativity has a higher channel capacity
than the best comparable two-state promoter, even when
promoter switching noise is taken into account (see (11).).
Dual-regulation yields surprisingly high benefits, which
are largest when input noise is high. In the context of
metazoan development where the concentrations of the
morphogen molecules can be in the nanomolar range and
the input noise is therefore high (35), the need to establish
sharp spatial domains of downstream gene expression (as
observed (91),) might have favored such dual-role promoter
architectures. Lastly, we considered the simplest ideas for a
promoter with irreversible transitions and have shown that
they can lead to an increase in information transmission
by sharpening the distribution of exit times from the ex-
pressing state (92).

The main conclusion of this article—namely that channel
capacity can be increased by particular complex pro-
moters—is testable in dedicated experiments. One could
start with a simple regulatory scheme in a synthetic system
and then by careful manipulation gradually introduce the
possibility of additional states (e.g., by introducing more
binding sites), using promoter sequences that show weaker
binding for individual molecules yet allow for stronger coop-
erative interaction. In both the simple and complex system,
one could then measure the noise behavior for various input
levels. Information theoretic analysis of the resulting data
could be used to judge if the design of higher complexity,
although perhaps noisier by some other measure, is capable
of transmitting more information, as predicted.

The list of multistate promoters that can outperform the
two-state regulation and for which examples in nature could
be found is potentially much longer and could include com-
binations of features described in this article. Rather than
trying to find more examples, we should perhaps ask about
fundamentally different mechanisms and constraints that
our analysis did not consider. By expending energy to
keep the system out of equilibrium, one could design robust
reaction schemes where, for example, the binding of a
regulatory protein leads (almost) deterministically to some
tightly controlled response cycle, perhaps evading the diffu-
sion noise limit (93) and increasing information transmis-
sion. At the same time, cells might be confronted by
sources of stochasticity we did not discuss in this article—
for example, because of cross-talk from spurious binding
of noncognate regulators. Finally, cells need to not only
transmit information through their regulatory elements,
but actually perform computations, that is, combine various
inputs into a single output, thereby potentially discarding
information. A challenging question for the future is thus
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about extending the information-theoretic framework to
these other cases of interest.
SUPPORTING MATERIAL

Two figures and supplemental information are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(14)00082-4.
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