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Abstract: This study was conducted to evaluate the capability of detecting 
prostate cancer (PCa) using auto-fluorescence lifetime spectroscopy 
(AFLS) and light reflectance spectroscopy (LRS). AFLS used excitation at 
447 nm with four emission wavelengths (532, 562, 632, and 684 nm), 
where their lifetimes and weights were analyzed using a double exponent 
model. LRS was measured between 500 and 840 nm and analyzed by a 
quantitative model to determine hemoglobin concentrations and light 
scattering. Both AFLS and LRS were taken on n = 724 distinct locations 
from both prostate capsular (nc = 185) and parenchymal (np = 539) tissues, 
including PCa tissue, benign peripheral zone tissue and benign prostatic 
hyperplasia (BPH), of fresh ex vivo radical prostatectomy specimens from 
37 patients with high volume, intermediate-to-high-grade PCa (Gleason 
score, GS ≥7). AFLS and LRS parameters from parenchymal tissues were 
analyzed for statistical testing and classification. A feature selection 
algorithm based on multinomial logistic regression was implemented to 
identify critical parameters in order to classify high-grade PCa tissue. The 
regression model was in turn used to classify PCa tissue at the individual 
aggressive level of GS = 7,8,9. Receiver operating characteristic curves 
were generated and used to determine classification accuracy for each tissue 
type. We show that our dual-modal technique resulted in accuracies of 
87.9%, 90.1%, and 85.1% for PCa classification at GS = 7, 8, 9 within 
parenchymal tissues, and up to 91.1%, 91.9%, and 94.3% if capsular tissues 
were included for detection. Possible biochemical and physiological 
mechanisms causing signal differences in AFLS and LRS between PCa and 
benign tissues were also discussed. 
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1. Introduction 

Improved capabilities for prostate cancer (PCa) detection during diagnosis and treatment 
would be highly beneficial to both urologists and patients, with potential applications in 
surgical margin assessment during radical prostatectomy and cancer monitoring during active 
surveillance. The former is particularly important considering that in a recent comprehensive 
review, positive surgical margins (PSM) during radical prostatectomy (RP) were noted to be 
present in up to 38% of cases [1]. While the clinical significance of PSM is variable, largely 
depending on margin extent and location, PSM is generally considered an adverse factor for 
disease-free survival [2,3]. Thus, minimizing PSM during RP will lead to a lower risk of 
biochemical recurrence and reduction of further therapeutic treatments. While much effort has 
been made in the field of pathological analysis [4–7] to improve the detection accuracy of 
PSM and extraprostatic extension, there have been very few technical reports [8] on 
development of optical techniques to detect PSM in vivo during RP or ex vivo right after 
retrieval of the excised prostate specimens. Very recently, Lue et al. have reported a portable 
optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis [9]. While it is 
possible that such a scanner has the potential to become a clinical platform for intraoperative 
margin assessment, it is unknown whether optical signatures of PCa tissue are distinct enough 
to be differentiated from adjacent non-cancer tissues. 

The second major issue in prostate cancer management is detection of early-stage 
biologically aggressive disease. Prostate specific antigen (PSA) screening has led to a 
significant rise in diagnosing the incidence of prostate cancer, which is currently diagnosed 
by transrectal ultrasound (TRUS)-guided prostate biopsy. Novel methods, such as 
multiparametric MRI, have demonstrated the potential for improved detection of high grade 
cancer and risk stratification in newly detected prostate cancers, but confirmatory biopsies are 
still required [10]. In addition, it is less likely or feasible to utilize MRI as a screening tool for 
detection of aggressive prostate cancer due to its complexity, availability, and cost, in 
comparison with a TRUS-guided, office-based, portable imaging device. 

Several recent studies, including our own, have investigated the use of optical techniques 
for minimally invasive or non-invasive detection of PCa. As a simple, compact, and hand-
held tool, optical reflectance spectroscopy was examined for optical signatures and feasible 
detection of PCa using ex vivo prostate specimens [11,12]. Salomon et al. [13] reported a 
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triple spectroscopy method in ex vivo prostate tissue with a sensitivity and specificity of 75% 
and 87.3%, respectively, for PCa detection. Dangle et al. explored the possibility of 
evaluating PCa tissue by high-resolution optical coherence tomography (OCT) [14], while 
Gao utilized a coherent anti-Stokes Raman scattering (CARS) microscope to image PCa 
tissue and cavernous nerves with cellular resolution [15]. From the non-invasive aspect, Jiang 
et al. demonstrated the feasibility to optically image PCa tissue and its surrounding 
vasculature using diffuse optical tomography (DOT) based on laboratory phantom 
measurements [16] and animal studies [17,18]. Recently, Kavuri and Liu reported the 
feasibility of imaging human PCa tissue by DOT without prior information on PCa locations 
using an optode geometry integrated with a transrectal ultrasound probe [19]. Furthermore, 
electrical impedance was also a possible bio-character to identify PCa. Halter et. al. [20] 
reported the use of electrical properties to differentiate PCa tissue from benign tissue, 
showing an area under curve (AUC) of 0.9 when discriminating between benign and 
malignant prostate tissue, 0.75 when discriminating between low and high grade cancer 
tissue. 

In the present study, we developed and then evaluated a dual-modal optical device 
(dMOD), which incorporates dual measurements from auto-fluorescence lifetime 
spectroscopy (AFLS) and light reflectance spectroscopy (LRS) in a single fiber-optic probe of 
1-mm diameter. LRS is sensitive to both tissue morphology and biochemical composition, 
while AFLS, on the other hand, captures the dynamic characteristics of endogenous 
fluorophores in the nanosecond range and is highly sensitive to the biochemical environment 
of the tissue. Each of these techniques has been successfully applied for identification of 
cancer tissue [21,22], but neither of them has been applied to human PCa diagnosis [23] nor 
studied as a combined technique for cancer detection. In principle, the vasculature, 
morphology and biochemical composition of PCa-bearing tissue are expected to differ from 
those of benign tissues; the differences are presumably more pronounced in higher grade and 
more advanced PCa tissue than slow-growing, less aggressive ones. Thus, we hypothesized in 
this study that LRS and AFLS, alone or in combination, could be able to detect and identify 
PCa at high grades. 

Specifically, we performed dual-modal optical spectroscopic measurements from 37 ex 
vivo human prostate specimens right after radical prostatectomy. Measurements from twenty 
nine (np = 29) out of the 37 glands were obtained from prostate parenchyma (i.e. tissue within 
the prostate capsules) and were used for characterization and classification of high grade PCa 
with Gleason score (GS) ≥7. Measurements from the rest of the prostate specimens (nc = 8) 
were taken from capsular and extra capsular tissues. By the end of this study, we 
demonstrated that the dMOD is able to (1) discriminate high-grade PCa tissue (PCa) from 
benign peripheral zone prostate tissue (nPZ) and benign prostatic hyperplasia (BPH) in 
parenchymal tissues, and (2) result in excellent accuracy of above 90% in discriminating PCa 
from benign extra capsular tissues (ECT). In addition, several possible biochemical and 
physiological mechanisms were revealed and speculated to explain or interpret signal 
differences of AFLS/LRS induced by PCa. Overall, our results reported an excellent 
performance of this technique in its efficiency of detecting PCa at the individual Gleason 
grade from ex vivo human PCa-containing specimens. 

2. Methods 

2.1 Optical measurement setup and procedures 

As reported earlier [24], the dMOD optical imaging system consisted of two modalities [Fig. 
1(a)], namely AFLS and LRS, which were coupled through a custom-made fiber optic probe 
with 1-mm outer diameter (FiberTech Optica Inc., QC, Canada) [Fig. 1(b)], containing four 
fibers with different diameters [Fig. 1(c)]. The AFLS system consisted of a custom-made, 
single-channel, time correlated single photon counting system (ISS Inc., Champaign, IL) 
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machine and a pulsed supercontinuum laser source (5 ps, 20 MHz) (SC-450, Fianium Inc., 
Eugene, Oregon). This broadband laser light was filtered through a band pass filter at 447 nm 
with a bandwidth of 60 nm, as noted by 447 nm (60), and directed to the tissue sample for 
excitation. The auto-fluorescence signals and its corresponding lifetimes were measured using 
a photomultiplier tube (PMT) at four wavebands, namely, 532(10) nm, 562(40) nm, 632(24) 
nm, and 684(22) nm, each of which was selected sequentially through the emission filter 
wheel. Moreover, the LRS system consisted of a tungsten halogen light source (HL2000HP, 
Ocean Optics, FL), and a charged coupled device (CCD) array spectrometer (USB2000 + , 
Ocean Optics) that includes a spectral range of 500-840 nm, with a spectral sampling interval 
of 0.3 nm and a spectral resolution of 3 nm. More details on instrumentation is given in [24]. 

 

Fig. 1. Instrumentation: (a) Dual-modal optical system assembled on a portable cart for mobile 
capability to meet clinical needs; (b) close view of the optical probe positioned near the 
prostate specimen before actual optical readings; (c) front view of the probe showing 
arrangement of source and detector fibers for both AFLS and LRS. 

2.2 Patients and surgical procedures 

The study was conducted as per guidelines of the Institutional Review Board at the UT 
Southwestern Medical Center, Dallas, TX; each patient’s informed consent was obtained 
before the surgery. Patients were selected with (a) an intermediate-to-high grade of disease 
(GS ≥ 7) and (b) a moderate-to-high volume of prostate cancer (at least two contiguous 
biopsy cores, each of which had 20% or more cancer involvement and/or bulky disease by 
endorectal MRI), so as to optimize spectral yield in this initial study. Each patient underwent 
robotic-assisted radical prostatectomy by one of two surgeons (JAC and CGR); then, the 
prostate glands were extracted after being disconnected from their blood supply for at least 30 
minutes. 

2.3 Experimental procedures 

Resected prostate glands were immediately immersed in saline, and submitted for the dual-
modal spectroscopy measurement [Fig. 2(a)]. For parenchymal tissue measurements, each of 
29 glands (np = 29) was first inked on the capsule first, as per standard protocol at UTSW for 
histological evaluation (blue for the left lobe; orange for the right lobe) [Fig. 2(b)]. Dyes were 
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fixed using acetic acid washes so that the ink on the capsule would not be transferred into the 
parenchymal tissues. Then, the specimens were cut in a coronal plane through the location of 
possible tumor nodules as determined by pre-surgery biopsy mapping, pre-surgery MRI 
and/or palpation, such that tumor nodules were highly likely to be visible at the cut cross 
sections [Fig. 2(c)]. When the cancer tissue was not clearly identified by visual inspection, a 
Diff quick-stained touch-prep slide was made of suspected cancer-bearing tissue, confirming 
the location of PCa cells cytologically. The locations of nPZ and BPH regions on the cut 
surfaces of the specimens were also identified. 

The dual-modal optical system [Fig. 1(a)] was then introduced to start the measurements. 
The dMOD probe [Figs. 1(b) and 1(c)] was placed just in contact with the cut surface of the 
prostate gland, without pressing the gland, and LRS and AFLS spectra were recorded from 
each of the pre-specified regions (PCa, nPZ, and BPH) [Fig. 2(d)]. Given the wavelength 
range used, we expect that AFLM would sense the tissue depth within 1 mm. For LRS, the 
fiber diameter and the source-detector separation employed would give rise to a best 
sensitivity at 1-2 mm depth. Thus, both of them interrogated ~1 mm tissue in depth. Also, 
since our AFLM/LRS measurement was point-based, eight repeated measurements from 
adjacent spots were obtained in each region (3-5 mm in diameter) for each type of tissues 
(i.e., prostate cancer, normal, and BPH) from each specimen to account for tissue 
heterogeneity. 

After all the optical measurements were complete, each measured region was then marked 
with black ink, and a thin (~1 mm thick) section of each measured region was separately 
removed and submitted for histological evaluation [Fig. 2(e)]. Hematoxylin and eosin stained 
sections from these sets of submitted tissue were evaluated by a urologic pathologist to 
confirm the presence and extent of PCa and to determine the corresponding Gleason grade. 
Measured spectra were further categorized into different grade groups according to the 
histologically confirmed results. 

 

Fig. 2. Measurement Protocol: a freshly removed prostate specimen (a) was inked (b); then bi-
valved in a coronal plane (c). After identifying benign peripheral zone tissue (nPZ), benign 
prostatic hyperplasia (BPH), and suspicious lesions for PCa, optical measurements were 
performed on the selected regions (d). Then, the measured regions were black-inked, removed, 
and sent for pathology confirmation (e), where black markings represent the removed tissue 
pieces that were optically measured and then sent for pathology analysis. 

For capsular and/or extra-prostatic tissue measurements (nc = 8) on the gland capsules, 
freshly resected samples were randomly selected for measurement. The measurement 
protocol was the same as the one used for parenchymal tissue measurements, except that the 
prostate glands were measured before inking. Three types of extra capsular tissues (ECT) 
were measured, namely, tissues at the prostate base near the bladder, urethra at the prostate 
apex, and prostate capsular tissues. For each prostate gland, 2-3 regions of each type were 
identified, and five dual-modal optical readings were taken on each region. Given eight 
prostate specimens, each of which had 3-5 regions measured at five times, we had a total of 
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185 locations measured. Then, each of the measured regions was submitted to pathology for 
analysis; all capsular tissues were confirmed to be benign after histopathology examination. 

2.4 LRS and AFLS data processing for both PCa and benign tissues 

A spectral width of 500-840 nm was chosen for data analysis; the corresponding data were 
fitted to a mathematical model [Eq. (1)], details of which have been described in [25]. 

 
'

1 2

( )
( ) .

( )
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a

R
k k

μ λλ
μ λ

=
+

 (1) 

Briefly, R(λ) is the measured spectral reflectance, which is associated with optical absorption 
and scattering coefficients (μa and μs’) of the tissue by Eq. (1); k1 and k2 are instrument 
calibration constants. In principle, values of μa result mainly from a variety of chromophores 
in tissue such as oxygenated hemoglobin (HbO), deoxygenated hemoglobin (Hb), total 
hemoglobin (HbT), and β-carotene within the measured tissues. Also, values of μs’ are closely 
related with cell size and density [25] and can be obtained at specific wavelengths. Thus, 
fitting Eq. (1) to the measured LRS data allowed us to obtain overall six LRS-based 
parameters including five fitted parameters (i.e., HbO, Hb, melanin, β-carotene, and light 
scattering coefficient at 750 nm) and one derived parameter (HbT = Hb + HbO) per measured 
spot. For parenchymal tissue analysis, the absorption spectra of the surface inking dyes were 
also incorporated in the model to account for any contamination from the dyes during the 
slicing of the prostate tissue. Furthermore, when we utilized only LRS parameters for 
statistical testing and tissue classification, statistical differences in fitted parameters for PCa, 
nPZ and BPH were analyzed using a linear mixed model regression analysis implemented in 
SAS (SAS Institute Inc., Cary, NC, USA). 

For AFLS, four auto-fluorescence decay curves corresponding to four emission 
wavelengths (see Section 2.1) were obtained at each measured spot/location. These curves 
were first normalized and then used to fit a two-exponent model, as described by Eqs. (2a) 
and (2b). 

 ( ) ( / ) ( / )I t a exp t a exp t cτ τ= − + − +      1 1 2 2  (2a) 

 2 2
1 1 2 2 1 1 2 2( ) / ( ),m a a a aτ τ τ τ τ= + +  (2b) 

where τ1 and τ2 represent the lifetime of two auto-fluorescence decay components, a1 and a2 
are their respective weights, and c is a baseline offset. The integral-intensity-weighted mean 
lifetime (τm) was also calculated for each curve [24]. Thus, we obtained five fitted features for 
each of the four emission wavelengths, giving us overall 20 parameters per measured 
location. As in case of LRS, each of these features was analyzed for statistical differences 
between PCa vs. nPZ, and PCa vs. BPH, using a linear mixed model regression analysis. 

2.5 Classification and receiver operating characteristic (ROC) for parenchymal tissues 

To examine the ability to discriminate PCa from benign tissue, two classification approaches 
were implemented. First, we tested the ability to differentiate prostate cancer (PCa, all grades 
combined) from benign nPZ and BPH using a 3-tissue-type classification model. Next, we 
evaluated the ability to differentiate individual grades of PCa with GS = 7, 8, 9 from benign 
nPZ and BPH using a 5-tissue-type classification model. These two classification approaches 
were evaluated for all three techniques, namely, LRS, AFLS, and dMOD (LRS + AFLS 
combined). 

Specifically, we implemented a two-phase process for either 3-tissue-type or 5-tissue-type 
classification in order to effectively assess the classification accuracy for each technique. 
Phase one was to implement a feature selection algorithm so as to select a best feature set for 
cancer classification. In Section 2.4, we mentioned that fitting Eqs. (1), (2a) and (2b) to LRS 
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and AFLS data, respectively, would allow us to quantify multiple characteristic parameters or 
features (5 for LRS, 20 for AFLS, and thus 25 for dMOD), which could be utilized for PCa 
discrimination. However, all these features may not contribute equally and constructively to 
the classification model. An optimal feature set may allow better classification by reducing 
such problems as multicollinearity, redundancy, and overfitting of data. Thus, similar to our 
previous work [24], we employed sequential feature selection using a multinomial logistic 
regression model in this study. The actual determination of optimal features will be given in 
Section 3.1. 

In phase two, for either 3-tissue-type or 5-tissue-type classification, we developed a 
multinomial logistic regression (MLR) model [24] along with 10-fold cross-validation [see 
Appendix] to classify respective types of prostate tissues and to obtain corresponding 
classification parameters for each tissue type. The procedures for this MLR-based 
classification are outlined in a flow-chart in Fig. 3, including (1) splitting data into 10 sub-
groups; (2) using 90% of the data (Tr) for model training and 10% of the data (Te) for model 
testing; (3) generating an MLR-based classification model based on Tr; (4) generating ROC 
curves for each class of prostate tissues; (5) calculating the classification thresholds for PCa 
tissues; (6) testing the classification model derived from Tr with the independent data set, Te, 
by determining sensitivity (Sn), specificity (Sp), and accuracy (Acc); (7) performing ROC 
analysis based on MLR model and obtaining the area under curve (AUC) for each class of 
tissues; (8) repeating steps (2)-(7) 10 times using different sub-groups of Tr and Te for 10-
fold cross validation and obtaining averaged Sn, Sp, Acc, and AUC; (9) repeating steps (1) - 
(8) 10 times after randomizing or regrouping the 10 sub-groups for Tr and Te, and thus 
achieving grand average values for means and standard deviation of Sn, Sp, Acc, and AUC. 
Note that the entire classification and ROC analysis were performed separately and 
independently for both 3-tissue-type and 5-tissue-type classification approaches. 

 

Fig. 3. A flow chart describing calculation of sensitivity, specificity, accuracy and generation 
of ROC curves through cross-validated classification process. 
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2.6 Data analysis for extracapsular tissues on the gland capsules 

The data analysis procedures given in Sections 2.5 were used to analyze parenchymal tissues 
first; then they were repeated to investigate capsular and extra-capsular tissues. The same 
multinomial classification model with 10-fold cross validation was performed to evaluate the 
accuracy of dMOD to discriminate PCa from ECTs and nPZ. We again utilized 3-tissue-type 
and 5-tissue-type classification approaches to classify ECTs: the three tissue types included 
PCa, nPZ, and ECT; the five tissue types included PCa (GS 9), PCa (GS 8), PCa (GS 7), nPZ 
and ECT. Therefore, the 3-tissue-type classification method tested the accuracy in identifying 
any level of high grade PCa in presence of benign ECTs and nPZ tissue, whereas the 5-tissue-
type classification tested the accuracy of differentiating specific high grade PCa at GS=7, 8, 
and 9 in the presence of benign ECTs and nPZ tissues. 

3. Results 

3.1 Results from prostate parenchymal tissues 

A total of 29 patients were enrolled for this part of study (i.e., measurements from prostate 
parenchymal tissues); 6 out of 29 were excluded from the final analysis since their PCa 
tissues were made up only 25% or less over the entire tissue sampling evaluation, according 
to the final histology results. Mean (standard deviation) patient age was 60.7 (6.0) years. 
Several patients had multiple foci of PCa, resulting in 27 PCa regions, which were measured 
from 23 different prostate glands. As previously mentioned, 8 (or 9 from a few PCa regions) 
distinct spectral measurements were obtained from each region yielding a total of 221 PCa, 
176 nPZ and 142 BPH measurements (see Table 1). Note that the numbers of measurements 
from nPZ and BPH reflect measurements from benign regions of the PCa-containing glands 
with the given GS. 

Table 1. Number of measurements classified by tissue type* 

 GS-7 GS-8 GS-9 Total 

NSubjects 13 4 6 23 

NRegions 15 5 7 27 

Nmeas (PCa) 125 40 56 221 

Nmeas (nPZ) 104 32 40 176 
Nmeas (BPH) 88 24 30 142

* For each Gleason column, the number of measurements for PCa is approximately equal to NRegions × 8, with a few 
cases having nine repeated measures in the selected regions. 

Analysis of means for AFLS data revealed that integral-intensity-weighted mean lifetimes 
(τm) for PCa were significantly (p < 0.05) different from all other benign tissue types at all 
four wavelengths. While the lifetime of nPZ was shorter, BPH had a longer lifetime than PCa, 
consistently at all four wavelengths [Fig. 4(a)]. For LRS, analysis of means also showed 
statistical differences between PCa versus nPZ and PCa versus BPH for multiple fitted 
parameters [Fig. 4(b)]. Specifically, hemoglobin levels and β-carotene concentration were 
significantly smaller in PCa tissue than nPZ; BPH on the other hand showed significantly 
reduced deoxy-hemoglobin and β-carotene concentrations as compared to PCa tissue. One 
important observation is that light scattering was found significantly increased in PCa 
compared to all of the benign parenchymal tissues within prostate capsules. 
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Fig. 4. (a) Comparison of four AFLS-derived mean-lifetimes, τm, at all four emission 
wavelengths across three tissue types (PCa, nPZ, and BPH). (b) Comparison of five LRS-
derived features across the three tissue types. μs' was calculated at 750 nm, and β-car is scaled 
down by a factor of 10 for display purposes. For both (a) and (b), the symbol of ‘*’ above bars 
indicates a statistically significant difference (p < 0.05) when compared to PCa. Error bars are 
based on standard error of mean. 

In executing phase-one of data classification process (see Section 2.5) for AFLS only, the 
feature selection algorithm selected 15 out of 20 (i.e., 15/20) fitted AFLS parameters as an 
optimal feature set for 3-tissue-type classification, whereas 16/20 fitted AFLS parameters 
were selected for 5-tissue-type classification. For LRS only, all five parameters were selected 
by the feature selection algorithm for ‘LRS only’ classification and for both 3-tissue-type and 
5-tissue-type classification. In case of dMOD, the selected feature number of parameters were 
20/25 and 18/25 for 3-level and 5-level classification, respectively. 

Table 2. Classification metrics of PCa for parenchymal tissues, evaluated by LRS only, 
AFLS only, and dMOD (unit: %) 

Classification 
method 

PCa 
Type 

Mode Sensitivity Specificity Accuracy AUC*100 

3-tissue-type 
classification* 

All high 
grade 

(GS≥7) 

AFLS 64.2 ± 2.5 69.2 ± 1.8 67.1 ± 0.7 72.9 ± 0.5 

LRS 63.0 ± 1.5 82.9 ± 1.6 74.7 ± 1.0 80.4 ± 0.2 

dMOD 79.0 ± 1.7 85.2 ± 1.1 82.7 ± 0.7 90.8 ± 0.4 

5-tissue-type 
classification** 

GS 9 

LRS 84.4 ± 2.3 56.5 ± 0.7 59.4 ± 0.6 72.9 ± 0.5 

AFLS 76.5 ± 3.2 75.9 ± 1.0 76.0 ± 0.9 85.4 ± 0.6 

dMOD 82.3 ± 2.4 85.4 ± 0.7 85.1 ± 0.6 91.5 ± 0.7 

GS 8 

LRS 71.8 ± 2.6 72.6 ± 1.8 72.5 ± 1.6 77.1 ± 0.7 

AFLS 76.3 ± 4.9 86.7 ± 0.8 86.0 ± 0.6 90.0 ± 0.6 

dMOD 81.5 ± 3.4 90.8 ± 0.9 90.1 ± 0.8 93.6 ± 0.7 

GS 7 

LRS 71.9 ± 2.2 82.7 ± 1.3 80.2 ± 0.7 87.9 ± 0.2 

AFLS 70.9 ± 2.0 72.4 ± 0.9 72.1 ± 0.7 78.6 ± 0.7 

dMOD 86.0 ± 2.4 88.5 ± 0.7 87.9 ± 0.6 94.7 ± 0.4 

* The values listed in this category implicate the classification for all high-grade PCa tissue group against non-cancer 
tissue types (nPZ and BPH). ** The values listed in this category implicate the classification for each PCa tissue 
group (e.g., GS 9) against remaining tissue groups. All are high grade (GS≥7). 
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Fig. 5. ROC curves obtained using the dMOD and the MLR classification for identifying 
parenchymal PCa tissues at individual PCa grades (GS 9, GS 8, GS 7) using 5-tissue-type 
classification and with all grades combined (All PCa) using 3-tissue-type classification. 

After generating the MLR classification models using selected features and completing 
phase-two data process for 3-tissue-type classification, we were able to evaluate classification 
accuracy by quantifying Sn, Sp, Acc, and AUC for all high-grade PCa (i.e., all GS≥7 
combined) with classification based on AFLS and LRS, individually or combined, as listed in 
Table 2. It is clear that dMOD gives rise to the best sensitivity (79.0%), specificity (85.2%), 
accuracy (82.7%), and AUC (90.8%) for PCa classification compared to either of the two 
techniques (AFLS and LRS). Furthermore, we repeated phase-two data process for 5-tissue-
type classification, and the analysis outcome was also excellent as shown in Table 2. The 
authors’ two-phase classification method allows identification of PCa tissue at the individual 
Gleason grade, namely, GS = 7, 8, and 9, and to return the best classification performance by 
its sensitivity, specificity, accuracy and AUC for all three PCa grades. It is clear that dMOD is 
the optimal approach to be able to accurately classify not only PCa tissue but also its specific 
Gleason grade. Three corresponding ROC curves obtained by dMOD for respective Gleason 
scores are illustrated in Fig. 5. One extra ROC curve for all PCa grades combined, as 
determined by 3-tissue-type classification from dMOD, is also plotted in Fig. 5 for 
comparison. This figure reveals that the overall performance from 5-tissue-type classification 
is superior, particularly for PCa tissue with Gleason grades of GS=7 and GS=8 compared to 
3-tissue-type classification. 

3.2 Results from extra-capsular tissues on the gland capsules 

For extra prostatic or extra capsular tissues (ECT), the measured AFLS/LRS data sets were 
taken from 185 small sites on or adjacent to the prostate capsules of additional eight patients. 
Analysis of means for AFLS data revealed that ECT lifetimes were closer to those of BPH 
and significantly longer than those from PCa. Also, in LRS, oxy- and total hemoglobin 
concentrations were significantly lower, whereas deoxy-hemoglobon concentration was 
significantly higher in PCa tissues than in benign ECT. In particular, light scattering of PCa at 
750 nm was still significantly larger than that in benign ECT, which is very consistent with 
the case of parenchymal benign tissues (see Fig. 4). 
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Table 3. Classification metrics to discriminate PCa from benign tissues (including ECT), 
evaluated by LRS only, AFLS only, and dMOD (unit: %) 

Classification 
method 

PCa 
Type 

Mode Sensitivity Specificity Accuracy AUC*100 

3-tissue-type 
classification* All high 

grade 
(GS>7) 

AFLS 86.6  ±  1.7 79.4  ±  1.2 82.1  ±  0.8 92  ±  0 

LRS 76.7  ±  0.5 92.6  ±  0.7 86.6  ±  0.4 93  ±  0 

dMOD 92.1 ± 1.0 92.4 ± 0.8 92.3 ± 0.5 98 ± 0 

5-tissue-type 
classification** GS 9 

LRS 80.2 ± 2.0 78.2  ±  0.5 78.4 ± 0.3 85  ±  1 

AFLS 88.1 ± 2.7 91.7 ± 0.2 91.4 ± 0.4 95 ± 1 

dMOD 82.8 ± 1.8 95.5 ± 0.5 94.3 ± 0.5 96 ± 1 

GS 8 
LRS 70.3  ±  5.3 79.7 ± 0.8 79.1 ± 0.8 81 ± 0 

AFLS 76.8  ±  2.1 92.3 ± 0.3 91.3 ± 0.3 93 ± 1 
dMOD 83.5 ± 3.2 92.5 ± 0.3 91.9 ± 0.3 95 ± 1 

GS 7 

LRS 87.1 ± 2.3 80.4 ± 1.0 81.8 ± 0.8 92 ± 0 

AFLS 83.3 ± 1.2 76.0 ± 0.9 77.5 ± 0.7 88 ± 0 

dMOD 91.4 ± 1.4 91.0 ± 0.3 91.1 ± 0.3 97 ± 0 

We utilized the same multinomial classification with 10-fold cross validation to evaluate 
the accuracy of dMOD to discriminate PCa tissues from ECTs and nPZ. The feature sets for 
3-tissue-type classification included 11 features out of 20 from AFLS, all 5 features from 
LRS, and 23 parameters from the dual-modal method. Also, the feature sets for 5-tissue-type 
classification included 16, 5, and 16 fitted parameters from AFLS, LRS, and dMOD, 
respectively, after executing the feature selection algorithm. The final outcome of phase two 
classification analysis for both 3-tissue-type and 5-tissue-type classification is listed in Table 
3. The former classification gave rise to 92.3% accuracy when identifying any level of high 
grade PCa (GS>7) in the presence of benign ECTs and nPZ tissue; the latter classification 
resulted in a range of accuracy between 91.1% to 94.3% when identifying high grade PCa by 
Gleason scores in the presence of these benign tissues. In comparison, dMOD offered overall 
excellent performance and better classification accuracy than each modality alone (i.e., either 
LRS or AFLS), as clearly demonstrated in the Table. 

It is also noted that when being stratified by Gleason grade, AFLS data provided high 
accuracy of ~91% for both GS 9 and GS 8, which is comparable to the accuracy obtained by 
dMOD. However, the accuracy for identifying PCa with GS 7 is much better by dMOD (91%) 
than by either AFLS (77.5%) or LRS (81.8%). The analysis results given in Table 3 confirm 
that dMOD can provide excellent accuracy in discriminating high grade PCa (with or without 
identifying Gleason scores) from benign parenchymal and extra capsular tissues. The 
corresponding ROC curves determined by both 3-tissue-type and 5-tissue-type classification 
methods with dMOD data are shown in Fig. 6. Being consistent with Table 3, this figure 
reveals that the overall performances of these two classification methods are comparable, 
giving rise to high accuracy, as long as dMOD is utilized for data analysis and classification. 
Both Table 3 and Fig. 6 support that dMOD has great potential to be developed as an 
excellent tool for positive margin assessment during or right after radical prostatectomy, thus 
improving the management and treatment outcomes of PCa. 
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Fig. 6. ROC curves obtained using the dMOD and MLR classification for identifying PCa and 
ECTs at individual Gleason grades (GS 9, GS 8, GS 7) using 5-tissue-type classification and 
with all grades combined (All PCa) using 3-tissue-type classification. 

4. Discussion and conclusions 

Optical imaging and measurement techniques are increasingly being developed, evaluated, 
and/or utilized for a broad range of medical applications. Of particular interest is their 
potential to differentiate benign from malignant tissue with high sensitivity and specificity. In 
particular, successful application of optical imaging techniques may have the potential to 
significantly impact current treatment paradigms for prostate cancer among others, improving 
diagnostic yield of prostate biopsies, monitoring of PCa foci within the prostate during active 
surveillance, and assessing surgical margins during radical prostatectomy. For these specific 
reasons, we hypothesized in the present study that a dual-modality optical method using 
AFLS and LRS has the ability to detect and differentiate high grade PCa tissues from benign, 
low-risk ones. To prove this hypothesis, we integrated a dMOD system, measured ex vivo 
human prostate glands, implemented feature selection and classification algorithms, and 
investigated the capabilities of discriminating high grade PCa from benign prostate tissues 
based on fitted parameters from AFLS and LRS, individually and in combination. In this 
section, we will discuss data classification algorithms, compare dMOD system performance, 
and compare our approaches with published methods. We will also discuss biochemical 
and/or physiological mechanisms resulting in signal differences of AFLS/LRS induced by 
PCa. Finally, we will discuss limitations of our proposed classification method. 

4.1 MLR classification models 

Although several parameters in both LRS and AFLS exhibit significant differences between 
PCa and benign tissues, none of these parameters can be singly used to discriminate PCa from 
benign tissues. While these parameters are associated with anatomical or physiological or 
biochemical behaviors of the tissues, standard deviations of these parameters are quite high, 
which can be attributed to the heterogeneity of the tissues and insufficient intrinsic contrasts 
as well. The MLR algorithm was thus employed: first to identify critical features (using 
sequential feature selection [24]), followed by combining the selected features to create a 
decision model for identifying different tissue types (see Section 2.5). 

Two different models were realized in this study: (1) 3-tissue-type classification for 
discriminating high grade PCa (GS≥7) from benign tissues, and (2) 5-tissue-type 
classification for discriminating PCa stratified by Gleason scores. While the ability to identify 
high grade PCa is important, the ability to detect PCa at GS = 7 is particularly more 
significant and clinically meaningful. This is because GS = 7 is the critical landmark of 
aggressive PCa and marks the action timeline from active surveillance to aggressive treatment 
in order to have early treatment with effective outcomes. Therefore, our 5-tissue-type 
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classification method for identifying PCa stratified by Gleason scores is potentially more 
useful for future clinical applications. 

4.2 Performance of dMOD approach and comparison to published works 

We hypothesized in the beginning of this study that LRS and AFLS, separately or in 
combination, could enable detection and identification of PCa tissue at high grades from 
either parenchymal tissues within prostate capsules or extra-prostatic tissues on or adjacent to 
the capsules. Our results proved that the dMOD approach, which combined LRS and AFLM 
for tissue classification analysis, gave rise to the highest accuracy for PCa tissue 
discrimination, in comparison to either technique alone for both intra-capsular as well as 
extra-capsular tissues. 

When 3-tissue-type classification was performed on intra-prostatic tissues, our two-phase 
classification algorithm and ROC analysis showed that AFLS and LRS individually had 
discriminative accuracy of 67.1% and 74.7%, respectively. AFLS and LRS also had a similar 
sensitivity, but LRS had a higher specificity for detection of PCa without identifying cancer 
grade. When parameters from the two modalities were combined (dMOD), discriminative 
accuracy, sensitivity and specificity for PCa (all grades combined) were significantly 
improved (Table 2). Consistently, dMOD improved accuracy over those by the individual 
modalities for discriminating individual grades of PCa (GS = 7,8,9) with respect to the benign 
tissue (Table 2), when 5-tissue-type classification approach was performed. Similar 
conclusions were clearly held on extra-capsular data (Table 3), except that the classification 
accuracies from each of the two techniques were much higher than those in the intra-prostatic 
case. In fact, for GS of 8 and 9, AFLS results were almost comparable (though not as high) to 
dMOD, but Gleason 7 was significantly less accurate for AFLS alone. 

Overall, it is clear from Tables 2 and 3 that classifying PCa stratified by Gleason scores 
considerably improved the classification accuracy in comparison with the all-grade-combined 
approach. This observation implies that PCa at different Gleason scores (i.e., at different 
aggressive levels) exhibits unique fluorescence and reflectance properties, which are closely 
associated with their respective biochemical and/or physiological mechanisms, which will be 
discussed in the next sub-section. This also makes the 5-tissue-type classification model be 
the method of choice for accurately identifying PCa. 

While prior published reports on methods designed towards discriminating PCa tissues in 
vivo are limited, several optical studies using ex vivo prostate specimens have been found 
[13–15,20]. The study by Salomon et. al. [13] used a triple spectroscopy approach on frozen-
then- thawed ex vivo prostate tissue (16 malignant and 75 benign samples) to discriminate 
malignant from benign tissue. Their technique involved spectral measurement and assessment 
from laser-induced auto-fluorescence, white-light remission, and high-frequency impedance 
spectroscopy. They reported a cross-validated sensitivity and specificity of 75% and 87.3%, 
respectively, which are comparable to our results. Halter et al. [20] measured electrical 
properties of 71 malignant and 465 benign ex vivo samples and reported a maximal accuracy 
of 81.8% for PCa tissues with GS≥ 7. In comparison, with dMOD, we obtained an accuracy 
of 82.7% for differentiation of PCa with GS≥ 7 (Table 2) in parenchymal tissues, showing 
equal or better accuracies of PCa detection compared to the two methods aforementioned. 
Furthermore, two other optical technologies with high or cellular spatial resolution, OCT [14] 
and CARS [15], were explored recently as a potential imaging tool to identify positive PCa 
margins and/or cavernous nerves for guiding radical prostatectomy. While OCT provided a 
high image resolution in depth up to 1 mm, it seemed to lack physiology-based specificity, 
resulting in a fairly good sensitivity (70%) and specificity (84), excellent negative predictive 
value (96%), but a poor positive predictive value (33%) [14]. Since CARS is a microscope-
based facility, it is able to image PCa and cavernous nerves at a cellular resolution. The 
results shown in [15] confirmed that CARS has the potential to become a clinical tool for 
surgical-margins assessment for PCa, while no classification of PCa at any GS was reported. 
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4.3 Origin and significance of measured parameters 

4.3.1 Fluorescence signals 

It is well known that optical fluorescence is closely associated with biochemical 
components/compounds or metabolic status within tissues, so it has been utilized in the field 
of biomedical research for decades, with either intensity or lifetime measurements. Numerous 
reviews on this topic can be found in literature, and two examples are given in [26,27]. As we 
mentioned in our previous study [24], measurement of fluorescence lifetime provides much 
information on the mechanisms that lead to chemical or biochemical processes. Furthermore, 
each pair of excitation/emission (ex/em) light either matches or corresponds to a set of 
electron energy levels for a specific molecular structure or biochemical bond. It has been a 
common practice over the past few decades to select 350 nm/450 nm as the ex/em pair since 
this pair is directly linked to the oxidized form of nicotinamide adenine dinucleotide, which is 
a major electron acceptor. In its reduced form, it is called NADH. The reduced nicotinamide 
ring is ñuorescent, which enables investigators to gain insight into the redox state of tissue 
and cellular metabolism [26]. Many studies have shown that the fluorescence signals from 
NADH are often reduced in tumor tissues due to a decrease in relative amount of NADH in 
malignant tissues [26]. 

In this study, however, we did not utilize NADH as an endogenous tissue fluorophore to 
probe PCa. We selected λex = 447 nm for several reasons: (1) to push the spectral window 
towards longer wavelengths than ultraviolet light in order to have a deeper light penetration 
depth, (2) to explore other biochemical components or processes that may be linked to PCa, 
and (3) to find other possible biomarkers (besides NADH) for high grade PCa detection. 
Throughout the study, our findings show that all fluorescence signals at λem = 532, 562, 632, 
and 684 nm have exhibited shorter lifetimes [see Fig. 4(a)] by PCa at all high grade levels 
(GS≥7) than by the benign peripheral zone (nPZ) tissues. The next question is: What 
biochemical molecules are probed at these four wavelengths, and how are they affected by or 
associated with PCa? 

Based on existing literature on in vivo fluorescence spectroscopy [28] and fluorescence 
lifetime, we expect that our selected excitation at 447 nm targets such endogenous 
fluorophores as lipopigments, flavins, and porphyrins within the prostate tissues. According 
to [28], porphyrin emission becomes dominant only after 600 nm, flavins have an emission 
peak between 500 and 600 nm, and lipopigments have a strong and broad emission band 
around ~450-700 nm (centered at ~560 nm). This implies that our detected fluorescence 
signals result from a combination of more than one fluorophore: specifically, both flavins and 
lipopigments contribute the fluorescence signals at 532 nm and 562 nm, while both 
lipopigments and porphyrins influence the signals at 632 nm. Indeed, the lifetimes observed 
at the respective four wavelengths in this study match well with those of key biochemical 
compounds [27] within lipopigments, flavins, and porphyrins. The key point in the following 
is to discuss and understand why high grade PCa alternate fluorescence signals and lifetimes 
of lipopigments, flavins, and porphyrins. 

First, one major chromophore within lipopigments is lipofuscin, which consists of yellow-
brown-colored granules and is marked as one of the aging or “wear-and-tear” pigments. 
Lipofuscin can be considered as a later phase of the cellular digestion chain associated with 
lysosomes, which are cellular, enzyme-containing organelles and serve as the stomach of the 
cell to process waste materials and cellular fragments [29]. Many diseases, such as macular 
degeneration, Alzheimer's disease, and Parkinson's disease, have been reported to have 
abnormal accumulations of lipofuscin. Thus, we speculate that high grade PCa tissue is likely 
to have ill-behaving lysosomes, which are not able to perform well cellular disposal function 
and thus lead to unhealthy accumulation of lipofuscin within the prostate tissue. Next, it is 
well known that flavin adenine dinucleotide (FAD) is a redox cofactor, playing a key role in 
cellular metabolism. FAD often exists in two different redox states: the oxidized form, FAD, 
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and reduced form, FADH2 [29]. The former is fluorescent, while the latter one is not. It is 
often seen that the fluorescence signals from FAD are largely reduced in tumor tissue because 
of the decrease in the oxidized form of flavins. Last, since porphyrins are a group of organic 
compounds, one of which is heme, the pigment in red blood cells and a cofactor of the protein 
hemoglobin, we expect to see alternations in porphyrins fluorescence signatures due to 
diseased vasculature of PCa tissues. Given all the biochemical relations between the 
measured fluorescence signals and PCa, we conclude that our AFLS signals enable us to 
probe PCa status due to damaged or defective functions in cellular disposal and metabolic 
processes as well as ruined blood vasculature. Table 4 summarizes the relations between the 
measured fluorescence signals and biochemical compounds that are altered in their functions 
by PCa. This table implies that it might be possible to identify specific changes in lifetime 
from each of the three biochemical compounds/fluorophores, so as to reveal cellular or 
metabolic alternations due to PCa, by decomposition of lifetime decay signals. However, it is 
beyond the scope of this paper and will be explored in our future studies. 

Table 4. Summary of relations among fluorophores, cellular or metabolic functions, and 
expected versus measured fluorescence signals and lifetimes at emission wavelengths 

Biochemical 
fluorophores in 
prostate tissue 

Relations to 
cellular/metabolic 
functions of tissue 

Fluorescence expected 
(spectral band; peaks) 

in nm [28] 

Fluorescence measured 
[see Fig. 4(a)] 

(τ: lifetime in ns) 
Peak τ; cancer τ; benign 

Porphyrins Tissue vasculature > 600; 630, 680 632 nm 
684 nm 

2.59 ± 
0.49 

2.17 ± 
0.40 

2.22 ± 
0.45 

1.85 ± 
0.32 

Flavins cellular metabolism 500-600; 550 532 nm 
562 nm 

3.12 ± 
0.44 

3.03 ± 
0.48 

2.72 ± 
0.37 

2.63 ± 
0.38 

Lipopigments cellular disposal 
process 

450-670; 560 532 nm 
562 nm 
632 nm 

3.12 ± 
0.44 

3.03 ± 
0.48 

2.59 ± 
0.49 

2.72 ± 
0.37 

2.63 ± 
0.38 

2.22 ± 
0.45 

While NADH is an endogenous tissue fluorophore to probe metabolic states of tissue 
and/or cancer, we investigated three other biochemical and molecular signatures of prostate 
cancer using AFLM with excitation at 447 nm and emission at 532, 562, 632, and 684 nm. 
Given the results in our previous study on breast cancer [24], we expect that the AFLM 
methodology demonstrated here is highly likely to work for cancer detection and 
classification in other types of cancer. Note that since the excitation-emission spectral bands 
of lipopigments, flavins, and porphyrins are rather broad, appropriate wavelengths for both 
excitation and emission can be possibly chosen in efficient spectral ranges depending on 
available optical hardware and choices of researchers. 

4.3.2 Reflectance signals 

Origin of LRS signals has been well understood and described in the biomedical optics 
literature. Basically, both chromophore concentrations, such as HbO and Hb, and light 
scattering, which reflects cell sizes and densities, can be estimated quantitatively from direct 
LRS measurements [25]. Several reported studies have utilized LRS with small fiber 
geometry to investigate various tissue types and cancer [30,31]. The physiological 
significance of LRS-derived HbO, Hb, and other chromophoes is self-evident as they provide 
absolute values of respective chromophore concentrations. Also, quantification of light 
scattering is directly associated with cell size and density: the larger and denser the particles 

#207541 - $15.00 USD Received 4 Mar 2014; revised 1 Apr 2014; accepted 7 Apr 2014; published 14 Apr 2014
(C) 2014 OSA 1 May 2014 | Vol. 5,  No. 5 | DOI:10.1364/BOE.5.001512 | BIOMEDICAL OPTICS EXPRESS  1527



(such as cellular nuclei and intra-cellular organelles) are, the larger the light scattering 
coefficients are. 

Our results in Fig. 4(b) clearly show that HbO, Hb, and HbT are all more prevalent in 
tissues within the benign peripheral zone, indicating overall better or fuller blood perfusions 
in the benign parenchymal tissues than in the PCa regions. Lower HbT values for PCa are 
also consistent with our previous work, taken from a different data set [11]. Furthermore, Fig. 
4(b) also demonstrates that oxygen saturation (SO2 = [HbO]/[HbT]*100) was lowest in PCa 
(39.7%), as compared to nPZ (55.3%) and BPH (47.9%), indicating relative hypoxia in the 
PCa region, also consistent with our previous study [11]. β-carotene was also found to be a 
contrast parameter for intra-prostatic tissues. 

Moreover, as evident from Fig. 4(b), the light scattering coefficient (at 750 nm) of PCa 
was much higher than that of all benign tissue types consistently, resulting from 
morphological alternation in cellular size and density of PCa tissue. Indeed, it is suggested 
that as the PCa grade of tissue increases from low to high, glandular epithelial cells will 
progress toward prostatic intraepithelial neoplasia (PIN) and then become adenocarcinoma 
[32] with increased hyperplastic epithelium or/and cellular tufts filling the glandular space 
[33]. In the meantime, it was recently hypothesized that progression of PIN triggers reactive 
stroma formation, which is likely cancer-promoting, coevolves with foci of adjacent 
carcinoma, and thus changes cellular architecture and composition in both glandular and 
stroma space [33]. All of these morphological changes are the physiological origin to cause 
increases in light scattering. 

4.4 Limitations and future work 

Despite the promising results shown above, a few limitations of our study warrant discussion. 
First, both AFLS and LRS readings were recorded from ex vivo tissues approximately one 
hour after the prostates were disconnected from any blood supply. Re-evaluation of our 
methodology under in vivo setting may yield different spectral outputs, particularly for the 
spectral signatures of HbO, Hb, and HbT, given in vivo hemodynamic perfusion conditions 
and complex biochemical microenvironments. 

Second, our prostate specimen sample size was relatively small and limited to patients 
with high grade PCa at GS≥7. Since identification of PCa at GS = 7 is highly critical in order 
to decide whether any treatment is needed, it is of necessity that the developed methodology 
needs to have high sensitivity and specificity. As such, further parameterization to 
characterize lower grades of PCa (i.e., GS≤6) should be mandatory prior to future clinical 
applications. 

Third, the number of features used for dMOD tissue classification seems to be large and 
thus may lead to an overfitting concern. Because of non-perfusion conditions in our ex vivo 
prostate specimens, currently collected readings of HbO, Hb, and HbT may have large 
deviations due to a variety of physiological insults or defects. We expect that further in vivo 
studies may provide us with improved physiological conditions for the prostate glands during 
data collections, which in turn will reduce the deviations of fitted parameters and thus lead to 
a smaller number of features needed for accurate PCa classification. 

Finally, our spectral signatures of PCa were all obtained within the prostate capsules (i.e., 
parenchyma tissues). Prior to in vivo applications, AFLS and LRS characteristic spectra of 
positive margins on prostate capsules will need to be identified and included for updated 
classification analysis. 

Overall, this study was to investigate whether there exists any optical signature to 
discriminate PCa from non-cancerous prostate tissue and what kinds of optical signatures of 
PCa at different stages have. Much further development is needed before extending this 
technique to in vivo human environment. But, this study demonstrates that the dMOD 
methodology can be developed for ex vivo detection of positive margins in the operating room 
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during or right after radical prostatectomy, thus improving the management and treatment 
outcomes of PCa. 

4.5 Conclusions 

This study has demonstrated that the dMOD approach, which combines auto-fluorescence and 
light reflectance spectroscopy, is able to discriminate PCa at Gleason grade 7 or higher from 
benign parenchymal tissue as well as from capsular or extra-prostatic tissue types of ex vivo 
prostate specimens with excellent classification sensitivity, specificity and accuracy. With 
further development and validation, the dMOD approach has the potential to be developed as 
an intraoperative aid for positive margin assessment during radical prostatectomy, a 
minimally invasive aid for active surveillance strategies, and a complementary/integrated tool 
for other clinical applications. 

Appendix: Cross-validation [34] 

Cross-validation is commonly used to validate a new classification model by assessing how 
accurate the classification results are when the model is tested with an independent data set 
[34]. In general, a classification model is developed using a given dataset of known data as 
the training dataset to serve as “ground truth”. Then, another independent dataset of unknown 
data is utilized as the testing dataset in order to test the model. In reality, the number of actual 
datasets is sometimes limited, so the testing results are not statistically conclusive. To solve 
this problem, k-fold cross validation is often employed by randomly partitioning the original 
datasets into k equal size subsamples. Next, a single subsample is kept as a testing dataset, 
while the remaining k − 1 subsamples serve as training data. To be statistically meaningful, 
this cross-validation process is performed k times, with each of the k subsamples rotated once 
as the validation or testing data. In a special case, where the measurement sample size, n, is 
relatively small, leave-one-out cross-validation is commonly used. Then, the independent, 
testing dataset is just one measurement; cross-validation will become an n-fold operation 
where n is the number of measurements. Specifically, we used 10-fold cross-validation in this 
study [see Fig. 3], with multiple data points in each training and testing datasets. Another 
example is given in ref [35], where leave-one-participant-out cross-validation was used to test 
their predication algorithm. 
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