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The morphogenesis of viruses belonging to the genus Enterovirus in the family Picornaviridae is

still poorly understood despite decades-long investigations. However, we recently provided

evidence that 2CATPase gives specificity to poliovirus encapsidation through an interaction with

capsid protein VP3. The polypeptide 2CATPase is a highly conserved non-structural protein of

enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have

identified a site (K279/R280) near the C terminus of the polypeptide that is required for

morphogenesis. The aim of the current project was to search for additional functional sites near

the C terminus of the 2CATPase polypeptide, with particular interest in those that are required for

encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed

four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts

were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-

infectious mutants. All four mutants exhibited normal protein translation in vitro and three of them

possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants

with a pseudo-reversion at the original site (A286D), but some also contained one additional

mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an

encapsidation and possibly also an uncoating defect at 37 6C. Variants of this mutant revealed

suppressor mutations at three different sites in the 2CATPase polypeptide: A138V, M293V and

K295R. We concluded that the cysteine-rich site near the C terminus of 2CATPase is involved in

encapsidation, possibly through an interaction with an upstream segment located between boxes

A and B of the nucleotide-binding domain.

INTRODUCTION

The family Picornaviridae contains a large number of human
and animal pathogens, the prototype of which is poliovirus
(PV), a member of the genus Enterovirus. The last step in the
life cycle of picornaviruses is encapsidation of the newly
made viral RNA, which takes place in the cytoplasm of the
infected cell. Although the basic steps in particle assembly
are known, few details are available about the mechanism
and the factors that regulate this process. Encapsidation is
difficult to study because this process is tightly linked to
protein translation and RNA replication. So far, only a single
non-structural protein, 2CATPase, has been identified that has
an essential role in morphogenesis (Liu et al., 2010; Vance
et al., 1997; Wang et al., 2012). The aim of this study was to
identify domains in the 2CATPase protein that are involved in
this complex process.

The plus-strand genome (7.5 kb) of PV contains a long 59

non-translated region (NTR), a single ORF, a short 39 NTR
and a poly(A) tail. It encodes a polyprotein with one
structural (P1) and two non-structural (P2, P3) domains

(Fig. 1a), which are processed into precursor and mature
viral proteins by 2Apro and 3Cpro/3CDpro (Wimmer et al.,
1993). 2CATPase is a highly conserved and multifunctional
membrane protein of picornaviruses (Fig. 1b). This 329 aa
polypeptide contains an NTP-binding motif (Fig. 1b, boxes
A, B and C) and exhibits ATPase activity in vitro (Mirzayan
& Wimmer, 1994; Pfister & Wimmer, 1999; Rodrı́guez &
Carrasco, 1993). Guanidine hydrochloride (GnHCl), a
potent inhibitor of RNA replication, inhibits the ATPase
activity of purified 2CATPase protein (Pfister & Wimmer,
1999). Mutants resistant to or dependent on GnHCl map
to the 2CATPase polypeptide (Baltera & Tershak, 1989;
Pincus & Wimmer, 1986). Genetic studies have identified
numerous functions for the protein including particle
uncoating, host-cell membrane alterations, viral RNA
binding, viral RNA replication and encapsidation (Aldabe
& Carrasco, 1995; Banerjee et al., 1997; Barton & Flanegan,
1997; Cho et al., 1994; Li & Baltimore, 1988, 1990; Liu et al.,
2010; Paul et al., 1994; Rodrı́guez & Carrasco, 1995;
Teterina et al., 1992, 1997; Vance et al., 1997; Verlinden
et al., 2000). The protein was shown to oligomerize and to
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interact with capsid protein VP3 and with non-structural
proteins 2B and 2BC, 3A and 3AB, and 3Cpro (Adams et al.,
2009; Banerjee et al., 2004; Cuconati et al., 1998; Liu et al.,
2010; Yin et al., 2007). The N-terminal domain of the protein
contains the oligomerization and RNA-binding domains
and an amphipathic helix, which anchors the protein to
membranes (Adams et al., 2009; Echeverri et al., 1998; Paul
et al., 1994; Rodrı́guez & Carrasco, 1995). The central and
C-terminal segments of the protein possess serpin (serine
protease inhibitor) motifs (Banerjee et al., 2004). Near the
C terminus of the protein, there is another amphipathic
helix and a cysteine-rich site (CRS), which binds zinc (Pfister
et al., 2000; Teterina et al., 1997). Finally, the PV 2CATPase

polypeptide binds specifically to an RNA structure near the 39

end of PV minus-strand RNA (Banerjee et al., 1997). At the
RNA level, a small hairpin, cre(2C), in the 2CATPase coding
sequence, is required for the protein-primed initiation of
RNA replication (Goodfellow et al., 2000; Paul et al., 2000).

Both genetic and drug inhibition studies have indicated
the involvement of 2CATPase in encapsidation. Hydantoin,
a drug that inhibits PV morphogenesis, yielded resistant

mutants located near the centre or N terminus of the
2CATPase polypeptide (Vance et al., 1997; A. V. Paul, J.
Mugavero, N. Dhiman, and E. Wimmer unpublished data).
A cold-sensitive mutant with an insertion in 2CATPase at
S255 yielded suppressor mutations M293V and K295R,
whose phenotype was interpreted as a defect in uncoating.
This observation suggests that 2CATPase might possess some
role in determining virion structure (Li & Baltimore, 1988,
1990). Most importantly, a chimaera of PV, containing the
capsid of CAV20, was found to be defective in encapsida-
tion. This chimaera yielded suppressor mutations either in
capsid protein VP3 or in 2CATPase (Liu et al., 2010). From
these studies, we concluded that the specificity of encapsida-
tion is provided by an interaction between 2CATPase and
capsid proteins. Our recent mutational analyses of the
2CATPase polypeptide strongly supported this conclusion.
It also led to the identification of a C-terminal site (K279/
R280) that is involved in both RNA replication and
encapsidation (Wang et al., 2012).

Previous studies with other viruses have indicated the
importance of zinc-binding domains of proteins in
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Fig. 1. Genome structure of PV, the functional
domains of 2CATPase and location of mutants in
the cysteine-rich site (CRS). (a) The PV RNA
contains a long 59 NTR, a single ORF, a short
39 NTR and a poly(A) tail. The polyprotein is
processed into one structural (P1) and two
non-structural domains (P2 and P3). Protein
2CATPase is located in the P2 domain. (b)
Functional domains of PV 2CATPase and loca-
tions of known mutations involved in encapsi-
dation (N252S, K279A/R280A) or uncoating
(M293V, K295R) are shown. The locations of
the new mutants are also illustrated. The
primary GnHCl-resistant (N179G) and -
dependent (M187L) mutations are also shown.
(c) Conservation of cysteine/histidine residues
in the CRSs (aa 269–286) of enterovirus
2CATPase polypeptides.
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morphogenesis. For example, the cysteine/histidine boxes
of the human immunodeficiency virus type 1 nucleocapsid
have been shown to play an important role in encapsida-
tion (Schwartz et al., 1997). In addition, the cysteine-rich
region of hepatitis B virus is involved in the encapsidation
of the pre-genomic RNA (Kim et al., 2009). The cysteine-
rich domain of PV was shown previously by us to have an
essential function in RNA replication and viral growth
(Pfister et al., 2000). However, at that time, the role of this
domain in encapsidation was not examined. This domain
is conserved among enteroviruses, and in PV it consists of
the following motif: CX2CHX7CCX3C (Pfister et al., 2000)
(Fig. 1c). It should be noted that the thiol groups of
cysteines in 2CATPase occur in the reduced form in infected
cells (Pfister et al., 2000). The aim of this study was to
re-examine the cysteine-rich region of PV 2CATPase in
particular with respect to a possible function in encapsida-
tion. We produced four mutants in which a histidine or
cysteines were changed to alanines (Table 1, Fig. 1b, c). Of
these, two mutants possessed lethal growth phenotypes, one
was temperature sensitive (ts) and one was quasi-infectious
(qi). The mutant with the ts growth phenotype was found to
be defective at 37 uC, specifically in morphogenesis. The
delayed growth kinetics of this virus at 37 uC suggested the
possibility of an additional uncoating defect. Variants with
suppressor mutations either were in a spacer between boxes
A and B of the NTP-binding domain or contained the same
suppressor mutations (M293V, K295R) that were reported
previously for an uncoating mutant (Li & Baltimore, 1988,
1990). We concluded that the CRS in PV 2CATPase is
involved in morphogenesis, possibly through an interaction
with a spacer region between boxes A and B of the NTP-
binding domain.

RESULTS

Studying the role of 2CATPase in encapsidation is difficult
because the protein is essential for RNA replication, a step
in the life cycle of the virus prior to particle assembly.
Thus, a lack of RNA replication results in a complete loss
of encapsidation. Conditional-lethal mutants, such as ts
or qi mutants, have been used frequently in the past
to distinguish between defects in RNA replication and

encapsidation. In addition, ts and qi mutants are useful
because they are prone to produce suppressor mutations
that identify interacting partners of the protein examined.
Our aim was to search for ts or qi mutants by changing
the cysteines or a histidine to alanines in the zinc-binding
domain of 2CATPase. A C272S/H273Q mutant at this site
was previously shown to be a ts mutant in terms of growth
(Pfister et al., 2000).

CRS 2CATPase mutants exhibit normal translation
and polyprotein processing

We constructed four mutants containing one or two
histidine or cysteine changes to alanines (Fig. 1c, Table 1).
To rule out the possibility that the mutants were defective
in translation or protein processing we translated in vitro in
HeLa cell-free extracts (Molla et al., 1991) RNA transcripts
of the four mutants. After incubation for 8 h at 34 uC,
samples were analysed by SDS-PAGE. As shown in Fig. 2,
all four mutant transcript RNAs exhibited the same
translation and polyprotein processing profiles as the wt,
and no aberrant migration patterns of the 2C-related
polypeptides, due to the amino acid substitutions, could be
detected.

Growth phenotypes of the four CRS 2CATPase

mutants

To compare the growth properties of the four CRS mutants
with those of the wt, transcript RNAs were transfected into
HeLa R19 cells and incubated at 33, 37 and 39.5 uC for up
to 72 h or until a full cytopathic effect (CPE) developed.
Lysates of mutants producing no full CPE upon transfec-
tion were subjected to up to four blind passages at the same
temperatures. Two lethal (CRS1 and CRS3), one ts (CRS2)
and one qi (CRS4) mutant were obtained (Table 1). The
‘lethal’ mutants (CRS1 and CRS3) that yielded no CPE
after transfection at all three temperatures were passaged at
the same temperature four times but still exhibited no sign
of CPE.

The growth phenotypes of the resulting viruses, derived
from mutant clones CRS2 and CRS4, were examined by
plaque assay (Fig. 3). Mutant CRS2 produced full CPE

Table 1. List of the CRS mutants of 2CATPase, the corresponding amino acid and nucleotide changes, and their growth phenotypes

Mutants Wild-type

codon(s)

Alanine

codon(s)*

Growth

phenotype

Time of full CPE at indicated temperatureD

33 6C 37 6C 39.5 6C

CRS1 (C269A) TGT gcT Lethal – – –

CRS2 (C272A/H273A) TGTCAC gcTgcC ts Tf Tf Passage 1

CRS3 (C281A/C282A) TGCTGT gcCgcT Lethal – – –

CRS4 (C286A) TGT gcT qi Passage 1 Passage 1 Passage 1

*Lower-case letters indicate the nucleotide changes.

D–, No CPE, even after four blind passages; Tf, full CPE at transfection; passage 1, full CPE at passage 1.
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upon transfection at 33 uC, yielding virus with smaller
plaques and slightly lower titres than the wt virus at the same
temperature (Table 1, Fig. 3a). This CRS2 virus, derived
from RNA transfection at 33 uC, exhibited tiny plaques at
37 uC and minute plaques at 39.5 uC (Fig. 3b). The viral titre
at 39.5 uC was 3 logs lower than that of the wt, indicating a
severe ts growth phenotype (Fig. 3a). When RNA trans-
cripts of mutant CRS2 were transfected at 37 uC, full CPE
developed upon transfection (Table 1) but it was delayed
(72 h) compared with that of the wt virus (48 h) (data not
shown). Transfection of CRS2 mutant RNA at 39.5 uC
yielded full CPE only after the first passage (Table 1).

The growth properties of the ts CRS2 mutant were analysed
in more detail with one-step growth curves at 33 and 37 uC
(Fig. 4). HeLa cells were infected at an m.o.i. of 1 with wt
or CRS2 viruses and the virus yield (p.f.u. ml21) was
determined at various times post-infection (p.i.). The
results indicated that, at 33 uC, the virus yield was close to
the wt PV type 1 Mahoney (PVM) at early time points but
was reduced about 10-fold later in infection. Interestingly,
at 37 uC, virus production was much reduced at early times
in infection and the final yield of progeny was only
moderately reduced relative to the wt virus at 8–24 h p.i.
Whether the delayed growth of the mutant at 37 uC was

related to an abnormal uncoating step, possibly related to a
defective encapsidation step in the previous growth cycle
(see below), remains to be determined.

Transfection with mutant CRS4 transcript RNAs resulted
in full CPE only after the first passage at all three tem-
peratures tested (33, 37 and 39.5 uC; Table 1). The viral
progeny of mutant CRS4, isolated at 33 uC at passage 1,
was also subjected to plaque assay at all three temperatures.
It yielded somewhat smaller plaques at 33 and 37 uC but
minute plaques at 39.5 uC when compared with the wt
virus (Fig. 3b). The viral titres of CRS4 variants at all three
different temperatures were comparable to that of the wt
(Fig. 3a).

RNA replication and encapsidation phenotypes of
CRS 2CATPase mutants

To characterize our mutants further for possible defects
in RNA replication and/or encapsidation we used a Renilla
luciferase (R-Luc) reporter virus (R-PPP) in which the
R-Luc gene was fused to the N terminus of the PV
polyprotein (PPP indicates domains P1, P2 and P3) (Liu
et al., 2010). After translation, the R-Luc polypeptide
was cleaved from the polyprotein by 3CDpro (Fig. 5a). The
advantage of using this reporter virus over conventional
reporter replicons, in which P1 is replaced by the luciferase
gene, is that it can distinguish between defects in RNA
replication and morphogenesis. An R-Luc-containing
reporter virus that is unable to encapsidate itself will
exhibit normal RNA levels as shown by a wt-like R-Luc
signal after transfection. However, it will not generate
infectious virus and, as a consequence, will not produce an
R-Luc signal after passage to fresh HeLa cells. It should be
noted, however, that the assay with the R-Luc virus cannot
directly distinguish between encapsidation or uncoating,
two closely linked processes. A defect in the encapsidation
of the progeny virus might cause an abnormal capsid
structure that can interfere with normal uncoating in the
next round of infection.

RNA transcripts of the wt or mutant R-Luc reporter viruses
were transfected into HeLa cells at different temperatures
in the absence and presence of GnHCl, a potent inhibitor
of RNA replication (Pincus & Wimmer, 1986). R-Luc
activity was measured at 16 h post-transfection. In the
presence of the drug, the R-Luc signal measures trans-
lation, whilst in its absence it indicates the level of RNA
replication. Subsequently, cell lysates from transfections
carried out in the absence of GnHCl were subjected to fresh
HeLa cells to test for encapsidation. These cells were then
again incubated with or without GnHCl, followed by an
assay for R-Luc activity at 8 h p.i. The level of encapsida-
tion was estimated from the R-Luc activity in lysates of cells
incubated without the drug during the passage (Liu et al.,
2010).

Using this assay, we determined that both lethal mutants
(CRS1 and CRS3) and the qi mutant (CRS4) were defective
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in RNA replication at 33 (Fig. 5b), 37 and 39.5 uC (data not
shown). As expected, the defect in RNA replication with
these mutants resulted in a lack of encapsidation (Fig. 5b).
The ts mutant (CRS2) exhibited normal RNA replication
and encapsidation at 33 uC, and it was defective in both
processes at 39.5 uC (Fig. 5c). Interestingly, at 37 uC, CRS2
was nearly normal in RNA replication but produced no
R-Luc signal after passaging, indicating a specific defect in
encapsidation and/or uncoating (Fig. 5c).

Immunofluorescence imaging of wt- and CRS2-
infected HeLa cells at 33 and 37 ‡C

We compared the amounts of VP3 polypeptide and mature
virus produced by wt PVM and the CRS2 mutants at 33
and 37 uC using immunofluorescence imaging. HeLa cells

were infected with wt or CRS2 virus at an m.o.i. of 1 at 33
and 37 uC, and were incubated at the same temperature
for 5 or 4 h, respectively. Infected cells were probed with
A12 antibodies, which recognize mature virus (N. Altan-
Bonnett, unpublished results) and polyclonal antibodies
to the VP3 capsid protein (Fig. 5d). The results indicated
that the amount of VP3 capsid protein produced by the
mutant was similar to that produced by the wt virus at
both temperatures. However, there was a strong reduction
in the amount of mature virus produced in CRS2-infected
cells relative to the wt, which was particularly evident at
37 uC but could also be observed at 33 uC. These results
strongly suggested that the deficiency in mature virus
production was the result of a defect in encapsidation and
confirmed the results obtained with the CRS2 R-Luc virus
(Fig. 5c).
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Characterization of suppressor variants derived
from mutants CRS2 and CRS4

To enhance the number of variants from CRS2 or CRS4,
we used a strategy of growing, plaquing and propagating
the mutants from the plaques at combinations of low and
high temperatures (33 and 39.5 uC) (Wang et al., 2012).
This resulted in the identification of a pseudo-revertant
and/or numerous second-site suppressor mutants follow-
ing reverse transcription (RT)-PCR of the total RNA and
whole genome sequencing (Figs 6 and 7).

When mutant CRS2 was transfected at 33 uC but plaque
purified and amplified at 39.5 uC, we detected two different
variants (Figs 6a and 7). Both contained the original
mutations (C272A/H273A) but acquired a suppressor
mutation at either A138V (CRS2a) or M293V (CRS2b)
(Fig. 7). As expected, only CRS2 genomes (C272A/H273A)
but no revertants or suppressors of mutant CRS2 were
detected in samples transfected, plaque purified and amp-
lified at the permissive temperature (33 uC). When CRS2
RNA was transfected, plaque purified and grown at 39.5 uC,
a suppressor mutation, K295R, was observed (Fig. 7), whilst
the original two mutations were retained (CRS2c). All three
suppressor mutations rescued the ts phenotype of CRS2 and
the variants exhibited wt-like growth phenotypes at all three
temperatures (Fig. 6a). The plaque sizes of the variants were

smaller than those of the wt at all three temperatures tested,
33, 37 and 39.5 uC (Fig. 6b).

We carried out the same selection process at two different
temperatures (33 and 39.5 uC) to enhance the number of
variants of the qi mutant CRS4 (Fig. 7). RNA transcripts of
CRS4 were transfected into HeLa cells at both temperatures
and, after the development of full CPE at passage 1, the
resulting viruses were plaque purified and isolated. As
mutant CRS4 is a qi mutant, the progeny isolated from cell
lysates were always found to be genetic variants of the
original mutant. When the CRS4 variants were propagated
at 33 uC, they lost the original C286A mutation and acquired
a pseudo-reversion at the same position A286D (CRS4a, Fig.
7). It should be noted that the AAD change required only a
single nucleotide change, whilst a reversion back to C would
have involved two nucleotide changes. It appears that a D at
this position in the 2CATPase polypeptide is fully functional at
33 uC. However, when the CRS4 variants were passaged at
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(A286D), an additional suppressor mutation was required to
regain function: A138V (CRS4b) or M293V (CRS4c) (Fig.
7). The plaque phenotypes and viral titres of the CRS4
variants were also determined (Fig. 6b). Variant CRS4a
(A286D), which was selected at 33 uC, yielded a wt-like titre
but minute plaques at 39.5 uC. The growth phenotypes of
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CRS4b and CRS4c were comparable to that of the wt virus
(Fig. 6b).

Summary of the C-terminal 2CATPase sites involved
in encapsidation

The locations of suppressor mutations, in variants derived
from CRS2 and CRS4, are summarized in Fig. 7. We also
included the locations of suppressor variants of mutant
11, K279A/R280A, from our previous alanine-scanning study
(Wang et al., 2012) and of cold-sensitive mutant 2C-31 R1/R3
from the study by Li & Baltimore (1990). It should be noted
that residues K279/R280 in the parental virus of mutant 11
are involved in encapsidation, whilst the cold-sensitive
mutant has an uncoating defect, most likely the consequence
of an encapsidation defect. Thus, we concluded that a C-
terminal domain of 2CATPase, which includes the CRSs, is
involved in encapsidation, probably through an interaction
with an amino acid sequence contained between boxes A and
B of the NTP-binding domain (aa 136–172) (Fig. 1b).

DISCUSSION

Morphogenesis is the last step of the viral life cycle in which
the progeny viral RNA is enclosed in a protective coat that

ensures a proper uncoating process during the next round of
infection of susceptible host cells. We believe that encapsi-
dation and uncoating are related processes, as improper
encapsidation of the viral RNA will lead to a defect in
uncoating. Previous studies have already identified two sites
in a domain near the C terminus of 2CATPase that are
important either for morphogenesis or perhaps for uncoat-
ing (Li & Baltimore, 1990). Recently, using chimaeras of PV
and coxsackie A virus 20, residue N252 of 2CATPase was
identified as an interacting partner of E180 of the capsid
protein VP3, providing specificity to the encapsidation
process (Liu et al., 2010). In addition, clustered charge-to-
alanine mutagenesis, which yielded suppressor mutations
either in 2CATPase or in both 2CATPase and capsid proteins
VP1 or VP3, has identified residues K279/R280 of 2CATPase

as important for encapsidation (Wang et al., 2012).

The aim of the current study was to identify and charac-
terize additional sites near the C terminus of the 2CATPase

polypeptide that are involved in morphogenesis. We were
particularly interested in generating conditional-lethal or qi
mutants, which in the past have yielded useful information
on protein–protein interactions in morphogenesis (Wang
et al., 2012). Previous studies from our laboratory have
indicated that a CRS near the C terminus, which binds
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Zn2+, is required for viral growth and RNA replication
(Pfister et al., 2000). The availability of a reporter virus that
can distinguish between defects in RNA replication and
encapsidation/uncoating (Liu et al., 2010) has made it
possible to examine the possibility that one or more of the
cysteine/histidine residues are also important for encapsi-
dation. Therefore, we constructed and analysed the
properties of four mutants in the cysteine-rich domain.

All of the mutants (CRS1–4) exhibited normal protein
translation and polyprotein processing profiles, but they
were defective in RNA replication, at least to some extent,
indicating the importance of the CRS in this process. As
normal RNA replication is a prerequisite of encapsidation,
we cannot rule out the possibility that some or all of the
other cysteine/histidine residues in the CRS are also
involved in encapsidation. Interestingly, our studies with
a reporter virus indicated a specific defect of the ts mutant
(CRS2) in encapsidation at 37 uC, whilst the delayed
growth kinetics of this mutant, observed by imaging,
suggested an early defect in the virus life cycle. We are
currently investigating the possibility that the defect in
encapsidation of CRS2 at 37 uC leads to improper
uncoating during the next round of infection.

We subjected the original CRS2 and CRS4 mutants to
different selection pressures with a combination of low and
high temperatures during transfection and passage, and also
during plaque purification and amplification, a method that
led to a variety of interesting suppressor mutants and a
pseudo-revertant in our previous study (Wang et al., 2012).
The CRS2 mutant yielded suppressor variants (M293V,
K295R) either near the original mutated site (C272/H273)
or in a spacer region (A138V) between boxes A and B of
the nucleotide-binding site (Figs 1b and 7). Curiously, the
rescue of the CRS2 alanine substitutions at nearby sites
could occur either by the replacement of a less hydrophobic
residue with a more hydrophobic residue (M293V) or by
the replacement of one strongly basic residue with another
(K295R). The observation that the CRS2 mutation can be
rescued by the same suppressor mutations (M293V, K295R)
as the uncoating defect, previously analysed by Li &
Baltimore (1990), supports a linkage between the encap-
sidation and uncoating processes. The quasi-infectious
CRS4 (C286A) mutant generated a pseudo-revertant
(A286D), either alone or in combination with other
suppressor mutations (A138V or M293V). Both CRS2 and
CRS4 yielded a suppressor mutation A138V, close to the site
(E148K) of the suppressor mutant of alanine-scanning
mutant 11 (K279A/R280A) (Wang et al., 2012). These
results support our proposal that there is a functional
interaction between the C-terminal domain of the 2CATPase

polypeptide and a spacer region between boxes A and B of
the NTP-binding domains. Whether this interaction occurs
intramolecularly or between different 2CATPase protein
molecules remains to be determined. It should be noted
that cysteine-rich zinc-binding domains in proteins fre-
quently mediate protein–protein interactions, particularly
those that contribute to the formation and architecture of

large molecular scaffolds (Borden, 2000; Kentsis & Borden,
2000). Previous studies have indicated that purified MBP-
tagged 2CATPase formed oligomers that appeared by electron
microscopy as ring-like structures composed of five to
eight protomers, and that these oligomers are essential for
function (Adams et al., 2009). It is not yet known whether
the zinc-binding domain of 2CATPase has a role in the
formation of such functional oligomers.

The CRSs of enterovirus 2CATPase proteins are highly
conserved both in the amino acids they contain and in the
spacing of residues within the sites (Fig. 1c) (Pfister et al.,
2000). The CX2CHX7CCX3C pattern resembles a zinc-
binding motif with four cysteine-containing locations
(Coleman, 1992; Pfister et al., 2000). Within the motif, the
two single C residues are fully conserved in all enteroviruses
examined, including the more distantly related rhino-
viruses. Of the adjacent CC residues, the first C is fully
conserved and the second is highly conserved. The CH
residues on the other hand are highly divergent, and in
rhinoviruses they appear to be nearly completely absent.
Interestingly, the growth phenotypes of the four CRS
mutants correlated very well with the extent of conservation
of amino acid residues within the motif. The two non-viable
mutants, CRS1 and CRS3, and the qi mutant CRS4, had
mutations in the fully/highly conserved single Cs or CC of
the motif. The ts mutants, CRS2, however, was mutated at
the variable CH site.

Many unanswered questions remain about the role of
2CATPase in morphogenesis. However, the information
obtained from these and our previous results (Liu et al.,
2010; Wang et al., 2012) clearly demonstrate the usefulness
of genetic studies with conditional-lethal and qi mutants
for the identification of important residues and protein–
protein interactions involved in encapsidation.

METHODS

Cells. HeLa R19 cells were maintained in Dulbecco’s minimal

essential medium (DMEM; Life Technology) supplemented with 10 %

v/v bovine calf serum (BCS), 100 mg streptomycin ml21, and 100 U

penicillin. Transfection and passages of HeLa R19 cells were carried

out with supplementation of 2 % (v/v) BCS.

Plasmids. pT7PVM contains a full-length infectious cDNA of PVM.

The pGEM-T vector was obtained from Promega. pR-PPP is an

infectious R-Luc reporter virus construct in which R-Luc (311 aa) is

expressed as an N-terminal fusion to the PV polyprotein (Liu et al.,

2010).

T-vector-based site-directed mutagenesis. Site-directed muta-

genesis was used to obtain the desired mutations. In each CRS

mutation, cysteine and histidine, if present, in the four-conserved-

cysteine-rich zinc-binding site of PV 2CATPase protein (Pfister et al.,

2000) were replaced with alanine by changing the corresponding

codons. First, four pairs of oligonucleotide primers were designed

containing the alanine mutations and introduced into the pGEM-T

vector containing the wt 2CATPase nucleotide sequence (Wang et al.,

2012), using a Stratagene QuikChange Site-directed Mutagenesis kit

according to the instruction manual. The mutated sites and the
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corresponding codon changes are summarized in Table 1 (left three
columns). After being confirmed by sequencing analysis, the designed
2CATPase mutations were then subcloned from the pGEM-T vector
into pT7PVM or the R-Luc reporter virus R-PPP using restriction
sites XhoI and HpaI.

In vitro RNA transcription. Wt and mutant plasmids of pT7PVM
were linearized at a unique EcoRI restriction site and used as
templates for in vitro RNA transcription using T7 RNA polymerase.

In vitro translation. HeLa cell S10 cytoplasmic extracts were
prepared using HeLa S3 cells. As described previously (Molla et al.,
1991), in vitro RNA translations were performed with these
cytoplasmic extracts and the newly made RNA transcripts were
incubated at 34 uC for 8 h. The viral proteins were labelled with a
mixture of [35S]methionine/cysteine and separated by SDS-PAGE
(12.5 % acrylamide). The bands were visualized by autoradiography.

Transfection. RNA transcripts (3–10 mg) were transfected into
35 mm diameter HeLa R19 cell monolayers by the DEAE-dextran
method as described previously (van der Werf et al., 1986) and
incubated at 33, 37 and 39.5 uC. At 3 days post-transfection or at the
time of full CPE, viruses, if any, were harvested. Full CPE was defined
as the point where 90–95 % of the cells displayed CPE. Lysates of cells
transfected with mutants lacking CPE were inoculated into fresh
35 mm diameter HeLa R19 cell monolayers for up to four blind
passages (Wang et al., 2012). To assess the viral titres (p.f.u. ml21)
and plaque phenotypes of the viable CRS mutants, any samples
displaying full CPE at 33 uC were then subjected to plaque assays at
33, 37 and 39.5 uC. The identity of the viruses was confirmed or
determined by plaque purification, full-length RT-PCR and sequen-
cing analysis.

Plaque assays. Plaque assays were performed on HeLa R19
monolayers using 0.6 % (w/v) tragacanth gum. After 72 h incubation
at 33 uC or 48 h at 37 or 39.5 uC, the viral plaques were visualized by
1 % (w/v) crystal violet staining (Liu et al., 2010).

RT-PCR and sequencing analysis of viral RNAs isolated from

purified plaques. Single plaques were picked from the plaque assay
plates before staining, and amplified by one passage at the same
temperature in fresh 35 mm diameter HeLa R19 monolayers. Total
RNA was extracted from 200 ml lysates with 1 ml Trizol reagent
(Invitrogen) and reverse transcribed into cDNA using SuperScript III
Reverse Transcriptase (Invitrogen). The PCR products, generated by
the Expand Long Template PCR System (Roche), were purified and
sequenced.

Luciferase assays. Dishes (35 mm diameter) of HeLa R19
monolayer cells were transfected with 5 mg R-PPP RNA transcripts
(linearized with PvuI for pR-PPP) and incubated at 33, 37 or 39.5 uC
in standard tissue culture medium (DMEM) with 2 % (v/v) BCS and
in the absence or presence of 2 mM GnHCl. Luciferase activity was
determined in the lysates of cells harvested at 16 h post-transfection.
Cell lysates (20 ml) were mixed with 20 ml R-Luc assay reagent
(Promega), and R-Luc activity was measured in an OPTOCOMP I
luminometer (MGM Instruments). Cell lysates (250 ml) from transfec-
tions were passaged once in HeLa R19 cells in the absence or presence
of 2 mM GnHCl. Luciferase activity was determined in the lysates
of cells harvested at 8 h p.i. The R-Luc activity ratio (2GnHCl/
+GnHCl) was calculated as: luciferase activity without GnHCl divided
by luciferase activity with GnHCl in either transfection or infection.

Immunofluorescence cell imaging. HeLa cells were infected with
wt or CRS2 virus at an m.o.i. of 1 and incubated at 37 uC for 4 h or at
33 uC for 5 h. The infected cells were probed for mature virus with
A12 primary antibody, which recognizes the mature virus, followed

by Alexa Fluor 488-conjugated secondary antibody. The localization
of VP3, a capsid protein, was determined in the same cell using VP3
polyclonal antibodies and Alexa Fluor 555-conjugated secondary
antibody.
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