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Many species use tools, but the mechanisms underpinning the behaviour

differ between species and even among individuals within species, depend-

ing on the variants performed. When considering tool use ‘as adaptation’, an

important first step is to understand the contribution made by fixed pheno-

types as compared to flexible mechanisms, for instance learning. Social

learning of tool use is sometimes inferred based on variation between popu-

lations of the same species but this approach is questionable. Specifically,

alternative explanations cannot be ruled out because population differences

are also driven by genetic and/or environmental factors. To better under-

stand the mechanisms underlying routine but non-universal (i.e. habitual)

tool use, we suggest focusing on the ontogeny of tool use and individual

variation within populations. For example, if tool-using competence

emerges late during ontogeny and improves with practice or varies with

exposure to social cues, then a role for learning can be inferred. Experimental

studies help identify the cognitive and developmental mechanisms used

when tools are used to solve problems. The mechanisms underlying the

route to tool-use acquisition have important consequences for our under-

standing of the accumulation in technological skill complexity over the life

course of an individual, across generations and over evolutionary time.
1. Introduction
Research over the past two decades has shown that tool use (for definition

see: [1, p. 5]) is not as rare among non-human animals as we once thought

[1]. Tool use in natural settings nevertheless remains restricted to only a min-

ority of animals that mostly express the behaviour incidentally rather than

routinely. Although studies on incidental tool users can be useful in determin-

ing factors influencing behavioural innovations, they would provide us with

little insight on the adaptive value, evolution or cognitive underpinnings of

tool use. Routine tool users, on the other hand, provide us with opportunities

to study ontogeny and individual variation which can help to elucidate the

level of phenotypic plasticity and cognition underlying the behaviour.

Routine tool users are often classified as either customary (or universal) or

habitual, based on geographical variation in the trait. Although habitual tool

use is often considered to be the product of social learning, this inference is

usually based on the problematic exclusion method (i.e. elimination of environ-

mental or genetic causes of variation). However, we propose that both

longitudinal and experimental studies on tool-use development and individual

variation can assist in identifying underlying mechanisms and cognitive under-

pinnings of habitual tool use. As such, we confine ourselves to the cases of

habitual tool-assisted foraging as reported by Shumaker et al. [1]. We advocate

similar lines of study for other cases of routine tool use (i.e. more customary/

universally prevalent forms of tool use, such as we find in humans), before
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we can try to unravel potential selective pressures on tool use

and cognitive evolution.
1Not much known yet on individual variation or skill acquisition (but
see [18,20]).
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(a) Habitual tool use
In cataloguing variation in tool repertoires of wild chimpanzee

populations, McGrew went beyond the simplistic categoriz-

ation of ‘present’ versus ‘absent’ tool variants by additionally

distinguishing between ‘habitual’ versus ‘rare, idiosyncratic

or questionable’ tool use. He defined habitual tool use as

tool-use patterns shown repeatedly by several members of a

group; excluding single instances by one or several individ-

uals, several instances by only one individual and all

instances of insufficient data or involving released animals

[2, p. 180]. Subsequently, Whiten et al. distinguished between

‘customary’, ‘habitual’, ‘present’, ‘absent for ecological

reasons’, ‘absent for no apparent ecological reason’, and

‘unknown’ and redefined ‘habitual’ as ‘behaviour that is not

customary (i.e. occurring in all or most able-bodied members

of at least one age–sex class) but has occurred repeatedly in

several individuals, consistent with some degree of social

transmission’ [3, p. 682]. This definition also applies to our

use of the term ‘habitual tool use’. McGrew emphasized that

the definition of ‘habitual’ leads to an incomplete tool catalo-

gue of habitual tool variants for most populations owing to

the positive correlation between study length and number of

identified habitual tool-use variants. Whiten et al. [3] thus

focused on the importance of: (i) making tool catalogues

more complete; (ii) clarifying the extent to which a variant is

habitual; and (iii) systematically documenting behavioural var-

iants absent in a particular population but present elsewhere.

In view of this geographically based categorization, habit-

ual tool use has been set aside from other forms of (routine)

tool use that are, for example, customary, idiosyncratic or

absent in some sites owing to ecological or genetic variation.

Accordingly, in contrast to these other forms of (routine) tool

use, habitual tool use has been suggested to depend on cog-

nitive flexibility that enables animals to solve disparate

problems and use social cues, rather than rely on predisposed

action patterns that are comparatively fixed [3,4]. However,

the supporting data that these tool users invent and other

individuals within the population then socially learn their

techniques is rarely definitive and open to alternative expla-

nation [4–6]. First, the distinction between habitual and

‘absent due to no apparent ecological reasons’ is problematic.

Not only is it logically impossible to demonstrate the absence

of a cause, in the end only a small portion of the potentially

relevant factors can be realistically considered, even without

including possible interaction effects. Second, to some

extent, ecological factors always influence the expression of

behavioural phenotypes, so why bother to exclude them at

all? When trying to exclude genetic factors or individual

learning, similar problems arise. Langergraber et al., for

instance, showed that, for chimpanzees, geographical vari-

ation correlated strongly to genetic variation, leaving only a

few behaviours (ca 13%) for which expression varied geo-

graphically among genetically similar groups [6]. Third,

when no geographical variation is found, behaviours might

still be socially learned. Tool-use preferences in sea otters

(Enhydra lutis), in terms of type of prey, tool-use method

and foraging strategy seem, for example, to be vertically

transmitted even though the use of rocks to open or dislodge

hard-shelled food is common for all sea otters and does not
seem to require social learning [7]. Fourth, when behaviours

can be acquired exclusively by individual learning, this does

not mean that they are. Simple Pandanus and twig tool use in

New Caledonian crows is, for instance, influenced by social

input even though correct performance can also be acquired

without social cues [8,9].

Geographical variation in tool use is thus an indirect and

possibly problematic route to evaluate the degree to which

habitual tool use relies on social learning and reflects general

cognitive abilities. Instead, it would be more productive to

establish whether we can find any direct evidence for social

learning and general cognitive abilities. In the case of the

woodpecker finch, for example, observational as well as exper-

imental lines of inquiry point toward strong genetic and

ecological influence in shaping the form and expression of

tool use. Experimental evidence moreover reveals that presence

of social cues does not seem to have any effect [10], while cog-

nitive strategies shared with non-tool-using relatives appear to

underlie the use of tools [11]. What about the so-called ‘habit-

ual tool users’ as classified by Shumaker et al. [1]: bottlenose

dolphins (Tursiops sp.) [12], sea otters (E. lutis), orangutans

(Pongo sp.) [4], chimpanzees (Pan troglodytes) [13–15], capu-

chins (Sapajus sp.) [16,17], Burmese long-tailed macaques

(Macaca fascicularis aurea) [18,19],1 New Caledonian crows

(Corvus moneduloides) [9,20], and possibly green-backed

herons (Butorides sp.) [21]?

In this article, we review studies that directly examine the

development of habitual tool use over life history and com-

pare its emergence to other ‘tool-free’ foraging behaviours.

We explore three different lines of evidence that contribute

to our understanding of habitual tool use: (i) observational

data of acquisition patterns; (ii) experimental evidence illus-

trating cognitive challenges associated with tool use; and

(iii) individual differences revealing the role of social input

in the wild. We discuss the implications that this analysis of

tool ontogeny might have for uncovering the cognitive mech-

anisms underpinning tool use in different species and some

possible directions for future work. For the purpose of this

paper, we focus on foraging tools and skills because of

their direct link to survival and fitness.
2. Observational field studies reveal typical
tool-acquisition patterns

(a) Practice and errors
Observational field data indicate that habitual tool users take

almost their entire developmental period to acquire tool

competence for the relevant tool variant. By competence,

we mean regularly succeeding in achieving the goal (here,

obtaining food). Table 1 shows that for several species,

some behaviours are not acquired until years after the

animals are able to forage for themselves without tools.

A preliminary comparison of other routine or non-tool

users and habitual tool users also suggests a relative late

age at skill competence for habitual tool users (figure 1).

Sea otters appear to be an outlier among the habitual tool

users in acquiring tool competence relatively fast; whereas

spotted hyaenas and wolves appear to be outliers among

the non-routine tool users because they acquire their skills
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Figure 1. A preliminary dataset including 34 species (Artiodactyla: n ¼ 5, Carnivora: n ¼ 13, Cetacea: n ¼ 1, Chiroptera: n ¼ 2, Primates: n ¼ 13) suggests that most
habitual tool users do seem to acquire their skills relatively late during ontogeny compared with other species that were not qualified as habitual tool users by Shumaker
et al. [1] (although differences are not significant). Legend numbers refer to tool-use category as displayed on the x-axis. Sea otters appear to be an outlier among the
habitual tool users (acquiring their tool use relatively fast); whereas spotted hyaenas and wolves appear to be outliers among the non-routine tool users because they
acquire their skills (i.e. hunting skills) relatively late. Data on age at skill competence (ASC) and age at first reproduction (AFR) were taken from Schuppli et al. [55]. Data
on routine tool use come from Shumaker et al. [1].
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(i.e. hunting skills) relatively late. Hunting skills are indeed

often considered complex, requiring more learning (see also

[55]). What are immatures doing during this period? Why

the delay? Are they not yet motivated to carry out these poss-

ibly more costly foraging skills (in terms of time, and

sometimes physical effort), while they are still physically

immature and provisioned by their parents? In most observa-

tional studies reviewed, immatures spend a good deal of time

interacting with tool material before they are competent [17].

What can detailed analysis of their behaviour tell us about

the possible development of cognitive adaptations that may

underpin the adult behaviour?

Many, though by no means all, habitually used tool beha-

viours are associated with a long period during which

immatures interact with the tools and the goal objects, but use

a characteristic pattern of non-random ‘errors’: either the

wrong action or tool material, an incomplete action sequence,

action sequences performed in the wrong order, or the correct

complete and ordered action sequence applied towards the

wrong goal or substrate. For example, Pandanus tool competence

in New Caledonian crows progresses according to four probing

techniques and five manufacturing techniques, of which only

the fourth probing and fifth manufacturing technique resemble
adult-like competence, which takes on average seven months to

master. Adult-like proficiency (i.e. efficiency, speed, etc.) is

acquired even later (ca. 12 months). All other probing and man-

ufacturing techniques include errors that result in faulty

detachment or dysfunction of the tool [9]. Capuchins in Tiete

(Sapajus apella) go through eight developmental stages across

2.5 years before mastering their nut-cracking skills, from

simple manipulation, to rubbing or hitting objects, to inserting

in and hitting against substrates, striking objects against anvils

and eventually placing nuts on anvils, followed by ineffective

nut cracking before effective nut cracking. On rare occasions,

individuals bang two detached objects together [56]. Gombe

chimpanzees start with pressing a tool to the termite mound

or swiping the mound (at 3.5 years), and gradually change

this into haphazard, rapid tool insertion without the required

depth (4.5 years), to successful termite fishing (5.5 years) [42].

Although evidence for such ‘errors’ is still missing for bottlenose

dolphins, orangutans, sea otters and long-tailed macaques,

anecdotal evidence and studies on macaque stone handling

suggest similar paths of development [22,57,58].

As to how far the ‘errors’ observed during the develop-

mental period actually represent goal-directed attempts

instead of random play or exploration is difficult to establish.
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However, errors diminish over time while tool-using skills

improve, until eventually adult-like competence is reached

before or around weaning age [9,42,44,59,60]. Nonetheless,

compared to adults, competent weaned immatures often still

show inadequate skills by persisting at unrewarding locations,

using tools at successful locations less often, having shorter or

longer lasting tool sessions than adults, using more tools per

session, modifying tools more frequently, using tools with

different features (material, size and shape) than adults or—

only relevant in some contexts—lacking hand preferences

[9,18,35,41,44,59,60]. Hence, although we might have mischar-

acterized play and exploration as ‘errors’, the ‘error-filled’

period of practice does seem to eventually result in skill

improvement, whether actively goal-directed or facilitated by

exposure to ecological and/or social factors.

Of course, development, physical maturation and chan-

ging motivation coincide (e.g. with regard to foraging

strategies, social interactions, perception and coordination).

Physical maturation thus probably contributes to, but

cannot fully explain the delays and errors in tool-using com-

petence. For example, the random instead of routine tool use

at younger ages suggests lack of systematic coordination

rather than physical strength. Given that individual variation

in competence often varies with learning opportunity (with

some immatures performing even better than some adults,

see §4), we suggest that opportunities for learning, not matu-

ration, is the primary limiting factor. Age might even

constrain learning ability if a sensitive period of exposure

has passed [10,61].
(b) Phenotypic biases
The discrepancy between adult and immature tool behaviour

described above (or see table 1) may also tell us something

about the predisposed phenotypic biases a species may have

that may either promote or constrain innovation and/or acqui-

sition of tool behaviours. Both physiological traits (e.g. lack of

appendages for manipulation) and behavioural biases are

informative, especially when contrasted with closely related

species (see §3a). Such phenotypic biases provide guidance

with respect to which tool-mediated behaviours are relatively

fixed (i.e. genetically hard-wired), as opposed to those that

require extensive learning and social input, assuming ecological

learning opportunities are present. For instance, North Ameri-

can badgers (Taxidea taxus) frequently capture hibernating

squirrels underground and are morphologically and behaviour-

ally specialized to excavate burrow systems by the movement of

soil [62]. Hence, the use of soil to plug openings into burrow

systems occupied by ground squirrels may be considered an

idiosyncratic expression of their normal behaviour, also because

opportunities for social transmission are rare. Similarly, sea

otters show a strong genetic predispositions for increased tactile

sensitivity of the hand [7] and object-carrying pouches [63],

which might contribute to the lack of geographical variation

exhibited in terms of presence of tool use—although variation

in frequency and preferences exists—and their relatively

young age at competence (figure 1). At the other extreme, we

have the habitual tool-using bottlenose dolphins that are not

well designed for object manipulation, which perhaps explains

their small repertoire of tool variants so far [12]. The sponging

dolphins are moreover tasked with searching for prey in an

entirely new way, where vision and sonar become secondary

to the sponge tool use itself [48]. They may even need to inhibit
a likely predisposed resistance to put something over the beak

and face, which interferes with echolocation and grasping

prey. Other phenotypic biases are more subtle. Thumb mor-

phology, for instance, allows for complex object manipulation

in capuchins, chimpanzees [64] and precision grip in humans

[65], but capuchins initially tend to strike or rub objects, whereas

chimpanzees tend to stack them [45,56,66]. Thus, in acquiring

nut-cracking skills, capuchins must learn to place a nut on the

anvil before striking it, suggesting that striking is more fixed

than stacking, whereas the contrary seems to apply to chimpan-

zees. Actions that are less fixed may therefore require more time

to master and perform in a routine fashion than tool variants

involving a more fixed action pattern, for which expression

seems to be less variable and dependent on ecological contexts

and learning opportunities.
3. Experimental evidence: cognition and tool use
The discrepancy between adult and immature tool behav-

iour described above, which does not seem to be owing to

physical size or strength, thus suggests a role for cognitive

skills to adjust or overcome predisposed action patterns, or

to master behaviours that are not in the inherited repertoire.

An ability to innovate, knowledge of object properties and

observational learning has been suggested to be important

[67]. All of these have been shown to correlate with slow life

histories and brain encephalization [68–71]. In this section,

we examine evidence from captive studies on problem solving

with objects and tools, and consider how studying cognitive

underpinnings and developmental change might help

us to identify candidate cognitive adaptations underpinning

habitual adult tool use.

(a) Adjusting phenotypic biases
If the tool-using action is not in the inherited repertoire, the

animal may need to inhibit or change performance of other

predisposed actions in that context. The errors described in

the previous section may indicate an inability to inhibit

such actions. Work in the laboratory shows that inhibiting

so-called ‘pre-potent’ responses can indeed be a significant

hurdle to problem solving in immature humans and mature

primates (but see [72]). For example, chimpanzees perform-

ance on trap problems reveals that using a tool to rake-in

the reward is easier for them than using a tool to push it

away, in which they are less successful (see [73] for a

review). Looking-time experiments showed that human

infants, as young as four months, and mature monkeys are

capable of anticipating that a dropped object will not pass

through a hidden shelf, as revealed by longer looking when

the dropped object is revealed below the shelf rather than

resting on top of it [74,75]. However, when the object was

dropped behind a screen onto an occluded shelf, both

groups show a bias for searching beneath the shelf, perhaps

owing to experience inducing an overgeneralized expectation

for objects to be located at ground level. Older children (2.5–

3 years) and mature apes show evidence of being able to

overcome this bias and search in the correct location [74,76].

In other problem-solving contexts, both monkeys and infants

show perseverative reaching (i.e. repeatedly searching in one

location) and fail to use action flexibly depending on the con-

text to solve the task [77]. Interpreting the dissociation

between positive evidence from looking measures, and
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negative evidence from action, has generated a good deal of con-

troversy [78]. However, the notion that integration between

object knowledge, memory, and planning and executing goal-

direct actions requires maturation of the pre-frontal cortex [79]

and therefore a period of development, is an interesting one,

that invokes the need for further studies. In toddlers, the ability

to solve the ramp task, in which they need to open a door to

locate a ball that was rolled down a ramp and should have

come to rest in front of a partially obscured wall, has been

shown to correlate with success on tasks measuring inhibitory

control [80]. There is considerable variation in inhibitory skills

across primate species [81]. Investigating how this relates to

tool use and problem-solving competence will, therefore, be

an interesting question for future work.

Contrasts between species that routinely use tools in the

wild with closely related species that do not, can also inform

on phenotypic biases. For example, experimental studies com-

paring tool-using woodpecker finches to the non-tool using

but closely related tree finches indicate that both species pos-

sess flexible cognitive adaptations considered foundational

for tool use [11]. Likewise, both the tool-using New Caledo-

nian crows and the non-tool-using common ravens start off

with similar frequencies of object manipulations, considered

a precursor for tool use, possibly originating from their

shared propensity for food caching. Naive New Caledonian

crows do show higher motivation for continued performance

of object combinations, facilitating learning, whereas this

decreases over time in common ravens, possibly owing to a

higher probability of social interruption for ravens [82]. Such

evidence suggests that the cognitive traits underpinning tool

use preceded rather than evolved with tool use. Tool use in

these species may therefore be better conceived as a manifes-

tation of cognitive traits, rather than a selective force on

cognition (see also Discussion).
(b) Problem solving with and without tools
Studies exploring the relationship between problem solving

and executive control (e.g. inhibition) can not only be

explored from onto- and phylogenetic perspectives, but also

by comparing mature performance, focusing on the influence

of including a tool relative to performing a similar task

without a tool. Trap problems, for example, demonstrate

that chimpanzees are more successful in choosing which

way to move a reward with one tool than choosing one of

two pre-positioned tools. Moving the reward with merely

the fingers is easiest of all [83]. Similarly, two-and-a-half-

year old children performed much better on a non-tool-

using variant of the trap problem than they did when

they had to use a tool (A. M. Seed 2013, unpublished data).

Learning to solve a new problem with a tool may be more

cognitively demanding, and seemingly small differences in

the required action can have large effects on performance.

This may be because of demands on executive function, for

example, splitting attention between the novel action and

the physical task at hand (see [73] for a review). Additionally,

reduced visual feedback, such as when the food is hidden or

out of reach, or when visual attention is taken away from the

movement of the goal (e.g. when focusing on the tool rather

than the food reward) may make the acquisition of a new

tool-using action more difficult, as revealed by new work

on both New Caledonian crows [84] and chimpanzees [85].

For chimpanzees, individuals that had already acquired the
solution did not suffer any impairment from the removal of

visual feedback, suggesting that feedback is most important

during learning.

(c) Innovation and social learning
What is unclear, and contentious, from the pattern of slow,

error-prone acquisition of habitual tool use is the extent to

which social learning is required. The performance of tool-

using animals such as New Caledonian crows and apes,

presented with novel multi-step problems in the laboratory,

allows individual learning and problem-solving abilities to

be isolated from social influence. One approach has been to

present naive captive adult apes with the same problems

they solve by using tools in the wild. Several problems

were solved by these apes without social input. Although

this does not preclude the idea that in the wild social influ-

ence plays a role in shaping the behaviour, it does falsify

any argument that posits a need for social input based

solely on the perceived level of difficulty or complexity of

the task [86]. Other studies use artificial tasks designed to

probe the extents and limits of innovative problem solving.

These reveal that both New Caledonian crows and chimpan-

zees can solve novel problems that involve up to three tools to

be used in sequence [87–89], although this does seem to

require more practice (see also [66]). Both apes and New

Caledonian crows (as well as kea) can also solve problems

that involve finding a novel solution, which becomes obsolete

after a time, requiring that solution to be abandoned and

another to be found [90,91]. The precise cognitive mechan-

isms behind these impressive problem-solving skills are a

matter of dispute (see [92] for a review). Nevertheless, it is

clear that it is within the capability of these species to solve

new problems involving unfamiliar materials and using

novel behavioural sequences. One point to note is that to

date there has been no evidence that tool users outperform

non-tool-using relatives in the arena of innovation or

problem-solving involving tools (see [93] and [94] for examples

of innovation and sequential tool use in non-tool-using

rooks). Interestingly, performance in these studies is often

characterized by large individual differences, with some exper-

iments showing a minority of individuals completing the most

difficult conditions [89,95,96]. Of those solutions to natural pro-

blems which require innovations, social influence is likely to

reduce intrapopulation variation in tool use. Can developmental

studies support this?
4. Developmental evidence for the role of
social input

Observational field studies on individual variation within a

population provide some of the clearest evidence that

social-learning opportunities can have an impact on tool

acquisition. Among mammals, nursing young associate

more with their mother than with any other individual and

she is often more tolerant of immatures than others. A corre-

lation between individual variation in tool use among

mothers and offspring (e.g. in terms of time spent using

tools, preferences for a certain type or technique, etc.) can

be used to provide evidence for vertical transmission.

Indeed, variation in percentage of ant-dipping time among

chimpanzee mothers at Bossou was shown to correlate
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positively with ant-dipping time and duration of ant-dipping

sessions in offspring, and negatively to infant age of compe-

tence and number of dipping errors [35]. A study on termite

fishing in chimpanzees at Gombe revealed similar patterns,

although here the relationship was not always that straight-

forward [42]. Preferences for type of prey, method of tool

use and foraging tactics strongly correlate between mother

and offspring in sea otters and dolphins [7,48]. Juvenile

New Caledonian crows show a preference for either Pandanus
or stick use, and possibly tool-manufacturing techniques

dependent on tool preferences of their parents, although for

the latter larger sample sizes are required [27]. Individual

variation among parents may also be present in the form of

different association patterns affecting the number of social-

learning opportunities. Van Schaik et al. [97] demonstrated

a strong relationship between tool-use competence and

mean female party size in orangutans. An analysis of social

networks among tool-using dolphins, showed that after

weaning, spongers preferred to associate with other spongers

[61], which may be crucial for them to be able to find the best

sites for tools and prey. Such social-learning opportunities

may also affect tool repertoires on a wider scale (i.e. at popu-

lation or species level). For instance, New Caledonian crows

have one of the longest known periods of regular extended

parental provisioning in birds [25]. Evidence for habitual

tool use in orangutans comes from a site inhabiting the den-

sest population [98]. Idem for Goualougo chimpanzees [99],

who have a rich tool repertoire including various tool sets

[13]. A comparative analysis on emergence of skill acquisition

among mammals and birds also indicated an effect of gregar-

iousness, slow conservative development, and post-weaning

provisioning and sharing of resources, on age at skill compe-

tence [55]. But how do such increased opportunities for social

learning serve individual skill acquisition?

Social-learning opportunities can result from the mere

presence of other individuals (local-enhancement), the pres-

ence of materials manipulated by other individuals (directly

by food and tool transfers, or indirectly by stimulus enhance-

ment through artefacts), and models of the complete action

(observational learning). We will briefly discuss some indi-

cations for the role of these different kinds of input. The

presence of other conspecifics, scrounging and/or food

transfers are common for most species and behaviours

especially at an early age when individuals still depend on

their parent(s) for most of their nutritional intake [100].

This facilitates associating the food reward with the tool,

which may provide young with a motivation to persist after

repeated failure or reduced visual feedback [9,13,44,101].

Delayed or hidden rewards are commonly encountered in

natural tool-use settings (see also [101]) and young naive

individuals indeed mainly (attempt to) use tools during

sessions when their parents also use a tool (e.g. 100% and

62% for Bossou chimpanzees under 5 years, or from 5 to

10 years, respectively; and at least 40% for juvenile New

Caledonian crows) [27,35]. In orangutans, also adult tree-hole

tool use often seems to be preceded by another conspecific

using a tool or engaging in insect foraging (E. Meulman 2013,

unpublished data).

With age, tolerance to scrounging and food transfers

gradually declines, and infants start to become interested in

the tools used by others, as well as attempting to select and

manufacture their own tools. Recycled tools contributed to

80% of the termite-fishing tools used by young naive
Goualougo chimpanzees and 95% of the Pandanus tools used

by two- to three-month old juvenile New Caledonian crows

which decreased to only 5% for seven- to nine-month old

crows ([9]; C. M. Sanz 2013, personal communication).

Counterparts, that is left-overs from the tool-manufacturing

process, may be used as well [9,17]. Most of the first self-

made tools are dropped (without use) and replaced by tools

made by others to obtain the food reward [9,27,42,43]. Such

re-use of tools may facilitate learning of how to use these

tools and what kind of tool features may be required for the

task, especially when visual feedback is minimal [27,44,101,

102]. Indeed, individuals master tool use, often if not always,

before mastering tool manufacture [9,42,44,72,103]. Laboratory

work supports the social enhancement of objects used as tools:

for example, young New Caledonian crows and capuchins

showed a preference for handling objects or tools that had

been manipulated by demonstrator individuals [8,104]. Also

adult ant- or termite-fishing chimpanzees were more success-

ful if they used tools that had just been abandoned by a

previous user, rather than self-selected tools [105,106]. An

exception appears to be bottlenose dolphins, where calves

must always obtain their own sponge tools and have not

been observed using a sponge that was previously used by

another (J. Mann 2013, unpublished data). Also orangutans

rarely re-use tools, probably owing to low levels of social toler-

ance and arboreal settings [107]. Reuse of tools does seem to

occur more often for tool variants that require specific materials

and modifications in chimpanzees [8,13,101], or the use of tool

sets in primates [108].

Naive individuals may additionally learn through obser-

vation of a more experienced or proficient individual

[44,109]. Time observing is negatively correlated with the

age of successful termite fishing (Gombe [110]) and ant

dipping (Bossou [35]) among chimpanzees and positively cor-

related to nut-cracking proficiency among brown capuchins in

Tiete National Park, Brazil [109]. Dolphin calves have ample

opportunity to observe their mothers using sponge tools

and are attracted to the fish catches by older individuals

[48]. Preliminary data on orangutans suggest that there is

more object play or feeding attempts after infants watched

another individual using a tool (E. Meulman 2013, unpub-

lished data). High-fidelity action copying may provide

human children with an alternative and quick route to

obtain a material culture [111,112]. In fact, human children

are rarely successful at making functional tools without a

demonstrator until they are age 7 or older [72]. Although cap-

tive studies on apes do suggest that apes are capable of using

both sources of information, results are mixed (see [113] for a

review) and it is hard to know from observational studies

what aspect of the action is attended to and affects learning,

that is action imitation or observational learning of object

affordances. How such different strategies of observational

learning in particular, and socially facilitated learning in gen-

eral, may impact speed and reliability of the transmission

process may provide us with an interesting scope for future

experimental studies (see [104,114]).

In conclusion, the observation that rates of scrounging,

object play, feeding attempts, and food and tool transfers,

and watching decline with age (and possibly competence) in

most, if not all, species [35,100,109], seems to be a further indi-

cation for socially facilitated learning during the ontogeny of

habitual tool users. Additionally, some rare incidences of

opportunity teaching have been reported for chimpanzees
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[35,115]. Habitual tool users thus seem to profit from socially

scaffolded learning environments that facilitate education by

master-apprenticeship [27,116].
2Tool use as foraging specialization is considered in this manuscript
the usage of a foraging tool for 50% of an animal’s foraging-time
budget.
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5. Discussion
To date, habitual tool use and the degree to which it reflects

flexible cognitive adaptations remains a controversial and

unresolved issue. A review of longitudinal and experimental

studies on the ontogeny of tool use and cognition does, how-

ever, shed some light on this notorious problem. First, both

field and captive studies demonstrate that young animals of

habitual tool-using species make a series of errors during

(initial) tool-using attempts, which improve over time.

These errors help to identify difficult elements of the tool be-

haviour and illustrate when animals might need to adjust

and/or inhibit predisposed action patterns for the correct

tool use (e.g. the capuchin’s tendency to rub objects or dol-

phins ‘blinding’ themselves by carrying a sponge). Second,

some tool-mediated behaviours emerge relatively late in

development compared with most, but not all, other foraging

skills that do not involve tools (table 1 and figure 1). Initial

attempts suggest that physical strength does not explain the

late age of competence, but that these tool-assisted beha-

viours may be cognitively demanding instead. Captive

studies indeed provide support for the idea that inhibiting

pre-potent responses and using tools to solve problems

(rather than using hand or beak) are cognitively demanding

activities that improve over development. To date there is

no evidence for cognitive specializations in tool-using species

compared to non-tool-using relatives (see [93]), but there has

been little exploration of differences in domain-general execu-

tive functions such as inhibition and attention between

species. Third, ecological- and social-learning opportunities

during the early stages of development appear to play an

important role in determining later skill levels and thus

individual and geographical variation [10,61]. Variation

among adults moreover indicates that tool performance is

not simply a matter of brain maturation but also (social-)

learning opportunities. Social transmission seems to be

mainly vertical, through association, tool recycling, food

and tool transfers, and watching. Other modes of trans-

mission, although not predominant, might nevertheless be

crucial as for example suggested by the finding that habitual

tool use only occurs in populations with increased opportu-

nities for social learning owing to enhanced social tolerance

[97], prolonged parental feeding or association [25], exposure

to artefacts [108] and/or perhaps rare cases of opportunity

teaching [35,115]. Re-use of tools may be important for the

accumulation of technological complexity [13,108].

The different lines of evidence illustrate two extremes

related to the evolution of tool use in animals. At one

extreme, only minimal cognitive and social inputs are necess-

ary for the occurrence of tool use, typically because of the

presence of an inherent bias to manipulate objects in the

first place. The studies on woodpecker finches and North

American badgers are good examples, showing that

expression of tool innovations mainly depends on ecological

factors [10,62] and when flexible cognitive strategies are

involved, they appear to be domain-general learning mechan-

isms shared with non-tool-using relatives [11]. Practice can

nevertheless be important, especially for more intermediate
forms (e.g. sea otters who specialize2 in using rocks to open

snails are more efficient than non-specialists [23]). At another

extreme, more flexible cognition may be required to come up

with innovations that deviate from more pre-potent action

patterns and additionally require long periods of individual

practice and social input to use the tool more systematically

and habitually. Dolphins, for instance, are not ‘built’ for

manipulative tool use, but can readily integrate acoustic

and visual inputs to represent objects [117,118], and use

their cognitive ability to solve problems with tools in labora-

tory and field, at least when the conditions call for it. Calves

of bottlenose dolphins spend thousands of hours observing

maternal tool use before the first instances of tool use are

observed [48]. Even then, it still takes them decades to

show peak proficiency, that is, if they adopt the skill at all

[58]. All the females that do are specialists [48].

For both extremes, there are indications that tool use may

be better viewed as a possible manifestation (or by-product)

of flexible cognitive abilities rather than acting as a selective

force on intelligence itself (see also [119]). Note, however,

that tool use may just be one among many other possible

‘tool-free’ manifestations of general intelligence (i.e. one

extreme, such as habitual tool users) and, hence, not all tool

users need to be characterized by enhanced intelligence

(i.e. other extreme, relatively inflexible tool ‘specialists’).

Although for the moment, this remains speculative and

needs further confirmation, this indeed would explain the

flexible cognitive traits that are found in wild tool-using

woodpecker finches, New Caledonian crows, robust capu-

chins, and chimpanzees, as well as their non-habitual

tool-using (at least in the wild) close relatives: tree finches,

common ravens and rooks, gracile capuchins and bono-

bos [10,82,93]. Second, it is in line with findings from

previous studies that revealed a positive correlation between

tool use (or niche complexity), social learning, innovation,

brain size, slow life-history pace and general (or cultural)

intelligence, whereas the different traits by themselves

cannot account for the diversity of tool use across taxa

[30,68,71,120]. Finally, it is consistent with previously

proposed evolutionary factors for tool use in that: (i) predis-

positions and/or intelligence stimulate the occurrence of tool

innovations; (ii) ecological factors provide opportunities for

practice and determine the usefulness of tool innovations;

(iii) intelligence stimulates a more flexible integration of

such tool innovations in the behavioural repertoire, that are

subsequently more likely to be socially transmitted and

thus to be retained within the population’s repertoire;

especially (iv) in socially scaffolded learning environments

[108,121,122].

In summary, evidence from observational and experimen-

tal studies indicate that using tools seems to be more

cognitively demanding than performing the same behaviour

by beak or hand, and flexible use seems to coincide with plas-

ticity during development. Whereas the first conclusion applies

to tool use, the latter may apply to ‘tool-free’ behaviours as

well and hence certain ‘tool-free’ behaviours may thus very

well be more cognitively demanding than certain behaviours

involving tool use. Although the term ‘habitual tool use’ is

often used to imply socially learned and flexible tool use, this

inference could be incorrect if based on geographical variation
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alone. Social learning is unlikely to be limited to cases of habitual

tool use [5,6], and socially acquired tool use may still be rather

inflexible in it is expression (i.e. no adjusting of the behaviour

to a slightly modified task, such as the use of rocks by sea

otters). Flexible tool use may still be based on cognitive strategies

that do not require social input (e.g. woodpecker finches) and

relying on one snapshot of a population is unrealistic and

misses the individual variation. Finally, the variation within

and among routine rather than habitual tool users across fora-

ging and non-foraging contexts requires further study. After

all, human tool use is also of a customary rather than habitual

nature. To study social and cognitive influences on tool use,

developmental approaches and fitness outcomes, thus, may be

more fruitful than the focus on geographical differences. Only

then we can begin to unravel how the ability for tool use evolved

and relates to cognitive evolution and cumulative technology

and culture (see also [95]).

(a) Considerations for future work
Investigation on the ontogeny and adaptive function of tool

use in animals with slow life histories, including humans, is

a considerable enterprise. While field studies reveal much

about the social and ecological circumstances that favour

tool use, laboratory experiments (for some species) are ideal

for understanding intrinsic mechanisms and manipulating

specific extrinsic factors (e.g. social exposure to a task). Imple-

menting new technological advances in both lines of work

may provide us with further insights. Filming with remote

cameras can reveal more details about object play, foraging

efficiency and tool-use acquisition (including errors) that

are either rarely seen by field observers or difficult to quantify

in situ. Field experiments can help elucidate the importance

of ecological factors and learning opportunities in more natu-

ral settings (e.g. presence of raw material, or terrestrial versus

arboreal settings). Experiments in captive settings are needed

to account for social and ecological influences (presence
of discarded tools, food, conspecifics or material), and for

controlled investigation of, for example, the ontogeny of

manipulative ability and cognitive–perceptual skills using

object, tool, or non-object-mediated tasks (e.g. looking-time

experiments). Such experimental work may help uncover

the link between tool use and specific cognitive processes

(e.g. executive control). Future work aimed at pinpointing

the cognitive skills required for tool use could moreover

help identify candidates for adaptive change in habitual

tool users. Potential fitness effects of tool use, as well as

how these may be influenced by personality traits (e.g. bold-

ness, neophilia and sociability) [123], are currently still

largely unexplored study themes. Examination of how cogni-

tive traits and foraging strategies are manifested differently

among individuals, according to varying conditions, how

they change during development and affect fitness are essen-

tial for understanding the adaptive significance of such traits

[95]. A broader comparative approach including routine but

non-habitual and/or non-subsistence tool use and ‘tool-free’

skills, is furthermore needed to relate the adaptive function

of tool use to other foraging strategies and other behavioural

contexts. Although we have a long way to go in determining

what factors, including cognitive, shaped inter- and intra-

specific variation in tool use, ontogenetic research is a most

promising approach [18,21].
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