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Regenerative therapies for cartilage defects have been greatly advanced by progress in both the stem cell
biology and tissue engineering fields. Despite notable successes, significant barriers remain including shortage
of autologous cell sources and generation of a stable chondrocyte phenotype using progenitor cells. Increasing
demands for the treatment of degenerative diseases, such as osteoarthritis and rheumatoid arthritis, highlight the
importance of epigenetic remodeling in cartilage regeneration. Epigenetic regulatory mechanisms, such as
microRNAs, DNA methylation, and histone modifications, have been intensively studied due to their direct
regulatory role on gene expression. However, a thorough understanding of the environmental factors that
initiate these epigenetic events may provide greater insight into the prevention of degenerative diseases and
improve the efficacy of treatments. In other words, if we could identify a specific factor from the environment
and its downstream signaling events, then we could stop or retard degradation and enhance cartilage regen-
eration. A more operational definition of epigenetic remodeling has recently been proposed by categorizing the
signals during the epigenetic process into epigenators, initiators, and maintainers. This review seeks to compile
and reorganize the existing literature pertaining to epigenetic remodeling events placing emphasis on perceiving
the landscape of epigenetic mechanisms during cartilage regeneration with the new operational definition,
especially from the environmental factors’ point of view. Progress in understanding epigenetic regulatory
mechanisms could benefit cartilage regeneration and engineering on a larger scale and provide more promising
therapeutic applications.

Introduction

Articular cartilage defects are common disorders
that affect people of all ages; treatment of this disorder

remains challenging. The incidence of cartilage defects has
been reported to be as high as 65% in routine knee ar-
throscopies [1,2]. Trauma; degenerative joint diseases; met-
abolic factors, such as obesity and diabetes; and mechanical
factors, such as joint instability and misalignment, have been
implicated in the etiology of cartilage defects [3]. Cartilage is
an avascular tissue composed of chondrocytes and extracel-
lular matrix (ECM); it possesses limited repair capacities.
Current solutions for cartilage irregularities include non-
operative treatment, which focuses primarily on pain relief
and traditional operative treatment and the utilization of allo-
grafts and autografts, which predominately focuses on carti-
lage resurfacing [4,5].

Despite moderate success, limitations clearly exist. The
shortage of autologous chondrocytes is one of the major

hurdles. Fortunately, stem cells, especially mesenchymal
stem cells (MSCs), have become a promising alternative
source in the tissue engineering field and have been applied
in autologous transplantation and cartilage regeneration [6].
Tissue-specific MSCs can be obtained from various sources
based on criteria of availability, as for adipose tissue, or of
proximity to cartilage and the joint environment in vivo, as
for bone marrow and synovial tissues [7]. The induction
of chondrogenesis in MSCs and the production of a stable
cartilaginous tissue is another hurdle. Although pivotal sig-
naling pathways and mechanisms involved in chondrogenesis
have been continuously defined, important issues surrounding
the primary steps in chondrogenic commitment and differ-
entiation remain to be elucidated.

Epigenetics is the study of changes in gene expression or
cellular phenotype caused by mechanisms such as methyl-
ation and histone modification, while excluding changes that
may occur in the underlying DNA sequence. It results in
heritable and reversible changes of gene expression. Both
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epigenetic mechanisms, such as methylation and histone
modification, appear to be important factors for tissue- and
cell-specific differentiation, specifically chondrogenic dif-
ferentiation [8–10]. Also, epigenetic mechanisms arise in
mature humans and mice, either by random change or under
the influence of the environment [11]. In other words, epi-
genetic mechanisms allow an organism to respond to envi-
ronmental stimuli through changes in gene expression.
Epigenetic mechanisms during cartilage development and
onset of joint diseases have potential value in the treatment
of degenerative joint diseases and have been recently re-
viewed [12–14]. To explore the precise mechanism of action,
a more operational definition of epigenetics was proposed to
promote the understanding of epigenetic regulatory mecha-
nisms. By categorizing epigenetic events into epigenators,
initiators, and maintainers, the full aspects of epigenetic
control of genomic function are delineated [15].

In this review, we first summarize environmental factors that
initiate epigenetic influences and non-coding RNA (ncRNA)
changes during cartilage regeneration. DNA methylations,
histone modifications, and nucleosome dynamics are re-
viewed according to their contribution in the regulation of
proliferation, chondrogenic differentiation, and hypertrophy.
Epigenetic rejuvenation using decellularized stem cell ma-
trix (DSCM) has been proposed. The increasing knowledge
and new discoveries of epigenetic mechanisms regarding the
onset and development of osteoarthritis (OA) and rheuma-
toid arthritis (RA) provide targets for therapeutic applica-
tions to combating the deleterious pathologies of cartilage
diseases.

Environmental Factor: Initiated Epigenetic
Modifications on Cartilage Regeneration

According to Berger et al., an epigenator is a signal that
emanates in the cellular environment and initiates an intra-

cellular pathway that is most likely to trigger the expression
of an epigenetic phenotype [15]. Environmental factors,
such as aging and diet, can modify epigenetic states and
contribute to the development of abnormal phenotypes and
diseases [16–18]. Similarly, exercise, nutrition, and a variety
of other environmental factors can accelerate or delay the
process of cartilage development and regeneration following
injury [19]. Thus, the connections of environmental cues to
chromatin and associated signaling factors that are involved
in early epigenetic regulation of cartilage regeneration need
to be determined. Based on the new definition of epigenet-
ics, we propose several potentially related environmental
factors (listed in the following headings in an alphabetical
order) that may serve as epigenators in cartilage regenera-
tion (Fig. 1).

Aging

Certain epigenetic factors are thought to play a role in
mediating aging. Changes in DNA methylation and histone
modifications were investigated as markers of aging. Four
hypermethylated CpG sites (associated with genes NPTX2,
TRIM58, GRIA2, and KCNQ1DN) have been identified and
an additional hypomethylated CpG site (BIRC4BP) was
found to be an epigenetic-aging-signature across different
tissues [20]. Similarly, hypermethylated promoters of pro-
tease genes [matrix metalloproteinase 3 (MMP3), MMP9,
MMP13, and aggrecanase-1 (ADAMTS4)] expressed by su-
perficial zone chondrocytes were found in aged cartilage
compared with the young control human cartilage [21].
Specifically, the methylation of osteogenic protein-1 (OP-1),
detected in chondrocytes from older adults, was associated
positively with age [22]. Sirtuin (SirT) proteins are a family
of nicotinamide-adenine-dinucleotide-dependent protein
deacetylases. These proteins can extend the life span in
lower organisms and are important in mediating diseases of

FIG. 1. The landscape view of
epigenetic events during cartilage
regeneration.
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aging [23]. Among the SirT proteins, SirT1 has been rec-
ognized as a critical regulator of stress responses, replicative
senescence, inflammation, metabolism, and aging in chon-
drocytes [24–27]. Knockout of SIRT1 in mice resulted in an
altered cartilage phenotype, with an elevated apoptotic pro-
cess and a potential degradative cartilage process [24]. Both
activation (via resveratrol) and overexpression (via gene
transfection) of SIRT1 exhibited similar anti-inflammatory
effects by inhibiting nuclear factor kappa B (NF-kB) in hu-
man chondrocytes [25]. The activation of SIRT1 by resvera-
trol decreased apoptosis in human chondrocytes, possibly
through regulating mitochondria-related apoptotic signals
[26]; the overexpression of SIRT1 rescued apoptosis through
downregulating protein tyrosine phosphatase 1B (PTP1B)
[27]. Cellular senescence is mainly caused by aging or ac-
cumulation of oxidative stress and presents a considerable
challenge in cartilage engineering and regeneration [28].
Thorough understanding of epigenetic mechanisms impli-
cated in aging could promote the progress of cartilage engi-
neering and regenerative medicine.

Growth factors or nutrition supplements

Transforming growth factor-b (TGF-b) is one of the cy-
tokines involved in chondrogenesis. It is a potent cytokine
that enhances cell signaling through the downstream small
mother against decapentaplegic (SMAD) family of proteins.
In cancer research, TGF-b has been associated with alter-
ations in the epigenetic profile of cells [29]. Bone mor-
phogenetic protein-2 (BMP-2), an osteochondrogenic factor,
also induces histone hyperacetylation at the SRY (sex de-
termining region Y)-box 9 (SOX9) gene on chromatin [30].

To study the effects of malnutrition, food-restricted rat
models were used. Diet intervention was reported to sig-
nificantly affect the DNA methylation levels of several
CpGs on the WT1 and ATP10A gene promoters in patients
with obesity [31]. Vitamin C (ascorbate) induces DNA de-
methylation of specific gene sets, which may have an impact
on pluripotency and reprogramming pathways in human
embryonic stem cells (ESCs) [32]. Likewise, vitamin C
supplementation also enhances the function of epigenetic
modifiers during generation of induced pluripotent stem
cells (iPSCs) [33]. These studies suggest that the manipu-
lation of growth factors and nutrition could alter epigenetic
states and the chondrogenic process.

Hypoxia

In normal cartilage, resident chondrocytes are adapted to
the hypoxic environment. Thoms et al. found that hypoxia
suppressed the destruction and induced production of human
cartilage through the regulation of hypoxia-inducible factor-
1a (HIF-1a) and HIF-2a and their interaction with SOX9
[34]. HIF-2a has been reported to mediate the transcrip-
tional activity of the catabolic gene MMP13 under different
methylation statuses in chondrocytes [35]. HIFs can also
alternatively interact with histone deacetylase (HDAC) in-
hibitors and modulate their activities, resulting in the deter-
mination of stem cell fate [36]. Likewise, histone demethylase
enzymes have been shown to function in the presence of
oxygen. In some cases, these enzymes are induced by hypoxia
in an HIF-a-dependent manner [37]. The just-discussed

findings suggest a hitherto uncharacterized role for epigenetic
mechanisms mediating the effect of oxygen in cartilage de-
velopment.

Inflammation

Stress and proinflammatory mechanisms participate in
the pathogenesis of OA. Jmjd3 is a histone demethylase
expressed in macrophages in response to bacterial products
and inflammatory cytokines. Jmjd3 binds polycomb-group
(PcG) protein target genes and regulates their trimethylation
levels of lysine 27 on histone 3 (H3K27me3) as well as their
transcriptional activity [38]. This study provided the first
link between inflammation and epigenetics. Inflammation-
activated signaling [tumor necrosis factor (TNF)/p38a] in
muscle stem (satellite) cells can promote the polycomb
repressive complex 2 (PRC2), one of the two classes of
PcG proteins, suppressing Pax7 and impairing satellite cell
proliferation [39]. Though these pathways provide signif-
icant evidence of inflammation-induced epigenetic regu-
latory mechanisms, direct evidence of epigenetic changes
in chondrogenesis due to inflammation remains to be
identified.

Mechanics

The mechanical environment plays a definitive role in
regulating chondrogenesis of MSCs [40]. The cytoskeleton,
which provides structural integrity to the cell, senses me-
chanical interactions with the external environment allowing
the cytoskeleton to be involved mechanically and biochemi-
cally with cellular processes [41]. It is shown that biophysical
cues can modulate nuclear shape through lamin A/C, the
nuclear matrix protein, and regulate HDAC activity and
histone acetylation in bone-marrow-derived mesenchymal
stem cells (BMSCs) [42]. Mechanical stimulation can also
alter the epigenetic state by reducing DNA methylation,
therefore resulting in the upregulation of osteogenic gene
expression [43]. In the inner meniscus cells, cyclic tensile
strain can increase COL2A1 and SOX9 expression, stimu-
late nuclear translocation, and cause the phosphorylation of
SOX9 to increase the association between SOX9 and related
transcriptional complexes on chromatin [44].

Oxidative stress

Free-radical-derived reactive oxygen species (ROS),
constantly produced in living organisms, have the potential
to damage DNA, proteins, and lipids, while contributing to
the aging process. Recently, striking evidence revealed the
relationship between ROS-induced reversible cell signaling
and epigenetic changes. Forced expression of SIRT3, a
deacetylase that activates ROS scavengers to reduce oxi-
dative stress, functionally rejuvenates mouse hematopoietic
stem cells, supporting the assertion that reversible processes
such as aberrant signaling and epigenetic drift are relevant
to oxidative-stress-associated cellular aging [45]. Oxidative
stress also plays an important epigenetic modification role in
the progression of chronic diabetic complications and car-
diovascular diseases. Increased superoxide production cau-
ses the activation of several signaling pathways, resulting in
epigenetic changes, including augmented production of
histone acetyltransferase p300, alterations of HDACs, and
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modifications in microRNAs (miRNAs) [46,47]. The just-
mentioned evidence suggests that epigenetic changes induced
by oxidative stress might interfere with cartilage regenera-
tion, which also remains to be elucidated.

Initiation of Epigenetic Events During
Cartilage Regeneration

After receiving signals generated by the environment, the
epigenetic initiator translates the epigenator signal to me-
diate in the establishment of local chromatin at a precise
location. The initiator can be a DNA-binding protein, an
ncRNA, or any other entity that defines the coordinates of
the chromatin structure assembly [15]. NcRNAs, including
miRNAs and long ncRNAs (lncRNAs), have been accepted
as a new major gene class with epigenetic regulating func-
tions [48]. Increasing evidences suggest that the miRNAs
and lncRNAs play an integral part in regulating chondro-
genic differentiation and cartilage function through their
targeted genes [49,50]. However, their role as epigenetic
initiators has not been fully described. Table 1 provides a
brief summary of recognized and recently discovered DNA-
binding proteins, miRNAs, and lncRNAs sorted by their
possible upstream environmental factors and their role in
initiation of epigenetic events during chondrogenesis.

Senescence responsive initiators

Replicative senescence, which has a detrimental impact
on MSCs, is associated with continuous epigenetic modifi-
cations [51,52]. Senescence influences the overall expres-
sion of coding genes and miRNAs in MSCs [53,54]. The
upregulation of miR-371, miR-369-5p, miR-29c, miR-499,
and miR-let7f has been implicated in replicative senescence
of human BMSCs [55]. In a similar but inconsistent fashion,
an upregulation of miR-766 and miR-558 and a down-
regulation of miR-let-7f, miR-125b, miR-222, miR-199-3p,
miR-23a, and miR-221 were found in older monkey BMSCs
[53]. DNA methyltransferases (DNMTs) were specifically
predicted to be the direct targets of miR-29c, miR-499, and
miR-371 in lung cancer cells [56]. SirT1 is also a target of
miR-486-5p that can manipulate the senescence of human
adipose-derived mesenchymal stem cells (ASCs) [57].
Cyclin-dependent kinase (CDK) inhibitor p21 was estab-
lished to be the target gene due to its increases correlated
with decreases in miR-17, miR-19b, miR-20a, and miR-
106a in different aging models [54]. It was also found in
human diploid fibroblasts that miR-519 triggered replicative
senescence by repressing an RNA-binding protein known as
HuR [58]. Finally, miR-199a-3p, miR-193b, and miR-320c
were specifically identified to correlate to the senescence of
chondrocytes [59]. The changes in miRNAs may lead to
interactions with methylation and histone modifications of
target genes, consequently influencing human MSC self-
renewal and differentiation [60].

Growth-factor- and nutrition-related miRNAs

TGF-b can regulate miRNA directly and through SMADs
[61]. ACVR2B, SMAD2, and CHRDL1 were direct targets of
miR-455-3p, which can also regulate TGF-b signaling
during chondrogenesis [62]. Smad3 was identified as a di-
rect target of miR-140; TGF-b signaling can be inhibited by

miR-140 through suppression of Smad3 [63]. The set of
miRNAs, including miR-221, miR-222, miR-140, miR-143,
and miR-145, was enriched in the artificial zone of articular
cartilage and exhibited expression changes with zonal dif-
ferentiation. Interestingly, these areas were also involved in
the regulation of homeostasis and could be modulated by
TGF-b1 [49]. Several miRNAs, including chondrocyte-
specific miR-140 and its target gene SIRT1, were reduced in
a food-restriction model [64]. A high-glucose diet increased
the expression of miR-486-5p and inhibited SIRT1 expres-
sion, which further promoted human ASC senescence [57].

Hypoxamirs

A specific set of miRNAs that has been induced in hyp-
oxic conditions is defined as ‘‘hypoxamirs’’ [65]. An ESC-
specific cluster, miR-302, was induced upon hypoxic culture
and may explain the improved reprogramming of primary
and immortalized MSCs [66]. A highly conserved and ubiq-
uitously expressed miRNA, miR-210, was also induced in
hypoxic human MSCs; miR-210 positively regulated HIF-1a
to maintain the survival of MSCs under hypoxic conditions
[67]. Reciprocally, HIF-1a induced miR-210 in differentiating
myoblasts; blockage of miR-210 greatly increased myotube
sensitivity to oxidative stress and mitochondrial dysfunction
[68]. In an ischemic model, miR-210 also suppressed
apoptosis in BMSCs through caspase-8-associated protein
2 [69]. Under hypoxic signaling, the culture of human
chondrocytes showed that lncRNA H19 and its encoded
miR-675 as well as COL2A1 were upregulated in close
relation [70].

Inflammation-regulated initiators

Proinflammatory cytokines were reported to be respon-
sible for the upregulation and downregulation of a number
of miRNAs. Interleukin (IL)-1a elevated expression of miR-
146a/b as a compensatory response of senescence to reduce
inflammatory signals in human neonatal foreskin fibroblasts
[71]. However, increases in miR-146a were later found to be
associated with the production of proinflammatory cytokine
IL-17 in the synovium of RA patients [72]. Upregulated
miR-101 participated in IL-1b-induced ECM degrada-
tion in chondrocytes, likely doing so by directly targeting
SOX9 [73]. In vitro treatment of chondrocytes with IL-1b
suppressed the expression of miR-140; the silencing of miR-
140 downregulated IL-1b, induced a disintegrin and me-
talloproteinase with thrombospondin motifs 5 (ADAMTS5)
expression, and rescued the IL-1b-dependent repression of
ACAN expression [74]. Similarly, the increase of miR-140
expression was also a negative feedback regulator to de-
crease MMP13 expression in IL-1b-stimulated human ar-
ticular chondrocyte C28/I2 cells [75].

Both IL-1b and TNF-a downregulated H19, COL2A1,
and miR-675 expression [70]. The stress-induced regulation
of H19 by hypoxic signaling and inflammation suggested
that H19 acted as a metabolic correlate in cartilage and
cultured chondrocytes; there may be an indirect influence of
miR-675 on COL2A1 levels in OA-affected cartilage [70].
Overexpression of miR-125b suppressed IL-1b-induced
ADAMTS4 expression [76]; downregulation of miR-199a*
was involved in the IL-1b induction of cyclooxygenase-2
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(COX-2) in human osteoarthritic chondrocytes [77]. In
another in vitro OA model, miR-34 was upregulated in
chondrocytes by the induction of IL-1b. Silencing of miR-
34 significantly prevented IL-1b-induced downregulation of
COL2A1 and upregulation of inducible nitric oxide synthase
(iNOS), and reduced chondrocyte apoptosis [78] by the
targeting of EPHA5 [79].

Mechanoresponsive miRNAs

By profiling miRNAs in bovine cartilage, miR-222 was
recognized as a potential regulator for mechnotransduction
pathways [80]. Recently, miR-365 was identified as a me-
chanically responsive miRNA that regulated chondrocyte
differentiation under cyclic loading via directly targeting
HDAC4 [81]. Both mechanical loading and TGF-b treat-
ment modulated the expression of several miRNAs that
regulate tendon fibroblast proliferation and ECM synthesis
[82]. Mechanical stimulation altered the epigenetic state of
BMSCs by reducing DNA methylation, which increased the
expression of osteogenic genes [43]. A more complete under-
standing of the translation of extracellular biophysical signals
into biochemical signaling events will significantly improve the
understanding of epigenetic regulation in MSCs.

Oxidative-stress-induced initiators

Some miRNAs induced by oxidative stress were involved
in the regulation of SIRT1 in the endothelium [83]. In a hu-
man retinal pigment epithelial cell line, hydrogen peroxide
downregulated 18 miRNAs and upregulated 29 miRNAs; the
addition of curcumin (diferuloylmethane) altered the expres-
sion of hydrogen-peroxide-modulated miRNAs, increased the
expression of antioxidant genes, and reduced activity of the
renin-angiotensin systems; these effects suggest many possi-
ble regulatory roles of miRNAs [84]. Specifically, hydrogen-
peroxide-treated vascular smooth muscle cells aberrantly
expressed miR-21 [85]. In arsenite-induced human embryo
lung fibroblast transformations, miR-21 was regulated by
ROS-activated extracellular signal-regulated kinase (ERK)/
NF-kB pathways [86]. In iPSCs, hydrogen peroxide also in-
duced oxidative stress and miR-1 expression. Insulin-like
growth factor-1 (IGF-1) provided protection from oxidative-
stress-induced apoptosis in iPSCs partially via miR-1 [87].
ROS from various sources induced miR-210 expression in
human ASCs via platelet-derived growth factor receptor beta
(PDGFR-b), Akt, and ERK pathways, and miR-210 increased
the proliferation and migration of ASCs by downregulating
ISCU2 and PTPN2 [88]. Although most research on oxida-
tive-stress-responsive miRNAs is conducted within the fields
of vascular disorders and neurontoxicology, an understand-
ing of this topic will provide useful insight in cartilage re-
generation.

Maintenance of Epigenetic Remodeling
in Cartilage Regeneration

Following epigenetic initiation mechanisms, maintaining
and passing on the heritable epigenetic effects to the next
generation is completed via DNA methylation, histone mod-
ifications, and nucleosome dynamics. To dissect the mainte-
nance of epigenetic regulation mechanisms in regenerating
cartilage, epigenetic evidence on both chondrocyte/progenitor

cell proliferation and chondrogenic differentiation are sum-
marized in the following headings.

Epigenetic regulation of proliferation
in chondrocytes and progenitor cells

Nanog, Sox2, and Oct4 (also known as Pou5f1) are three
transcription factors essential for the maintenance of stem
cell pluripotency. The expression of NANOG and SOX2 is
inversely correlated with DNA methylation pattern in the
promoter region of equine BMSCs [89]. During long-term
culture, a significant decrease in the DNA methylation
levels could be responsible for the enlarged morphology,
the decreased number of cell divisions, the random loss of
genomic regions, and the shortening of the telomeres in
human BMSCs [90]. Additionally, there is increasing ev-
idence that loss of ex vivo differentiation potentials, es-
pecially toward the osteochondrogenic lineage, was in late-
passage porcine BMSCs [91], and reduced expression of
SOX2 and OCT4 was in human-placenta-derived MSCs [92].
A recent report indicated that overexpression of both NANOG
and OCT4 could improve stemness and chondrogenesis in
human BMSCs [93]. Intriguingly, an in vivo study showed
that, after DNA methylation inhibitor 5-azacytidine (5AC)
was injected intraperitoneally, it enhanced the prolifera-
tion of elastic cartilage in transplanted rat fetal epiglottis
tissue [94].

The important role of histone acetylation in cell replication
has long been recognized [95]. As human-placenta-derived
MSCs age, alterations of gene expression were observed with
epigenetic dysregulation of acetylation in H3K9 and H3K14
[92]. Also, HDAC1 was essential for unlimited cell pro-
liferation in mouse ESCs by repressing the expression of
selective cell cycle inhibitors [96]. HDAC inhibitors can
significantly improve human umbilical cord MSC prolifera-
tion. The inhibitors can also delay their aging at low concen-
trations by modulating histone H3 acetylation and methylation
in pluripotent and proliferative genes [97].

In iPSCs, histone methyltransferase Ezh2 (a catalytic
subunit of PRC2) influenced the expression of NANOG, a
transcription factor critically involved with self-renewal of
undifferentiated ESCs [98]. A basic helix-loop-helix tran-
scription factor, Twist-1, can also induce Ezh2. This in-
duction resulted in an increase in H3K27me3, repression of
the transcription of p16/p14, and the senescence of human
BMSCs [99]. DNMTs regulated the cellular senescence of
human umbilical cord MSCs through the histone marks at
genomic regions of Ezh2-targeting miRNAs and p16 and
p21 promoter regions [100].

Epigenetic regulation during
chondrogenic differentiation

DNA methylation and cartilage regeneration. Compared
with ESCs, MSCs had more methylations on OCT4 and
NANOG promoters. The increased methylation suggested
that pluripotency was restricted in MSCs [10]. Cell-type-
specific DNA methylation patterns are thought to be
established prior to the terminal differentiation of adult
progenitor cells. The removal of DNA methylation by 5AC
treatment altered the myogenic lineage commitment of
C2C12 myoblasts and induced spontaneous osteogenic and

1184 LI, OHLIGER, AND PEI



adipogenic differentiation [101]. Similarly, another DNA
demethylating agent, 5-aza-2¢-deoxycytidine (Decitabine),
also stimulated osteogenic differentiation in human BMSCs
[102].

The SOX trio (SOX5, SOX6, and SOX9) plays an es-
sential role in chondrogenic differentiation. During chon-
drogenic induction of human synovium-derived stem cells
(SDSCs), DNA methylation levels of CpG-rich promoters
related to chondrocyte phenotypes were largely hypo-
methylated [103]. Correspondingly, increased methylation
in promoter regions of SOX5 and SOX9 genes explains the
low expression of these respective genes in a surgically
induced rat OA model [104].

Histone modifications and cartilage regeneration. Recently,
genome-wide chromatin immunoprecipitation and deep
sequencing were performed to quantify epigenetic changes
during in vitro chondrogenesis in human primary MSCs.
Results suggested that histone modifications, rather than
DNA methylation, provide the primary mechanism of con-
trol of early chondrogenic differentiation of MSCs [8].
Histone lysine methylation is an epigenetic event that es-
tablishes cell-specific lineage differentiation; specifically,
the methylation of H3K9 has been shown to be the primary
determinant for reprogramming somatic cells into iPSCs
[105]. Nuclear factor of activated T-cells (NFAT) is an
important transcription factor that regulates chondrocyte
homeostasis. The age-dependent NFAT-1 expression in ar-
ticular chondrocytes was also regulated by dynamic histone
methylation [106]. Polycomb-associated H3K27me3 blocks
chromatin access to early growth response-1 (EGR-1). The
ablation of EGR-1 results in abnormal EZH2 (H3K27me3
histone methyltransferase) and BMI1 (E3-ubiquitin ligase
for H2A) expression. This relationship suggests that there is
an important role for EGR-1 in early chondrogenic epigenetic
programming to accommodate early gene–environment in-
teractions in chondrogenesis [107].

A Sox9-related transcriptional apparatus activates its
target expression by histone acetylation and p300 media-
tion [108], suggesting that the epigenetic status, including
histone modification and chromatin structure, directly in-
fluences Sox9-regulated chondrogenic differentiation. Tri-
chostatin A (TSA), selectively inhibiting the classes I and II
mammalian HDAC families of enzymes, enhanced the
chondrogenic structure and Sox9-regulated cartilage matrix
gene expression of COL2A1 and ACAN in human chon-
drocytes [102,108].

Epigenetic regulation in chondrocyte hypertrophy

Cartilage hypertrophy is of paramount concern for the
application of MSCs in tissue engineering, primarily due to
the fact that hypertrophy results in apoptosis and ossifica-
tion. To generate a stable chondrocyte phenotype, epige-
netically controlling chondrocyte hypertrophy is desired.
Type X collagen, MMPs, and vascular endothelial growth
factor are the most commonly recognized hypertrophic
markers and target genes of RUNX2. The demethylation of
the COL10A1 promoter correlated with the induction of type
X collagen during MSC-derived chondrogenesis [109].
H3K9 methyltransferases were predominantly expressed in
prehypertrophic and hypertrophic chondrocytes. The pres-
ence of these methyltransferases may represent the pro-

gression of chondrocyte differentiation by affecting the
methylation state of H3K9 in the mouse growth plate,
suggesting a regulatory role of gene expression [110]. This
supposition was consistent with Vega et al.’s finding that
demonstrated that mice lacking HDAC4 developed abnor-
mal chondrocyte hypertrophy and died perinatally [111];
overexpression of HDAC4 promoted TGF-b1-induced SDSC
chondrogenesis, but inhibited hypertrophy [112] which
could benefit cartilage regeneration. The relocation of
HDAC4 from the nucleus to the cytoplasm and activation of
RUNX2 and COL10A1 was regulated by Ca2 + /calmodulin-
dependent kinase IV to control chondrocyte hypertrophic
differentiation [113].

Potential roles of nucleosome positioning
in cartilage regeneration

Nucleosomes are the basic packaging units of DNA in
eukaryotes. The assembly, mobilization, and disassembly of
nucleosomes can influence the regulation of gene expres-
sion and other biological processes such as replication in
eukaryotic DNA [114,115]. Nucleosome positioning re-
fers to the location of the nucleosome in relation to the
expressed genomic DNA sequence. Nucleosome position-
ing is a dynamic process determined by the combined effects
of several factors, such as DNA sequence, DNA-binding
proteins, nucleosome remodelers, and the RNA polymerase
II transcription machinery [116]. Thus, nucleosome posi-
tioning could have a potential role in regulating cartilage
regeneration.

Human telomerase reverse transcriptase (hTERT), a cat-
alytic subunit of the enzyme telomerase, is responsible for
maintaining the length of telomeres. Without this enzyme,
critical shortening of telomeres occurred resulting in genetic
instability and cellular senescence [117]. Therefore, hTERT
is highly expressed in stem cells, while cells that become
gradually differentiated lose hTERT activity. One recent
study showed that the expression of hTERT mRNA de-
creased continuously with differentiation due to the increased
prevalence of nucleosomes at the hTERT core promoter re-
gions. As remodeling continued to increase nucleosomes at
the promoter region, stable silencing of the hTERT pro-
moter also increased; thus, nucleosomal deposition at the
core promoter was determined to be the cause of tran-
scriptional repression of hTERT in differentiated human
leukemic HL60 cells [118].

Genome-wide nucleosome positioning was investigated
in mouse ESCs and their neural progenitor as well as em-
bryonic fibroblasts to determine the association between
nucleosome positioning and lineage commitment. By com-
paring these three cell types, local and global rearrange-
ments of nucleosome occupancy revealed important roles of
nucleosome positioning in cell differentiation [119]. Not
surprisingly, active genes have broader and more pronounced
nucleosome-depleted regions around transcription start and
transcription termination sites. The arrangement and occu-
pancy of nucleosomes in these sites correlated with certain
histone methylation or acetylation modifications. Similarly,
the average distance between two neighboring nucleosomes,
known as the average nucleosome repeat length, increased
during differentiation by five to seven base pairs. The alter-
ation of nucleosome repeat length may affect the folding
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properties of the nucleosomal chain resulting in another
mechanism by which nucleosomes may influence stem cell
differentiation [119].

DSCM: A Potential In Vitro Model of Epigenetic
Application for Cartilage Regeneration

The ECM, which is secreted by resident cells in all
tissues, forms a unique tissue-specific 3D microenviron-
ment. ECM proteins are key components in the shaping of
the stem cell niche and maintaining stem cell homeostasis.
Cell–matrix-interaction-induced signaling constitutes a crit-
ical determinant of cell behavior, making the ECM a key
factor in determining a stem cell niche. Decellularized ECM
(DECM), which is derived from tissues, has proven to be
beneficial in regenerative medicine [120]. DECM serves as
a biological scaffold for selective cell types allowing in-
creased proliferation. The characterization of decellularized
cartilage ECM suggested that it is not only a complex 3D
structure full of biochemical signals, but also a mechano-
transduction device [121]. This attribute makes decellular-
ized cartilage ECM a perfect candidate for cartilage tissue
engineering. Encouraging preliminary animal and clinical
data have been reported [122–124].

More interestingly, DECM deposited by human MSCs
(DSCM) could be used as an in vitro expansion system
[125]. DSCM promoted cell attachment, spreading, migra-
tion, proliferation, and the maintenance of responses to
differentiation signals [126]. As a tissue-specific stem cell
for chondrogenesis [127], SDSCs were chosen to deposit
stem cell matrix, on which SDSCs were greatly expanded
with enhanced chondrogenic potential in our studies. The
rejuvenating effect of DSCM has been observed in not only
adult stem cells, such as SDSCs [128–130] and BMSCs
[131], but also primary cells, such as articular chondrocytes
[132,133] and nucleus pulposus cells [134,135]. Most re-
cently, we found that DSCM deposited by fetal SDSCs
provided a robust rejuvenating effect in promoting adult
SDSC proliferation and chondrogenic capacities [136]. The
increased proliferative and chondrogenic potentials may
possibly provide large quantities of high-quality cells in an
autologous implantation strategy, which has been encour-
aged by a recent minipig study in which DSCM-expanded
SDSCs were injected intraarticularly to treat partial-thickness
cartilage defects [137].

The rejuvenation effect of DSCM is supported by its
excellent ability in managing environmental factors. DSCM
deposited by fetal SDSCs aided in the protection of expanded
cells from senescence [138]. DSCM-expanded SDSCs showed
robust resistance to hydrogen-peroxide-induced oxidative
stress [130]. Our unpublished data suggested that DSCM-
expanded SDSCs exhibited an upregulated ability to resist
IL-1b-mediated inflammation. DSCM is also rich in growth
factors and acts as a reservoir for the needs and demands of the
cell [136]. The addition of hypoxia and basic fibroblast growth
factor (FGF)-2 in the DSCM expansion system improved ex-
panded SDSC proliferative and chondrogenic potentials [128].
The presence of hypoxia alone also enhanced the rejuvenating
effect of the DECM on nucleus pulposus cells [134].

While the mechanisms involved in DSCM rejuvenation
remain unclear, Choi et al. showed that the restoration of
senescent human diploid fibroblasts by matrix was regulated

by epigenetic mechanisms; both Ku and SIRT1 were in-
duced during restoration and were required for senescent
cells to return to a youthful phenotype [139]. Our micro-
array data also showed that both miR-140 and miR-145
were dramatically downregulated during cell expansion and
upregulated during chondrogenic differentiation in DSCM-
pretreated SDSCs accompanied with enhanced proliferative
and chondrogenic potentials, suggesting a pivotal role of
miR-140 and miR-145 in DSCM-mediated SDSC rejuve-
nation mechanisms (unpublished data). In response to envi-
ronmental stimuli, miR-140 targeted multiple genes to play
different roles during chondrogenic differentiation, endo-
chondral bone formation, and OA pathogenesis, as sum-
marized by Hong and Reddi [140]. Interestingly, miR-140
has been reported to target chemokine (CXC motif) ligand
12 (CXCL12) and ADAMTS5 in equine-cord-blood-derived
MSCs [141]; its overexpression protected cartilage from
antigen-induced arthritis and maintained the cartilage ho-
meostasis in a knockout mouse model [142]. It also stimu-
lated in vitro chondrogenesis by upregulating SOX9 and
ACAN in human MSCs [143]. SOX9 has been suggested as a
downstream target gene of miR-145 or miR-449a, which
directly or indirectly represses SOX9 and cartilage matrix
gene expression in human primary chondrocytes, BMSCs,
and a murine embryonic mesenchymal cell line C3H10T1/2
[144–146].

Epigenetic Therapeutic Strategies
for the Treatment of Arthritis-Related
Cartilage Degradation

Since heritable epigenetic events are potentially revers-
ible, opportunities for therapeutic intervention arise. Re-
cently, more attention has been paid to epigenetic research
of musculoskeletal development and potential treatments for
musculoskeletal diseases [147]. OA and RA, both degen-
erative diseases characterized by cartilage degradation, are
not fatal but detrimentally affect the quality of life and cause
a huge economic burden. Chondrocytes in healthy states
respond to their environment and are responsible for main-
taining the balance of synthesis and degradation of the
ECM. However, increased degradation of ECM components
occurs in arthritic states, resulting in cartilage loss. MMP
and aggrecanase are proteolytic enzymes that regulate the
turnover and degradation of ECM. A recent study showed
that prevention of ECM degradation alleviates cartilage loss
in a murine arthritis model [148]. To gain a greater under-
standing about epigenetic events resulting from environ-
mental factors surrounding cartilage regeneration, recent
advances in the epigenetic mechanisms of OA and RA are
reviewed as good examples (Fig. 2).

Osteoarthritis

OA is a complex multifactorial disease with a strong
genetic component [149]. However, difficulties remain in
the identification of genes that provide full genetic suscep-
tibility to the disease. This is due to the presence of low-
penetrance polymorphisms and other mechanisms, such as
epigenetic modifications [12]. Recent genome-wide associ-
ation scans along with several powered candidate gene
functional studies have revealed that effects on gene
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expression, together with epigenetic mechanisms, are likely
to be the main mechanisms involved in OA susceptibility
[150]. Environmental factors, including aging and nutrition,
have been associated with aberrant epigenetic modifications
[151,152]. These factors may also have an impact on the
onset and progression of OA.

To prevent the onset of OA, an understanding of envi-
ronmental factors with epigenetic influences is crucial. The
recent advancements of many other miRNA functions
and molecular targets for treatment in OA have been re-
viewed [12,153–155]. Among them, miR-140 is tissue spe-
cific and is well studied in cartilage tissue and bone
development [156]. Though miR-140 was regulated by
SOX9, when comparing advanced-stage and early stage OA
cartilage, intriguingly, the SOX9 promoter regions showed
no difference in epigenetic status [104].

The OA model based on inflammatory stimulation pro-
vides more insight into the role of environmental factors
with epigenetic influences. After induction by IL-1b or
TNF-a, miR-27b and miR-149 became downregulated in
human chondrocytes. As a result, their downstream target
genes, such as MMP13 and proinflammatory cytokines,
were affected, which contributed to the progression of OA
[157,158]. TNF-a, a cytokine that mediates joint inflam-
mation in arthritis, can cleave and deactivate SirT1 [159].
SirT proteins were involved in OA through their regulation
of cellular energy and metabolism [160]. The decrease in
SirT1 in heterozygous SIRT1 + / - mice correlated with the
development of premature OA-like phenotypes and in-
creased chondrocyte apoptosis [161]. The administration of
resveratrol has been reported to protect cartilage from
degradation in rabbit OA models [162]. Resveratrol can
not only inhibit nitric-oxide-induced apoptosis in rabbit
chondrocytes [163] but can also transiently promote pro-
liferation in human BMSCs [164]. Resveratrol exerts its
chondroprotective function in human chondrocytes in vitro
by deactivating p53-induced apoptosis [165] or inhibit-
ing IL-1b-induced apoptosis [166]. Evidence shows that
oxidized hyaluronic acid/resveratrol hydrogel is a prom-

ising cell carrier for chondrocytes to repair cartilage
defects [167].

Targeting and inhibiting the expression of enzymes, such
as MMPs and aggrecanases, is a potential strategy to treat
OA. In osteoarthritic dogs, increased MMP2 and MMP9
activities correlated with the onset and progression of OA
[168]. The epigenetic regulation of MMP9 gene expression
helped prevent and manage its role in degenerative diseases
and cancer [169]. Similarly, the demethylation of the
MMP13 promoter in OA chondrocytes was found to be re-
sponsible for the increase of MMP13 expression [170].
Control of this enzyme may have analogous effects in de-
terring the progression of OA.

Glucosamine is a commonly prescribed drug for allevi-
ating OA. The mechanism of action behind its therapeutic
efficacy is not yet clear. However, it was demonstrated that
glucosamine and an NF-kB inhibitor prevent cytokine-
induced demethylation of a specific CpG site in the IL-1b
promoter resulting in the decreased expression of IL-1b
[171]. Many potential treatments for OA will be identified
with the integration of genetic and epigenetic data.

Rheumatoid arthritis

RA is a chronic autoimmune inflammatory disease char-
acterized by progressive joint destruction due to the ag-
gressive phenotype of synovial fibroblasts. Its etiopathology
was attributed to the crosstalk between genetic predisposi-
tion and environmental factors [172]. Changes in both au-
toimmune-related genes and the environment generated
aberrant epigenetic profiles in a cell-specific manner, ulti-
mately resulting in dysregulated gene expression [172].

The expression of a number of miRNAs, such as miR-16,
miR-132, miR-146a, and miR-155, has been shown to be
dysregulated during the inflammatory response in RA
[173,174]. Elevated levels of miR-115 and miR-203 have
been observed to correlate with increases of MMP1 and IL-6
expression [175,176]. The upregulated expression of miRNAs
may possibly serve as biomarkers, since they are detectable in

FIG. 2. Epigenetics in osteoarthritis (OA)
and rheumatoid arthritis (RA) and the im-
plications for future therapy.
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serum or plasma [173]. The pathogenesis of RA will be more
thoroughly understood with more complete identification of
miRNAs and a greater awareness of crosstalk between the
epigenetic regulators [173,177,178].

IL-1, a proinflammatory cytokine, altered DNA methyl-
ation in RA synovial fibroblasts by decreasing the expres-
sion and function of DNMTs [179]. The expression of
synovial fibroblast genes contributed to the pathogenesis of
RA due to the changes in methylated genes [180]. Key
hypomethylated and hypermethylated gene loci have been
identified by use of genome-wide evaluation of DNA
methylation in RA synovial fibroblasts [181,182]. By per-
forming both DNA methylation and miRNA expression
screenings of RA synovial fibroblasts compared with OA
patients with normal phenotypes, four dysregulated target
genes (IL-6R, CAPN8, DPP4, and HOX) were identified as
potential clinical markers [183]. The integrative approach of
involving genetics and epigenetics provides more insights
about the intricate connections between various mechanisms
and helps to identify novel targets for future therapeutic
options in RA patients.

SIRT1, which is overexpressed in RA tissues, promoted
proinflammatory cytokine production in monocytes and
RA synovial fibroblasts [184]. In the past 10 years, the
systemic administration of HDAC inhibitors has been
shown to decrease the severity of the disease. However, the
underlying mechanisms in vitro and in vivo are still ob-
scure [172,185]. Continued interest in epigenetic research
will advance the discovery of new treatments for RA
[174,185].

Concluding Remarks and Future Perspectives

In this review, we emphasized the importance of in-
volving the environmental context in order to better un-
derstand the nuances and complexities of epigenetic
remodeling events on chondrogenesis. The numerous ways
in which epigenetic events may alter gene expression were
discussed. Although much has been learned about the va-
riety of roles and mechanisms involved in the epigenetics of
chondrogenesis, more information and details still need to
be elucidated. Epigenetic events can provide an avenue for
more precise and stable control of gene expression and ge-
nomic regulation through multiple generations. A deeper
understanding of the underlying mechanisms of epigenetic
regulation will allow us to actively manipulate cell fate
conversion, including senescence, differentiation, repro-
gramming, and transdifferentiation, which will undoubtedly
lead to unlimited therapeutic applications.

Acknowledgments

The authors thank Suzanne Danley and Tyler Pizzute for
help in editing the manuscript. This project was partially
supported by research grants from the West Virginia Uni-
versity Senate Research Grant Award (R-12-010), the AO
Foundation (S-12-19P), and the National Institutes of Health
(NIH) (1 R03 AR062763-01A1 and 5 R03 DE021433-02).

Author Disclosure Statement

The authors declare no potential conflict of interest.

References

1. Arøen A, S Løken, S Heir, E Alvik, A Ekeland, OG
Granlund and L Engebretsen. (2004). Articular cartilage
lesions in 993 consecutive knee arthroscopies. Am J
Sports Med 32:211–215.

2. Curl WW, J Krome, ES Gordon, J Rushing, BP Smith and
GG Poehling. (1997). Cartilage injuries: a review of
31,516 knee arthroscopies. Arthroscopy 13:456–460.

3. Mandelbaum BR, JE Browne, F Fu, L Micheli, JB Mo-
sely, C Erggelet, T Minas and L Peterson. (1998). Ar-
ticular cartilage lesions of the knee. Am J Sports Med 26:
853–861.

4. Alford JW. (2005). Cartilage restoration, part 1: basic
science, historical perspective, patient evaluation, and treat-
ment options. Am J Sports Med 33:295–306.

5. Alford JW. (2005). Cartilage restoration, part 2: tech-
niques, outcomes, and future directions. Am J Sports Med
33:443–460.

6. Nejadnik H, JH Hui, EP Feng Choong, BC Tai and EH
Lee. (2010). Autologous bone marrow-derived mesen-
chymal stem cells versus autologous chondrocyte im-
plantation: an observational cohort study. Am J Sports
Med 38:1110–1116.

7. Boeuf S and W Richter. (2010). Chondrogenesis of mes-
enchymal stem cells: role of tissue source and inducing
factors. Stem Cell Res Ther 1:31.

8. Herlofsen SR, JC Bryne, T Høiby, L Wang, R Issner, X
Zhang, MJ Coyne, P Boyle, H Gu, et al. (2013). Genome-
wide map of quantified epigenetic changes during in vitro
chondrogenic differentiation of primary human mesen-
chymal stem cells. BMC Genomics 14:105.

9. Lawson KA, CJ Teteak, J Zou, J Hacquebord, A Ghatan,
A Zielinska-Kwiatkowska, RJ Fernandes, HA Chansky
and L Yang. (2013). Mesenchymal-specific knockout of
ESET histone methyltransferase causes ectopic hypertro-
phy and terminal differentiation of articular chondrocytes.
J Biol Chem 288:32119–32125.

10. Yannarelli G, N Pacienza, L Cuniberti, J Medin, J Davies
and A Keating. (2013). Brief report: The potential role of
epigenetics on multipotent cell differentiation capacity of
mesenchymal stromal cells. Stem Cells 31:215–220.

11. Issa JP. (2000). CpG-island methylation in aging and
cancer. Curr Top Microbiol Immunol 249:101–118.

12. Barter MJ, C Bui and DA Young. (2012). Epigenetic
mechanisms in cartilage and osteoarthritis: DNA methyl-
ation, histone modifications and microRNAs. Osteo-
arthritis Cartilage 20:339–349.

13. Reynard LN and J Loughlin. (2012). Genetics and epi-
genetics of osteoarthritis. Maturitas 71:200–204.

14. Viatte S, D Plant and S Raychaudhuri. (2013). Genetics
and epigenetics of rheumatoid arthritis. Nat Rev Rheu-
matol 9:141–153.

15. Berger SL, T Kouzarides, R Shiekhattar and A Shilatifard.
(2009). An operational definition of epigenetics. Genes
Dev 23:781–783.

16. Jaenisch R and A Bird. (2003). Epigenetic regulation of
gene expression: how the genome integrates intrinsic and
environmental signals. Nat Genet 33 Suppl:245–254.

17. Feinberg AP. (2007). Phenotypic plasticity and the epi-
genetics of human disease. Nature 447:433–440.

18. Barros SP and S Offenbacher. (2009). Epigenetics: con-
necting environment and genotype to phenotype and dis-
ease. J Dent Res 88:400–408.

1188 LI, OHLIGER, AND PEI



19. Ntanasis-Stathopoulos J, JG Tzanninis, A Philippou and
M Koutsilieris. (2013). Epigenetic regulation on gene
expression induced by physical exercise. J Musculoskelet
Neuronal Interact 13:133–146.

20. Koch CM and Wagner W. (2011). Epigenetic-aging-
signature to determine age in different tissues. Aging
(Albany NY) 3:1018–1027.

21. Da Silva MA, N Yamada, NMP Clarke and HI Roach
(2009). Cellular and epigenetic features of a young
healthy and a young osteoarthritic cartilage compared
with aged control and OA cartilage. J Orthop Res 27:
593–601.

22. Loeser RF, HJ Im, B Richardson, Q Lu and S Chu-
binskaya. (2009). Methylation of the OP-1 promoter: po-
tential role in the age-related decline in OP-1 expression
in cartilage. Osteoarthritis Cartilage 17:513–517.

23. Donmez G and L Guarente. (2010). Aging and disease:
connections to sirtuins. Aging Cell 9:285–290.

24. Gabay O, KJ Zaal, C Sanchez, M Dvir-Ginzberg, V
Gagarina, Y Song, XH He and MW McBurney. (2013).
Sirt1-deficient mice exhibit an altered cartilage phenotype.
Joint Bone Spine 80:613–620.

25. Moon MH, JK Jeong, YJ Lee, JW Seol, CJ Jackson and
SY Park. (2013). SIRT1, a class III histone deacetylase,
regulates TNF-a-induced inflammation in human chon-
drocytes. Osteoarthritis Cartilage 21:470–480.

26. Takayama K, K Ishida, T Matsushita, N Fujita, S Hayashi,
K Sasaki, K Tei, S Kubo, T Matsumoto, et al. (2009).
SIRT1 regulation of apoptosis of human chondrocytes.
Arthritis Rheum 60:2731–2740.

27. Gagarina V, O Gabay, M Dvir-Ginzberg, EJ Lee, JK
Brady, MJ Quon and DJ Hall. (2010). SirT1 enhances
survival of human osteoarthritic chondrocytes by repres-
sing protein tyrosine phosphatase 1B and activating the
insulin-like growth factor receptor pathway. Arthritis Rheum
62:1383–1392.

28. Li J and M Pei. (2012). Cell senescence: a challenge in
cartilage engineering and regeneration. Tissue Eng Part B
Rev 18:270–287.

29. You H, W Ding and CB Rountree. (2010). Epigenetic
regulation of cancer stem cell marker CD133 by trans-
forming growth factor-beta. Hepatology 51:1635–1644.

30. Pan Q, Y Wu, T Lin, H Yao, Z Yang, G Gao, E Song and
H Shen. (2009). Bone morphogenetic protein-2 induces
chromatin remodeling and modification at the proximal
promoter of Sox9 gene. Biochem Biophys Res Commun
379:356–361.

31. Milagro FI, J Campión, P Cordero, E Goyenechea, AM
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N López-Bigas, J Tegnér, RE Toes and E Ballestar.
(2013). Identification of novel markers in rheumatoid ar-
thritis through integrated analysis of DNA methylation
and microRNA expression. J Autoimmun 41:6–16.

184. Niederer F, C Ospelt, F Brentano, MO Hottiger, RE Gay,
S Gay, M Detmar and D Kyburz. (2011). SIRT1 over-
expression in the rheumatoid arthritis synovium contrib-
utes to proinflammatory cytokine production and
apoptosis resistance. Ann Rheum Dis 70:1866–1873.

185. Klein K and S Gay. (2013). Epigenetic modifications in
rheumatoid arthritis, a review. Curr Opin Pharmacol 13:
420–425.

Address correspondence to:
Prof. Ming Pei

Stem Cell and Tissue Engineering Laboratory
Department of Orthopaedics

West Virginia University
PO Box 9196

One Medical Center Drive
Morgantown, WV 26506-9196

E-mail: mpei@hsc.wvu.edu

Received for publication January 1, 2014
Accepted after revision February 17, 2014

Prepublished on Liebert Instant Online February 20, 2014

1194 LI, OHLIGER, AND PEI


