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Abstract

Data sharing efforts increasingly contribute to the acceleration of scientific discovery.

Neuroimaging data is accumulating in distributed domain-specific databases and there is currently

no integrated access mechanism nor an accepted format for the critically important meta-data that
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is necessary for making use of the combined, available neuroimaging data. In this manuscript, we

present work from the Derived Data Working Group, an open-access group sponsored by the

Biomedical Informatics Research Network (BIRN) and the International Neuroimaging

Coordinating Facility (INCF) focused on practical tools for distributed access to neuroimaging

data. The working group develops models and tools facilitating the structured interchange of

neuroimaging meta-data and is making progress towards a unified set of tools for such data and

meta-data exchange. We report on the key components required for integrated access to raw and

derived neuroimaging data as well as associated meta-data and provenance across neuroimaging

resources. The components include (1) a structured terminology that provides semantic context to

data, (2) a formal data model for neuroimaging with robust tracking of data provenance, (3) a web

service-based application programming interface (API) that provides a consistent mechanism to

access and query the data model, and (4) a provenance library that can be used for the extraction

of provenance data by image analysts and imaging software developers. We believe that the

framework and set of tools outlined in this manuscript have great potential for solving many of the

issues the neuroimaging community faces when sharing raw and derived neuroimaging data across

the various existing database systems for the purpose of accelerating scientific discovery.
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1 Introduction

Acceleration of scientific discovery in neuroimaging and many other research areas

increasingly relies on the availability of large and well-documented data sets. In fact, many

of the major new discoveries in the genetics of schizophrenia and other psychiatric

disorders, multiple sclerosis, diabetes, obesity, and other metabolic traits have been possible

only through collaborative data sharing (Ripke et al., 2011; Sawcer et al., 2011; Speliotes et

al., 2010). In the area of neuroimaging, such data sets can be obtained by a) funding large

consortia to prospectively acquire large data sets (Insel et al., 2004), b) harvesting research-

ready data from other sources (Kho et al., 2011; van Erp et al., 2011), and/or c) data (Biswal

et al., 2010) or analysis results (Stein et al., 2012), sharing between multiple separately

funded initiatives that include incommon measurements. In-common measurements, in the

context of neuroimaging, refer to imaging protocols that are included in many magnetic

resonance imaging (MRI) related studies such as resting state functional magnetic resonance

imaging (fMRI), structural T1-weighted MRI, and diffusion tensor imaging (Nooner et al.,

2012). Shared and combined use of in-common measurements is the lowest barrier in the

otherwise complex and often intractable space of combining neuroimaging data collected

under different initiatives; however, acquiring equivalent data sets at sites with hardware

from different vendors requires careful protocol design (Jack et al., 2010; Jack et al., 2008;

Kruggel et al., 2010). Despite efforts from consortia such as the Function and Morphometry

test beds of the Biomedical Informatics Research Network (BIRN) that have published

recommendations for collecting neuroimaging data with the sharing and combining of data

from multiple sites in mind, the task of data sharing across scanner platforms remains

difficult even though the benefits are both financially and scientifically undeniable (Glover
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et al., 2012; Poline et al., 2012). Sharing well-documented, often publicly funded, data sets

for use by the wider research community can be cost-effective as it allows for 1) increased

statistical power through mega-analyses in contrast to meta-analyses, 2) obtaining new

larger data sets to answer questions not addressed by the original studies, 3) application of

newly developed tools to existing data sets, and 4) replication of research findings via

reanalysis of existing data by other research groups.

In the last ten years, large neuroimaging datasets have become publicly available, although,

there are significant differences in the requirements for data access. These data sets are in

domain-specific repositories. Some examples of completely open-access neuroimaging

repositories include XNAT Central (central.xnat.org) which includes over 3000 subjects

stored in the XNAT database (Marcus et al., 2007), the BIRN data repository

(www.birncommunity.org/resources/data) which includes large cohorts of both mouse and

human imaging data stored in the BIRN Human Imaging Database (Florescu et al., 1996;

Ozyurt et al., 2010)) and elsewhere, the 1000 Functional Connectomes project

(www.nitrc.org/projects/fcon_1000/) which, at the present time, contains over 1000 subjects,

and the relatively new OpenFMRI repository (www.openfmri.org) which contains imaging

data from over 200 subjects. The Neuroimaging Informatics Tools and Resources

Clearinghouse (NITRC, www.nitrc.org) also hosts neuroimaging data, in addition to

neuroimaging processing and analysis tools (Buccigrossi et al., 2008). Examples of

neuroimaging repositories that require some form of permission to download data (e.g. prior

IRB approval or simply an application to the host site), include the Alzheimer’s Disease

Neuroimaging Initiative (ADNI; http://adni.loni.ucla.edu/) which contains imaging data

from over 800 subjects, and the National Database for Autism Research (NDAR;

ndar.nih.gov) which contains data from over 6000 subjects. It is clear from this short (and by

no means exhaustive) list of available neuroimaging repositories that data is accumulating in

distributed domain-specific databases, rather than in a small number of central repositories.

In addition, there is no integrated access mechanism, even for open-access resources, nor an

accepted format for the critically important meta-data, necessary for making use of

combined neuroimaging data. The Neuroscience Information Framework

(NIF;www.neuinfo.org) (Gupta et al., 2008) provides integrated access to many

neuroscience-related databases as well as other resources; researchers can identify imaging

datasets for download from certain resources that have been mapped for the NIF interface,

for example. Developing the meta-data formats and standards needed to understand the

imaging datasets, or to capture the details of how the data were collected and processed, is

outside the scope of NIF and other database mediators. Integrated access to existing

resources, many already identified by NIF, when combined with such meta-data

documentation, would provide a full-service shop for queries and download of publicly

available data across projects.

A critical barrier in enabling structured sharing of raw and derived neuroimaging data across

existing resources is the lack of a standard meta-data model and a set of informatics tools

that enables the sharing of meta-data, including provenance, associated with neuroimaging

data (Teeters et al., 2008). Meta-data are descriptive elements associated with data that

provide additional clarity regarding acquisition parameters, experimental conditions,

analysis procedures, and any other formation about the experiment or analyses that helps
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one understand and use the data. The benefits of neuroimage data sharing was introduced

more than a decade ago (Van Horn et al., 2001; Van Horn and Gazzaniga, 2002), several

successful data sharing projects exist (Biswal et al., 2010; Weiner et al., 2012; Nooner et al.,

2012), and many of the technical, legal, and social issues of data sharing have been

discussed (Poline et al., 2012; Milham, 2012; Mennes et al., 2012), but there currently is no

standard format nor a set of lightweight tools that allow small laboratories or individual

investigators to share imaging and meta-data in a structured way, nor a set of tools that

allows for queries across existing databases or data sharing efforts (Poline et al., 2012).

These problems are especially acute when attempting to construct large datasets from data

available through online repositories, each of which uses different structures of storing meta-

data.

The options for making data available are limited to putting raw data sets online, or putting

raw and processed data sets online together with descriptions of the derived data in text

documents (or to be gleaned from accompanying published manuscripts, e.g.,.

www.openfmri.org). While these simple approaches make data available to the community,

they generally provide limited meta-data thought to be of interest to the community by those

supplying the data, they provide meta-data in unstructured formats making it difficult to use

computationally, and they do not provide a framework to gain access to the data where it is

hosted which often has much richer meta-data and/or may contain important ancillary

information. Sharing data with an agreed upon structure directly from queryable data

resources would not only provide a richer set of meta-data to investigators, it would lessen

the burden in obtaining data from multiple resources while also making the data available

programmatically.

In the domain of brain imaging, there is an implicit difference between data and meta-data.

The primary distinction comes from considering binary forms of information as data and

information related to the provenance of, generation of and associated with such binary

forms as "metadata". However, from an information perspective there is no difference

between these two terms. Current brain imaging databases and software attempt to capture

"meta-data" or more textual information in one of three ways: 1) very explicit and relational

data structures (e.g., XCEDE, XNAT schemas); 2) headers of binary file formats (e.g.,

DICOM, MINC2, NIFTI header extensions) or 3) human readable log files (e.g., FSL's

FEAT, FreeSurfer recon-all). In each of these cases, there are no general mechanisms for

querying such information. For example, in MINC 2.0, a global mandatory attribute called

'history' (a character array) is used to implement an audit trail. According to MINC

guidelines (Vincent et al. 2004), "All MINC applications should append a line containing:

date, time of day, user name, program name and command arguments for each processing

step." Similarly in AFNI (afni.com), FreeSurfer (surfer.nmr.mgh.harvard.edu) and FSL

(www.fmrib.ox.ac.uk/fsl), such information are encoded in log files. Without a formal

structure or binary readers, such information becomes only useful for manual visual

inspection. Furthermore, these binary file formats or log files require special software to first

extract the information and store it in a database before queries can be done. In our model,

presented in this manuscript, we depart from these approaches by using a relatively simple

data model (very few conceptual elements) that can encode a variety of data, including but
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not limited to phenotypic information, provenance of processes and the users and

organizations involved. The data model provides the basic elements that can be used to build

object models or scaffolds capable of storing many different forms of brain imaging data.

Furthermore, the information can be exported using standards such as RDF and enabling

other standards such as SPARQL (www.w3.org/TR/rdf-sparql-query) to perform queries

that would in general be hard to do in the context of relational databases.

1 Derived Data Working Group

Gaining support for a new standard within a community is difficult. In evaluating data

format standards for storing medical images (e.g. DICOM, NIfTI) we find that often the

most pervasive and well-supported formats are those that have been engineered through a

community effort. The Neuroimaging and Technology Initiative’s data format working

group (NIfTI; nifti.nimh.nih.gov) is a notable example. The organizers, under the direction

of the National Institute of Mental Health (NIMH), brought together both domain-specific

software developers and those involved in large neuroimaging consortia to address problems

with sharing clinical images from a data format perspective. The format was successfully

adopted by most neuroimaging software providers and helped to standardize the way in

which researchers accessed binary image data. NIfTI did not however provide a format for

storing rich image meta-data and data provenance information, both of which are critical for

using shared data.

In response to the need for structured documentation of derived data in the context of

neuroimaging, a derived data working group was formed (https://wiki.birncommunity.org/

display/FBIRN/Derived+Data+Working+Group). The group began in 2010 as a grassroots

effort between members of the Function Biomedical Informatics Research Network

(FBIRN) and focused on sharing analysis results within that consortium by expanding on

previously developed FBIRN tools for the sharing of raw neuroimaging data. It was quickly

understood that the need for a structured way of documenting derived data in neuroimaging

was a problem common among many scientists in the field and the effort was subsequently

supported by the Biomedical Informatics Research Network Coordinating Center (BIRN-

CC) through the formation of a sanctioned working group. The working group expanded and

gained traction in 2011 by the participation of members in the International

Neuroinformatics Coordinating Facility’s (INCF) Neuroimaging Standards for Datasharing

Taskforce (www.incf.org/core/programs/datasharing). It became obvious that many in the

international community also shared the need for structured documentation of derived data

and provenance in the service of sharing neuroimaging datasets. The inclusion of the INCF

participants resulted in an expanded focus, beyond strictly augmenting FBIRN tools, with

the result of generalizing the core ideas of those tools to address a broader audience.

Today, the working group participants receive financial support from both the INCF and the

BIRN as well as other funding sources; yet their contributions to the derived data work are

predominantly voluntary. The working group has weekly calls, open to anyone interested in

contributing, and continually interacts with the INCF and BIRN-CC. Further, the INCF data

sharing task force has multiple face-to-face meetings per year where the contributions from

the derived data working group are shared and feedback elicited from the larger international
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community. The current focus of the working group is on the components for structured data

sharing discussed in section 3 and the inclusion of appropriate sub-components into both

common analysis tools and existing database resources.

In this manuscript, we present our work on facilitating the structured interchange of

neuroimaging meta-data and our progress towards a unified set of definitions and tools for

data and meta-data exchange. We focus not on the binary image data, but on the image

meta-data and associated provenance in the service of facilitating distributed access to

shared neuroimaging data. The work is applicable to both tool developers and end users and

addresses two main questions a researcher has when contemplating the public sharing of

their data: 1) How much, and what specific, meta-information about my data is required to

allow it to be effectively shared? and 2) What format should I use to document my meta-

data? The remainder of this manuscript is organized as follows. In section 2 we discuss why

sharing neuroimaging derived data is important and why a structured approach to data

provenance is necessary. In section 3 we present the components of our framework to

facilitate enhanced data sharing through structured meta-data and provenance. In section 4

we discuss how the components from section 3 can be used by database mediation

technologies to improve efficiency. In section 5 we discuss how the components from

section 3 can be used in knowledge engineering technologies to represent and share

statistical findings from experiments in a standardized way. Finally, in section 6 we discuss

the current state of the work and future directions.

2. Importance of Derived Data Documentation

With any dataset, and in particular with neuroimaging data, there are many required initial

steps both to organize and to prepare the data for analysis. With neuroimaging data, there are

a series of image processing steps required before any statistical analyses are performed.

These steps can include image registrations, transformations and filtering operations and are

non-trivial in their selection and implementation (Keator et al., 2009). These pre-processing

steps are common for all neuroimaging data modalities, be it Positron Emission

Tomography (PET) or structural and functional Magnetic Resonance Imaging (MRI). After

pre-processing, in dynamic imaging modalities, voxelwise time-series analysis

methodologies are used to infer task-related changes in the brain on an individual basis. The

choice of statistical models and knowledge of parameters used is imperative for both the

interpretation of the individual subject results and for evaluating the appropriateness of

including subjects in higher level group analyses.

For researchers without significant experience in medical imaging analysis or access to

significant computing resources, working with raw data, can present several challenges.

Initially, images must be acquired from colleagues and/or various repositories. The data is

often poorly documented and may be stored in different data formats. After download, the

end-user needs to perform pre-processing steps which involves significant computational

resources and expertise in using specialized software packages (within which the proper

choice of input parameters is often unclear). Given these issues, many users prefer to work

with derived data, i.e., data to which pre-processing algorithms have already been applied.
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In order for the sharing of derived data to be feasible the steps taken to arrive at the derived

data, its ’provenance’, must be adequately documented.

Data provenance refers to the history of every interaction with a piece of data, beginning at

the time of its acquisition. In the case of neuroimaging data, this includes descriptions of the

imaging hardware and parameters used in the acquisition data (Mackenzie-Graham et al.,

2008). Many imaging hardware vendors, though not all, output data in the Digital Imaging

and Communications in Medicine (DICOM) format, the standard for handling storing and

transmitting medical imaging data. While DICOM captures much of the necessary meta-

data, the location of this information within the header can vary across manufacturers and is

often hidden in ‘private’ sections in the DICOM header. Although DICOM is fairly

complete, it is not well supported in the research community during the data analysis phase.

Standard practice is to convert the original DICOM files into more concise image formats

with primarily spatial meta-data (e.g. NIfTI). Such lossy transformations generally result in

missing meta-data in the derived products. The retention of meta-data and the capture of pre-

processing and analysis provenance has become an important topic in the neuroimaging

field and is currently without any standards. The XML-Based Clinical Experiment Data

Exchange schema (XCEDE) schema (Gadde et al., 2012) is a data exchange schema

designed to facilitate meta-data transfer between databases and within and between software

tools. It was used extensively in FBIRN and has been useful in providing a structure for

capturing meta-data associated with neuroimaging experiments but has fallen short in

providing complex and easily extensible structures for derived data, meta-data, and

provenance. One of the aims of this work is to provide tools and techniques for retaining as

much meta-data and provenance as possible in an extensible framework such that these data

can accompany derived data sets.

3. Components for Structured Derived Data Sharing

The following sections describe the components of our framework for structured derived-

data sharing and documentation. The components include (1) a structured terminology that

provides semantic context for data, (2) a formal data model for neuroimaging with robust

tracking of data provenance, (3) a web service-based application programming interface

(API) that provides a consistent mechanism to access and query the data model, and (4) a

provenance library with neuroimaging extensions that can be used for the extraction of

provenance data by image analysts and imaging software developers.

3.1 Terminology

For the sharing of data to be useful, the data must not only be stored in an organized fashion,

but meta-data that captures contextual information about how the data was acquired,

processed, and analyzed, must also be made available to the prospective user. In addition,

the meta-data must describe the data using terms that are unambiguously defined.

Unambiguous definitions of terms are necessary for researchers in order to produce

meaningful results when combining data from disparate sources. For example, if there is no

definition for the term “TE” or you are not sure that another data set uses the same definition

when it uses “TE”, then it’s not clear that the data from the two sources can be meaningfully

combined. Providing an explicit and web-accessible definition along with data type
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information (e.g., string, integer, etc.) allows data providers to be clear about the data

properties. There are a number of lexicon development efforts underway that are germane to

brain imaging research and the neuroscience community as a whole. Two lexicons that fit

well with our efforts are NeuroLex (Larson et al., 2011) and RadLex (Langlotz, 2006),

which are curated terminology resources for the domains of neuroscience and radiology,

respectively.

One commonly encountered scenario is the existence of data and tool collections that have a

defined schema and/or a fixed set of describing terms, but do not provide definitions for

these terms. Therefore, though these collections make data or tools available along with

associated meta-data, users may not know precisely what is meant by each meta-data term.

For example, a data set may include “nonlinear registration” in its provenance, but with no

additional qualifying information the user will not be able to determine further attributes of

the registration algorithm that could profoundly affect the data. In general, the lack of

standardized terms makes it difficult for query tools to search across collections at different

institutions and for users to precisely know the attributes of the data they discover.

The goal of our terminology work is to provide definitions for terms used at each stage of

the data lifecycle of imaging experiments and to curate the terms within two lexicons

(NeuroLex and RadLex). The source of the terms are 1) XCEDE schema (Gadde et al.,

2012), 2) public DICOM fields (http://ushik.ahrq.gov/, http://medical.nema.org/), 3) private,

vendor-specific DICOM fields in cases in which they are known by the community, 4)

query-related terms from the NITRC database (Buccigrossi et al., 2008), and 5) terms used

in BIRN’s Human Imaging Database (HID) (Ozyurt et al., 2010). Each term is provided

with a definition and then placed within NeuroLex or Radlex by comparing the term with

the lexicon’s existing structure and adding parent terms and definitions where necessary.

We have focused our initial efforts on terms used in MR-based imaging protocols, due to the

existence and wide adoption of the DICOM standard and the increasing availability of data

and tools that use this standard. It is particularly important to define and add terms that

describe data stored in the private fields allowed by the DICOM standard because, although

the private fields are heavily used by vendors, there is no consistent nomenclature among

vendors in use for the private fields. We have chosen terms in use by XCEDE, DICOM,

NITRC, and HID because these sources include the terms that have current or increasing use

in the field. This work moves us closer to the goal of having a set of well-defined

standardized terms that can be used in the sharing of imaging data. Although the

terminology was created in conjunction with the other components presented in sections

3.2–3.4, it stands on its own and can be used independently.

3.2. Neuroimaging Data Model (NI-DM)

The NI-DM is an ongoing effort to develop an extensible model for neuroimaging derived

data with support for rich, queryable provenance and metadata. The initial developments

were based on extending the XCEDE XML schema (Gadde et al., 2012) in a technology

agnostic manner. The XCEDE XML schema is a data-exchange format for encoding general

research data and meta-data. The schema allows for storing information in the context of a

flexible and extensible experiment hierarchy, accommodating arbitrary configurations

Keator et al. Page 8

Neuroimage. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://ushik.ahrq.gov/
http://medical.nema.org/


centered around Project, Subject, Visit, Study, Episode, and Acquisition objects, as well as

limited information about data provenance. By representing many of the common types of

information found in neuroimaging databases, XCEDE can facilitate data integration and act

as a common data model, or mediated schema (Louie et al., 2007), that captures information

from heterogeneous sources in a common XML syntax. In this way, available database

resources can be described using a common language that simplifies data integration and

sharing efforts, much in the same way NIfTI simplified the exchange of imaging data

acquired on different platforms. While the XCEDE schema was appropriate for

documenting neuroimaging datasets collected during the course of an experiment, it is

unsuited for modeling and querying across complex derived data created from many of

today’s workflow systems. Often derived datasets are created from multiple processing

streams forming directed graphs. XCEDE was not designed to support such complex

workflows, supporting limited provenance encoding.

For example, consider the following query:

“Find all Autism subjects between the ages of 8 to 14 who have an intra-cranial

volume greater than 1400cc that were processed using the following pipeline: BET

v2.1 with a fractional intensity threshold = 0.2 with both T1 and T2 images used,

then through FAST v4.1 with the brain output from BET v2.1 for both T1 and T2

images, then through fslmaths to apply the bias correction from FAST to the

original T1 image, and lastly through BET v2.1 using the bias corrected T1 image

from fslmaths.”

Storing this data in XCEDE with the exact provenance would be impossible using the

current schema. Further, facilitating the query, if the data could be encoded, using XPath

would be extremely complicated. First, encoding this data requires support for arbitrary

provenance graphs. In this example, the processing pipeline consists of BET -> FAST ->

fslmaths -> BET. XCEDE provides provenance structures that could encode this linear

workflow. However, the fact that the input to FAST is both the T1 and T2 brain extractions

from BET is problematic. XCEDE only supports tree-structured provenance with a single

parent and having two parents (i.e. BET extracted brains from the T1 and T2 images) to the

FAST processing step is not representable within XCEDE. In addition, we are restricting the

query here to specific derived datasets; namely, those subjects with Autism, within a specific

age range, with a lower bound on the intra-cranial volume, and with a specific parameter in

the processing pipeline. In XCEDE, subject characteristics such as “age” would be stored

with the subject data, whereas derived data results would be stored in a separate analysis

element, linking back to the particular subject, thereby making the query extremely

complicated. In developing the appropriate XPath query to find both data items, one needs

to write complicated XPath statements to traverse different branches of the XML tree. In

contrast, the NI-DM query would be formulated naturally from a workflow graph of the

input data, the processing steps with parameters, and the output data (see Figure 1 and

Sections 3.2.2.1, 3.4).

Our approach with NI-DM is to capture, in a single data model, the different components of

a research activity (e.g., participants, researchers, software, and hardware) and their

relations. With the observation that activities represent transformations of data, it is easy to
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recognize the close link between data and provenance and that these information should be

captured together. Figure 1 provides a high level view of how NI-DM can be used to

explicitly model research activities in the context of provenance, which provides a

computable representation that supports rich query capabilities.

As an additional example, consider the following query: “Find all participants under 18

years of age with a left putamen volume greater than 6,000 mm3 that was calculated using

FreeSurfer.” This query requires access to research activities located in the project

information, workflow information, and derived data information sections of Figure 1. The

project information section includes participant demographics, while workflow information

describes the software and computational activities, and derived data information lists all the

corresponding output statistics. Similarly, we could encode the Autism query above using

the same core NI-DM structures for the subject information (e.g. age, illness, etc), the

workflow information, and the derived data. Because each distinct dimension of the data is

encoded in a self-contained unit and linked accordingly without un-necessary hierarchical

levels imposed by a schema as in XCEDE (or in general XML schema designs), the query

naturally develops from the graph. In all these cases, it is imperative that we, as a

community, identify common data and information elements that can be used to annotate

our resources in an unambiguous and consistent manner, highlighting the need for both

published terminologies and models of common derived data in neuroimaging (sections 2

and 3.4).

One of the primary design goals of XCEDE was to allow for a priori and post hoc

documentation of acquired-data and data-analysis provenance such that future users of the

data would have enough information to understand, at a high level, the data contained within

the XML file. In NI-DM these goals are extended to allow for derived data replication using

precisely the same model components as used to document the acquired data. The NI-DM

components that enable such documentation are:

1. Provenance - capturing a description of a process, such as when data are derived

from other data (e.g. as a result of analysis). Provenance elements are used to store

the step-by-step execution details of a process or processes that generated derived

data.

2. Terminologies - all data elements can be annotated with terms from ontologies

and/or lexicons, such as NeuroLex or RadLex. These links to external information

resources provide the meaning of a given value and act as a mechanism to later

correlate, integrate, and reason over data using semantic web technologies.

3. Other annotations - all core NI-DM components can be annotated, either with free-

form text labeled by an author, pointers to external resources (such as publications),

or user-extensible typed annotations. In order to prevent ambiguous annotations,

each free-form or user-extensible type must include an appropriate terminology

and/or ontology reference, specifying the meaning of the annotation.

3.2.1 Provenance and the W3C PROV Standard—Data provenance is a description

of how an artifact (including digital information) comes into existence. This description is
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dictated by the agent(s), entity(s), and activity(s) that were used to construct some piece of

data or information. The concept of provenance is generic in nature and thus applicable

across a broad range of domains, including neuroimaging.

The Provenance Working Group (w3.org/2011/prov) of the World Wide Web Consortium

(W3C) designed PROV, a suite of specifications, to address the need for a generic approach

to representing provenance information. PROV evolved from several years of theoretical

and applied provenance research initiated by a series of Provenance Challenges that took

place from 2006 to 2010, with fMRI provenance as a driving use-case (Moreau et al., 2008)

(twiki.ipaw.info/bin/view/Challenge/). Out of the Provenance Challenge came the Open

Provenance Model (OPM) (openprovenance.org) which was implemented and evaluated in a

number of production workflow systems (Hull et al., 2006). The lessons learned from

implementing OPM were used to drive the design of PROV and work toward a standard

W3C recommendation for the representation of provenance. Our decision to adopt PROV is

an effort to foster interoperability within and beyond the domain of neuroimaging, which is

justified by the years of applied research in the Provenance Working Group. Further, the

PROV data model is well supported, benefits from numerous extant tools that read and write

according to the standard, and is publically available with copious documentation and

examples. Lastly, the adherence to the field-agnostic PROV data model, allows for the

sharing of data between other PROV efforts in different fields.

Although a complete overview of PROV is outside the scope of this discussion, here we

introduce key concepts needed to understand NI-DM. The suite of PROV specifications

provides an explicit representation of provenance semantics in the PROV Data Model

(PROV-DM) (http://www.w3.org/TR/prov-dm/) document. PROV-DM describes the core

elements and relationships that can be used to represent any process as a directed graph by

linking three structures (entities, activities, and agents) using a specific set of relationships

as shown in Figure 2. PROV-DM is defined in a technology agnostic manner, such that it is

not tied to the limitations of any particular language. This allows for developers

implementing PROV to select from any number of data formats, including XML, JSON, and

RDF. With such a flexible and generic approach to representing provenance, additional

constraints are needed to make the PROV specific for a given domain. PROV-DM provides

extension points for including domain specific semantics, which we discuss in the following

section.

PROV itself is totally agnostic about neuroimaging, but provides simple structures for

describing where and how new things come into existence. All of the simple data structures

that PROV provides are exemplified in the fMRI use case, which relies heavily on

computational workflows that generate derived data using a set of inputs that can then be

used as input to further processing.

3.2.2 Extending PROV-DM with XCEDE Constructs—PROV-DM’s format-

independence, natural representation of workflow, and extensibility motivated the Derived

Data Working Group to initially evaluate harmonizing the model with the existing XCEDE

XML schema. This effort revealed that a PROV-DM compliant description of data

provenance was highly redundant with some information already modeled in XCEDE XML.
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This observation led us to explore the use of PROV-DM extensibility points to model the

XCEDE experiment hierarchy. By modeling the conceptual information contained within

the XCEDE experiment hierarchy and relaxing the constraint on the strict hierarchical

relationship embedded within the XCEDE schema, we found that both the raw and derived

data, along with provenance could be modeled with the same basic set of structures and

relationships. By adding specific extensions to make the core PROV-DM model more

amenable to the neuroimaging experiment, the resulting model, NI-DM, was conceptually

simpler to understand than XCEDE (three core structures and some relationships; Figure 2)

and would solve our difficulties with XCEDE as discussed in section 3.2.

3.2.2.1 Data Integration and Harmonization Example: The section below shows an

example in which we use the structures introduced in sections 3.2 and 3.2.1 to encode

clinical and imaging meta-data (i.e., data and associated provenance information) from two

neuroimaging databases in NI-DM. In our example we use the Human Imaging Database

(Ozyurt et al., 2010) and eXtensible Neuroimaging Archive Toolkit (Marcus et al., 2007) to

highlight the use of provenance, terminologies, and other annotations. The HID and XNAT

management systems used in this example have been successfully integrated in the past

using database mediation technologies (see section 4) therefore making them a particularly

relevant example. The data used in this example reflects real data from the FBIRN data

mediation project (Ashish et al., 2010). The NI-DM graph consistent with this example is

shown in Figure 3, while each step in the example is written using the PROV Notation

syntax developed by the W3C Provenance Working Group (a description of the PROV

Notation can be found at http://www.w3.org/TR/prov-n/). The data described concerns two

perspectives (i.e., HID and XNAT) on a participant’s handedness data obtained by a

neuropsychological test administrator and an anatomical MRI obtained by a radiology

technician. The forms and scanners used to collect this data are heterogeneously represented

in HID and XNAT. The data are encoded with a varying level of semantics that ranges from

free-text to explicitly defined using Unique Resource Identifiers (URIs). Data consumers

(human or machine) can visit the URIs to obtain further information about the instruments

used and determine the exact nature of how the data was obtained. Similar descriptions can

also accompany processed imaging data (for an example see section 3.4).

In this example, we start by looking at the representation of two clinical questionnaires,

which can be thought of as a protocol or plan for acquiring data and not the filled out form

itself. As defined in the PROV-DM (http://www.w3.org/TR/2013/PR-prov-dm-20130312/

#association.plan): “a plan is an entity that represents a set of actions or steps intended by

one or more agents to achieve some goals.” Because the process of collecting a handedness

scale is essentially a set of actions, we use the plan type. We define two entities, one for

each questionnaire from the respective databases:

entity(plan_1,[prov:type='prov:Plan',

prov:type='neurolex:Handedness_Form',

prov:type=’hid:Edinburgh_Handedness’,

prov:label="Subject Handedness Form=",
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nidm:url="http://myform.com/Edinburgh.pdf"])

entity(plan_2,[prov:type='prov:Plan',

prov:type='neurolex:Handedness_Form',

prov:type='xnat:Handedness',

prov:label="Subject Handedness Form",

nidm:url="http://myform.com/Handedness.html"])

These entity definitions contain an identifier (“plan_xx”), followed by five attribute-value

pairs used to qualify the entities: (1) prov:type - which indicates a term defining the entity

type(s), with the first value being of type “prov:Plan” that indicates these entities represent a

set of actions or steps intended by one or more agents to achieve some goals, (2) prov:type -

with a value referencing an external term in NeuroLex, (3) prov:type - a reference to the

field name at the data source, (4) prov:label - which provides a human readable label for

user interfaces, and (5) “nidm:url” - which indicates the URL (Uniform, or universal,

resource locator) where this entity is accessible on the Web. This example demonstrates the

flexibility in extending one of PROV’s core structures by referencing different namespaces

(e.g., hid, neurolex, nidm, prov, xnat etc.) where additional information can be gleaned. The

multiple “prov:type” tags enables elements to be semantically annotated, thus providing a

mechanism to map a given field to common data elements. Next, we define the “activity” of

acquiring the questionnaires, as well as anatomical MRI scans:

Activity for determining handedness in HID:

activity(acquisition_1,

2001-01-01T00:00:00,

2001-01-01T00:15:00,

[prov:type='nidm:acquisition’,

prov:type='neurolex:Handedness’,

prov:type='hid:Edinburgh_Handedness’])

Activity for determining handedness in XNAT:

activity(acquisition_2,

2001-01-01T00:20:00,

2001-01-01T00:30:00,

[prov:type='nidm:acquisition’,

prov:type='neurolex:Handedness’,

prov:type='xnat:Handedness'])

Activity for acquiring a T1 weighted MRI in HID:

activity(acquisition_3,

2001-01-01T00:00:00,

2001-01-01T00:15:00,

[prov:type='nidm:acquisition’,

prov:type='neurolex:T1’,

prov:type='hid:spgr'])

Activity for acquiring a T1 weighted MRI in XNAT:

activity(acquisition_4,
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2001-01-01T00:20:00,

2001-01-01T00:30:00,

[prov:type='nidm:acquisition',

prov:type='neurolex:T1’,

prov:type='xnat:mprage'])

These activity definitions contain an identifier (“acquisition_xx”), start timestamp, end

timestamp, and three “prov:type” attributes. In the above examples, the first “prov:type”

attribute references a NI-DM type derived from the XCEDE experiment hierarchy, while the

second defines the specific type of acquisition (i.e., handedness questionnaire or T1

weighted MRI), and the third highlights the HID and XNAT namespaces for the given

activity. Additional annotations can also be defined. Next, we can define agents:

Agents of type Person from HID:

agent(person_1,

[prov:type='prov:Person',

prov:label=”John Doe”])

agent(person_2,

[prov:type='prov:Person',

prov:label=”Jane Johnson”])

Agents of type Person from XNAT:

agent(person_3,

[prov:type='prov:Person',

prov:label=”Fred Smith”])

agent(person_4,

[prov:type='prov:Person',

prov:label=”John Jones”])

These agent definitions contain an identifier (“person_xx”), and two attribute-value pairs

used to qualify the agents: (1) prov:type - which has the value of “prov:Person”, and (2)

prov:label -which provides a human readable label. These attribute-value pairs list a limited

amount information about an agent. Alternatively, a richer set of attributes could be included

here providing additional context about the agents. Next we look at each of the

“wasAssociatedWith” relations that link activities, agents, and plans:

Associate HID plan with handedness acquisition and plan:

wasAssociatedWith(wAW_1, acquisition_1, person_1, plan_1,

[prov:role='neurolex:NP_Test_Administrator'])

wasAssociatedWith(wAW_2, acquisition_1, person_2, plan_1,

[prov:role='neurolex:Participant'])

Associate XNAT plan with handedness acquisition and plan:

wasAssociatedWith(wAW_3, acquisition_2, person_3, plan_2,

[prov:role='neurolex:NP_Test_Administrator'])
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wasAssociatedWith(wAW_4, acquisition_2, person_4, plan_2,

[prov:role='neurolex:Participant'])

Associate HID anatomical MRI acquisition:

wasAssociatedWith(wAW_1, acquisition_3, person_1, -,

[prov:role='neurolex:Radiology_Technician])

wasAssociatedWith(wAW_2, acquisition_3, person_2, -,

[prov:role='neurolex:Participant'])

Associate XNAT handedness MRI acquisition:

wasAssociatedWith(wAW_3, acquisition_4, person_3, -,

[prov:role='neurolex:Radiology_Technician])

wasAssociatedWith(wAW_4, acquisition_4, person_4, -,

[prov:role='neurolex:Participant'])

The above definitions for the “wasAssociatedWith” relationship contain an identifier

(“wAW_xx”) that is used to relate an activity (“acquisition_xx”) to an agent (“person_xx”)

based on a given (optional) plan (“plan_xx”), and defines a single attribute-value pair to

identify the role of agents in the activity: (1) prov:role - which has a value from NeuroLex

further qualifying the role played by an agent for that specific activity. Each set of

wasAssociatedWith relations indicate different roles for each agent, which enables the

ability to (optionally) denote responsibility for some activity occurring (i.e., not just the

participant data but whom collected the data). Next we will look at the entities that these

activities, agents, and plans produce.

Entities from handedness activities:

entity(value_1,[prov:type='neurolex:Handedness',

prov:type='hid:Edinburgh_Handedness',

prov:label='Handedness',

prov:value='neurolex:right_handed'])

entity(value_2,[prov:type='neurolex:Handedness',

prov:type='xnat:Handedness',

prov:label='Handedness',

prov:value='neurolex:right_handed'])

Entities from T1 acquisition activities:

entity(value_3,[prov:type='neurolex:T1,

prov:type='hid:spgr',

prov:label='T1',

prov:value='http://fbirnbdr.nbirn.net/T1.nii.gz'])

entity(value_4,[prov:type='neurolex:Repetition_Time,

prov:type='hid:tr',

prov:label='Repetition Time',

prov:value='2.0'])

entity(value_5,[prov:type='neurolex:T1,

prov:type='xnat:mprage,

prov:label='T1',
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prov:value='http://central.xnat.org/T1.nii.gz'])

entity(value_6,[prov:type='neurolex:Repetition_Time,

prov:type='xnat:tr',

prov:label='Repetition Time',

prov:value='2.0'])

These entity definitions represent the result of the above activities of acquiring data from a

Handedness questionnaire. Each entity has an identifier (value_xx or location_xx) and three

attribute-value pairs used to qualify the entities: (1) prov:type - which identifies a term in

NeuroLex that database specific terms can be mapped to, (2) prov:type - which identifies a

source specific term (i.e., HID or XNAT), (3) prov:label - a human readable label, and (4)

prov:value - which contains the actual value acquired. The handedness section only includes

a single value from each neuroimaging database, while the T1 acquisition has two values for

each database. Next we define a collection that is used to group together related entities, like

those from the “T1 Acquisition”:

entity(collection_1,[prov:type='prov:Collection',

prov:type='neurolex:T1,

prov:type='hid:spgr',

prov:label="T1 Parameter Collection"])

entity(collection_2,[prov:type='prov:Collection',

prov:type='neurolex:T1,

prov:type='xnat:mprage',

prov:label="T1 Parameter Collection"])

This entity definition represents a collection of entities from a “T1 Acquisition”, with an

identifier (i.e., collection_1, collection_2) and four attribute-value pairs, (1)

prov:type=’prov:Collection’ -which identifies this entity as a Collection type, (2)

prov:type=’neurolex:T1’ - which identifies this entity as a collection of entities related to the

“neurolex:T1”, (3) prov:type=’hid:spgr’ or prov:type=’xnat:mprage’ - which defines , (4)

prov:label - which provides a human readable label. Next we can group together

“neurolex:T1” entities using the hadMember relationship:

Collection of HID T1 Acquisition Meta-data:

hadMember(collection_1, value_3)

hadMember(collection_1, value_4)

Collection of XNAT T1 Acquisition Meta-data:

hadMember(collection_2, value_5)

hadMember(collection_2, value_6)

The hadMember definitions connect the collections to each of their member entities using

the entity identifiers (i.e., value_xx). We close this set of examples with the

wasGeneratedBy relationship:
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Handedness activities and resulting entities:

wasGeneratedBy(value_1, acquisition_1, 2001-01-01T00:30:00)

wasGeneratedBy(value_2, acquisition_2, 2001-01-01T00:30:00)

T1 Acquisition activities and resulting entities:

wasGeneratedBy(collection_1, acquisition_3, 2001-01-01T00:15:00)

wasGeneratedBy(collection_2, acquisition_4, 2001-01-01T00:15:00)

The wasGeneratedBy definitions above link both collections of values (i.e., collection_1 and

collection_2) or specific values (i.e., value_1, value_2) to the relevant activities and the time

that they were completed. The above example demonstrates how NI-DM represents core

structures from the XCEDE experimental hierarchy (Subject, Acquisition) within the context

of provenance (figure 2). Further, it demonstrates the flexibility of documenting provenance

with NI-DM while still providing semantically meaningful annotations.

3.3 Web Services

While individual neuroscience databases provide mechanisms to query and download

information within a given framework (e.g., Allen Institute, COINS, HID, IDA, LORIS,

NIMS, XNAT), there is no standardized way to programmatically access information stored

in these heterogeneous systems. Developing a lexicon (3.1) and data model (3.2) focused on

neuroimaging provides the standards needed to create a common data exchange layer. By

mapping a core set of information from individual neuroimaging databases into this

framework, database providers can publish information about their resources in a common

way. A web service application programming interface (API) to access and query shared

neuroimaging data will enable the development of interoperable client applications capable

of consuming resources available across disparate brain imaging data management systems.

To meet this end, we are developing an API for providing uniform access to neuroimaging

databases. Conceptually, the API is a service for accessing the NI-DM core structures: (1)

activity (e.g., acquisition), (2) agent (e.g., subject), (3) entity (e.g. resources), and their

relationships (e.g., subject wasAssociatedWith acquisition). Neuroimaging databases

conforming to the API implement a mapping of their local resources to NI-DM and provide

a mechanism to request resources. The API is not tied to a specific language or technology,

but for web-accessible databases, the Representational State Transfer (REST) architecture is

a natural fit. For example, a REST implementation of the API responds to a request for list

of subjects by returning an NI-DM compliant representation in an available format (e.g.,

XML, JSON, and RDF).

The goal is to increase the ease of finding data relevant to a given project. This necessitates

querying data in a scientifically relevant way. For example, currently it is not possible to

query the BIRN HID, XNAT Central, and ADNI-LONI databases for all T1-weighted data

sets, from healthy males between the ages of 18–38, processed with Freesurfer version 5.0.0.

To facilitate such a query each data repository would either implement the NI-DM API or a

mapping from an existing, custom API to the NI-DM API. Queries could then be issued

programmatically (assuming appropriate privileges to query) or through a mediator interface
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to each of the data repositories. The resulting data would be returned in an available format

(e.g., XML, JSON, RDF, etc.) consistent with the NI-DM specifications. Because the data

model is un-ambiguous and has support for rich meta-data and provenance, the results of the

query can be delivered to the user in a consistent, structured, and well-documented way.

We acknowledge that the implementation of the API requires resources from the data

providers. Currently, each data provider is either without a web service layer or

implementing his or her own APIs because the domain is without a standard. The benefits of

a common API are undeniable but require a published, well-documented standard that has

sufficient flexibility and is supported by both data providers and tool developers. Given the

structure of the Derived Data Working Group and the broad exposure through the INCF and

BIRN groups, we have been able to gain traction in promoting this goal (see section 3.4).

Discussions with the developers of many neuroimaging database and tool developers are

helping to refine this specification, which will speed up the first implementation of the API.

Our goal is that in the near future, existing databases and those under development will

implement this protocol and expose existing and newly acquired datasets in a common data

access framework.

3.4 Provenance Library and Integration with Neuroimaging Tools

To facilitate broad use of the standards described in sections 3.1–3.3, both libraries for

programmers and integration with popular neuroimaging analysis tools are necessary. The

INCF's working group on data sharing and the Derived Data Working Group has jointly

developed a C prototype library enabling easier construction of PROV-DM compatible

XML formatted provenance representations for neuroimaging applications. The library has

bindings to Python, JAVA, and Matlab and is freely available on the GitHub repository

(github.com/INCF/ProvenanceLibrary). Based on feedback from our community of

collaborators and to maximize version synchronization with the core W3C PROV-DM, we

have stopped developing the C library and focused our efforts on contributing to and using

the JAVA ProvToolbox (github.com/lucmoreau/ProvToolbox) and the Prov Python library

(pypi.python.org/pypi/prov), being developed by the W3C. Our contributions reflect

neuroimaging domain specific extensions to the core PROV-DM model. The basic

documentation for using these libraries are publically available (openprovenance.org/java/

site/prov/apidocs/) and there are also examples for the use of these libraries within the

domain of brain imaging available (nidm.nidash.org).

To incorporate support for provenance into popular neuroimaging analysis tools, the

working group has begun developing scripts for SPM (www.fil.ion.ucl.ac.uk/spm/), FSL

(www.fmrib.ox.ac.uk/fsl/), and FreeSurfer (surfer.nmr.mgh.harvard.edu/) image analysis

software packages. For the SPM package, version 8, we have developed a tool that extracts

processing steps and constructs an XML provenance file during the execution of the SPM

batch processing software.

The SPM8 batch processing software allows the user to create a series of analysis

procedures once and use them repeatedly. The graph in Figure 3, for example, was created

from the provenance XML generated by the extraction tool for SPM. Entities are

represented by boxes and activities are represented by ellipses. The relationship “Used” and
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“wasGeneratedBy” between the entities and activities are encoded with edge-labels

(arrows). In the provenance XML file, the activity (ellipse in Figure 3) is annotated with

start and end times, a label, and a node id:

<prov:activity prov:id="a_1">

<prov:startTime>07-Jun-2012 14:06:39</prov:startTime>

<prov:endTime>07-Jun-2012 14:09:00</prov:endTime>

<prov:label>matlabbatch{2}.spm.temporal.st</prov:label>

</prov:activity>

The entities are encoded in separate entries in the XML file, the entry for the parameter

entity “tr” to the slice timing correction activity is given by:

<prov:entity prov:id="e_30">

<prov:type xsi:type="xsd:string">parameter</prov:type>

<ni:name xsi:type="xsd:string">par: tr</ni:name>

<ni:value xsi:type="xsd:string">2</ni:value>

</prov:entity>

Lastly, the relationship between the activity and the entity are encoded in an XML block

whose provenance type is the relationship identifier:

<prov:used prov:id="u_20">

<prov:activity prov:ref="a_1"/>

<prov:entity prov:ref="e_30"/>

</prov:used>

Similar outputs can be generated for many SPM processing streams, fully documenting the

parameters to the process (activity) along with the inputs and outputs. With such rich

provenance information, reconstructing and re-running the pipeline becomes a simple

activity. We envision developing additional tools to create and execute an SPM batch

process directly from the provenance XML files thus enabling researchers to both store

complete provenance records in a compressed format and re-execute pipelines when needed.

For the FSL and Freesurfer packages the approach is very similar. Whenever an analysis is

performed, the FSL/Freesurfer software automatically creates a log file. Our approach is to

use this log file as input to our provenance extraction tool. This log file is parsed and the

XML is created. The end result, regardless of whether SPM, Freesurfer or FSL was used, is

an XML file storing the provenance information from either analysis in the same format.

To provide native support within the SPM, FSL, and FreeSurfer packages for provenance,

the working group has reached out to the developers of each software package. The FSL

group has tested the prototype provenance library to write XML meta-data directly to the
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NIfTI image headers in the extension area as images are moved through an FSL processing

pipeline. The SPM and FreeSurfer developers have further volunteered to evaluate

incorporating provenance within their future releases, acknowledging the need for such

meta-data. Members from the Derived Data Working Group continue dialog with each

development team to both encourage a unified provenance representation and to gather

requirements and feedback on both the provenance library and the components discussed in

sections 3.1–3.3.

Because NI-DM representations can be easily extended, it is important to document minimal

useful sets of attributes for commonly exchanged data. The Derived Data Working Group is

actively developing these “object models” for specific neuroimaging derived data types (e.g.

SPM contrast results, SPM batch workflows, FreeSurfer statistics). The object models are

iteratively tested and refined based on community feedback. The object models are

published on the NI-DM blog (nidm.nidash.org) and available for community input and use.

4. Simplified Database Mediation

Information mediation (Adali et al., 1996; Arens et al., 1993; Draper et al., 2001; Florescu et

al., 1996; Hammer et al., 1997; Lenzerini, 2002; Thakkar et al., 2007; Ullman, 2000) is an

established data integration technology that can be used to provide integrated access to data

in multiple, distributed, and possibly heterogeneous repositories. Developing a new

information integration application using a mediator is a reasonably involved process but

can be summarized in four main steps: 1) requirements gathering, 2) data modeling, 3) data

source wrapping, and 4) final data source integration.

In requirements gathering the application developer(s) meet with domain experts to obtain

an understanding of the need for data integration in their domain, the data sources they

require integrated access over, and the kinds of capabilities they would expect from

integrated data access. After requirements gathering, the application developer acquires an

understanding of the particular data sources to be accessed. This involves understanding the

type, interfaces (if any), content, and access information for each data source to be

integrated. If the data sources are databases then the application developer must understand

the database schema, how the data is represented in the schema, and how to query the

underlying representation. To be useful for mediation the data sources must be “wrapped”.

This involves configuring or developing “wrappers”, a piece of software that provides a

translation from/to the query language of the mediator and a data source, which provides

structured querying or an abstraction over a data source that does not provide structured

querying. For example, if the source is a relational database, a wrapper consists of software

to translate the syntax of the mediator application to an SQL query on the underlying

database schema. The last step is data source integration. Here, the data source specific

representations are mapped to an integrated data model using a set of integration rules

created by the application developer in the course of understanding the individual data

sources. Once these steps are complete, a mediator query interface can be created that

provides the user with an intuitive, integrated way of querying and retrieving data from

multiple resources.
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The FBIRN data mediation project (Ashish et al., 2010) where we successfully achieved

mediated integrated access to three disparate data sources, provides a direct context for

considering the proposed NI-DM and API directions for neuro-informatics. In this project

we integrated 3 data sources (i) The HID database, (ii) XNAT, and at a later stage (iii)

SNPLims – a database of genetics data. XCEDE was used as the basis for the common

“global” model in this application. Based on our experience we highlighted in Ashish et al.,

the steps of data source modeling, wrapping, and integration can be fairly time consuming

for mediation application developers.

Going forward, the common model and API components presented in sections 3.1–3.3 can

be leveraged to dramatically decrease the modeling, wrapping, and integration steps of

mediation – both in terms of effort as well as the level of expertise required. If the data

sources to be mediated implement the web service API discussed in section 3.3, the

mediator could query the data source using the functions and semantics defined in the API

without any additional work on the part of mediation application developers. All data

sources that implement the webservices API would be essentially queryable “for free”

(given appropriate access permissions, security concerns, etc.), thereby eliminating the need

for wrapper configuration or development. A mediation application developer, with the task

to mediate between data sources that implement the API, would need to understand the

specific requirements of the mediation activity, set up a mediator web interface that

implements particular web service API function calls to the underlying data sources, and

maps those responses back to the internal integrated representation. Because the responses

returned from the API function calls are unambiguous and semantically documented

according to the NI-DM model, it would dramatically decrease the time needed for source

modeling in data mediation. Next, because the webservices API and NI-DM are integrated

with the terminology in section 3.1, the mediator could provide semantic annotations

consistent with the particular web service queries that are being supported by the

information integration task. The combination of the common data model i.e., NI-DM and a

congruent web service API for each source, essentially defines the data source model that

would otherwise have to be developed.

Even with a common data model and standard APIs, effort is required to map each source to

the common model. Tools can be provided to the user to alleviate some of the burden. The

availability and employment of tools to assist data source providers in mapping their data to

the common model has seen significant success in other clinical and medical data sharing

initiatives. For example, the National Database for Autism Research (NDAR) has been

successfully deployed using data from multiple organizations and repositories, mapping to a

common data model. The Data Coordinating Center (DCC) in NDAR provides standard

“templates”, in the form of Excel spreadsheets, to data providers in which to provide their

(autism) data. There are also format conversion tools provided to convert data elements such

as data column names from the data source to the data elements in the common or

“standard” data elements used by the DCC. Using such tools where appropriate and

developing additional tools to aid researchers in marking up their data is an ongoing effort of

the Derived Data Working Group.
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5. Using Meta-data to Create Machine-readable Assertions

The development of standardized neuroimaging meta-data formats facilitates more than just

data sharing: it could enable knowledge engineering technology to represent and share

statistical findings from experiments in a standardized way. A usable meta-data standard can

aid consumers of public data in properly analyzing and integrating the data with other

datasets and studies. Currently however, when those analyses are published in a manuscript,

all of the detailed provenance information is lost. The manuscript is, in a sense, a series of

assertions; the experiment was performed, the data were analyzed, and the results support

the concluding assertions. With proper meta-data being generated and included at each step

along the way, the representation of these assertions could also be standardized into

machine-readable and computable formats which could themselves become individual

elements that form fragments of knowledge. One proposed format for these fragments is

‘nanopublications’ (Groth et al., 2010). This technology potentially allows for the

combination of experimental assertions across many studies for automated reasoning,

chaining hypotheses to results across neuroimaging studies, and potentially across scientific

domains.

The standards being developed by the Derived Data Working Group described in sections

3.1–3.3 are being linked to other terminologies and ontologies where possible, to facilitate

this larger vision. In particular (as described in a companion paper in this special issue), the

data collection and analysis terms serve as variables in the Ontology of Experimental

Variables and Values (OoEVV; www.isi.edu/projects/ooevv/). Thus they can be used to

represent individual experimental findings generated by fMRI experiments as a form of

nanopublication as provided by the Knowledge Engineering from Experimental Design

(KEfED) framework, so that explicit assertions regarding cognitive processes, fMRI

experiments, and the resulting brain activation patterns could be made available as

computationally readable data (Russ et al. 2011). This is a first step toward formulating

cognitive neuroscience in a computable system.

6. Conclusions

In this paper we have described our vision, the framework and its capabilities, along with

initial progress towards the tools needed for structured sharing of raw and derived

neuroimaging data across existing data resources. The sharing of meta- and provenance data

is important when sharing raw imaging data, but becomes infinitely more complex and

critically important when sharing derived data; even when such data is generated by highly

standardized image processing pipelines (Gronenschild et al., 2012).

The practical challenges one faces when pooling data across neuroimaging resources include

differences in data representations between databases, differences in terminologies, lack of

provenance data and/or lack of uniformly stored provenance data, and the inability to query

meta-data across imaging resources without significant and time-consuming data mediation

efforts. Our Derived Data Working Group, supported by both the INCF and BIRN groups, is

developing several practical tools to address these challenges along with libraries that take

advantage of the primary deliverables. These practical tools include: a structured
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terminology that provides semantic context to data, a formal data model for neuroimaging

with robust tracking of data provenance (NI-DM), a web-service-based application

programming interface (API) that provides a consistent mechanism to access and query the

data model, a provenance library that can be used for the extraction of provenance data by

image analysts and imaging software developers, as well as some scripts to extract

provenance data from common analysis pipelines. In addition, we are reaching out to

software developers with regard to having the libraries and unified provenance generation

incorporated as part of existing software tools.

Similar to the way in which the exchange of binary imaging data between different software

tools has been eased by the adoption of a common format, (e.g., NIfTI), our vision is that the

exchange of imaging meta-data between neuroimaging databases and other query

mechanisms (e.g., pipeline tools), will benefit from an agreed-upon unified format for meta-

data exchange along with an associated query interface and terminology.

The NI-DM and webservice API specification documents along with ongoing working

examples produced by the Derived Data Working Group are freely available via the public

Wiki: wiki.birncommunity.org/display/FBIRN/Derived+Data+Working+Group. The work

presented in this manuscript does not cover data access in terms of security. This is a topic

that is addressed by the Security Working Group of the BIRN Coordinating Center

(www.birncommunity.org) which provides services with regard to credential management,

group policy management, and user registration and certificate authority. We continue to

gather and include as much community input and support as possible as none of the meta-

data sharing tools in development will be of use if they are not accepted by and do not serve

the wider neuroimaging community.

In addition to accelerating scientific discovery by improving the ability to share

neuroimaging data to test new hypotheses, the ability to share links to neuroimaging data,

meta-data, and complete provenance data along with research publications is also likely to

accelerate scientific discovery through earlier detection of non-replicable research findings;

a topic that has recently received considerable attention (Begley and Ellis, 2012 ; Yong,

2012). Such capabilities could accelerate scientific discovery by faster falsification of

incorrect hypotheses based on the non-replicability of research findings. Moreover,

comprehensive data sharing will also provide a plethora of pilot data that other researchers

can examine before deciding on their next research direction. This will likely result in more

careful selection of research directions and a more efficient use of research funds. The

ability to share data, meta-data, and provenance data will go a long way towards raising the

standards for and improved rigor in neuroimaging research in that it provides a system for a

“stronger more transparent discovery process” (Begley and Ellis, 2012). In general, but in

particular with regard to acceleration of discoveries in the area of brain disorder research

(e.g., 1mind4research.org), to which neuroimaging is most likely to make a large

contribution, we should spend the least amount of time moving in the wrong direction while

chasing discoveries.

In conclusion, we believe that the framework and set of tools outlined in this manuscript

have great potential for solving many of the practical issues the neuroimaging community
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faces when sharing raw and derived neuroimaging data across the various existing database

systems for the purpose of accelerating scientific discovery.
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Highlights

• We report the work of the Derived Data Working Group, a joint effort of INCF

and BIRN

• We describe key components for integrated access to raw and derived

neuroimaging data

• The components include:

◦ Structured terminology that provides semantic context to data

◦ Formal data model for neuroimaging with robust tracking of data

provenance

◦ Web-service API providing a consistent mechanism to access and

query the data model
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Figure 1.
NI-DM can bridge information dimensions across Project, Workflow, and Derived Data.

The “nidm” and “fs” namespaces are used to reference terms or annotations specific to NI-

DM or the FreeSurfer analysis package, respectively. Explicit relationships link components

together blurring the line between project information and processing workflows.
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Figure 2.
PROV-DM Core Structures are 1) entity - a physical, digital, conceptual, or other kind of

thing with some fixed aspects, and can be real or imaginary., 2) activity - something that

occurs over a period of time and acts upon or with entities; it may include consuming,

processing, transforming, modifying, relocating, using, or generating entities., 3) agent -

something that bears some form of responsibility for an activity taking place, for the

existence of an entity, or for another agent's activity, and the relationships a) wasDerivedBy,

b) used, c) wasGeneratedBy, d) wasInformedBy, e) wasAssociatedWith, f)

actedOnBehalfOf, g) wasAttributedTo. (figure adopted from http://www.w3.org/TR/prov-

dm/ ).
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Figure 3.
Provenance graph of the NI-DM example in section 3.2.2.1. Entities are represented by

rectangles and activities as ellipses. Associations are indicated with edge labels. Text has

been color coded to indicate which data source (hid, xnat) the item is associated with.
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Figure 4.
Provenance graph of a slice timing correction process on functional MRI data using the

batch processing capabilities of SPM8. The provenance XML file is created using automated

scripts run in Matlab under the SPM8 software. The graph is created to visualize the

relationships between input entities and parameters entities (black edges) and the output

entities (blue edges) with the activity entity represented by an ellipse.
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