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Age-Related Differences in the Dynamic Architecture
of Intrinsic Networks

Tara M. Madhyastha1 and Thomas J. Grabowski1,2

Abstract

Correlations among low-frequency spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal
reflect the connectivity of intrinsic large-scale networks in the brain. These correlations have typically been char-
acterized over the entire timecourse (mean connectivity), but the mean correlations between regions vary dynam-
ically. By focusing on the linear relationship between activity in network nodes within the default mode network
(DMN), dorsal attention network (DAN), and fronto-parietal task control network (FPTC) captured by their inter-
correlations, we demonstrate that this dynamic pattern of fluctuations reveals a detailed substructure, that this
substructure is robust across individuals, and that the expression of specific factors is correlated with age. To
do this, we conducted a chained P-technique factor analysis of the correlations in nonoverlapping temporal win-
dows across N = 145 normal aging subjects (age 56–89). The expression of factors within the DMN, FPTC, and
DAN was highly correlated with age: Decreased intercorrelations within nodes in each factor were correlated
with advanced age. Although these findings converge with those from stationary analysis, the ability to quan-
tify age-related changes in the coherence of fluctuating connectivity may yield more insights into age-related
cognitive decline.
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Introduction

H igher function (language, attention, consciousness,
etc.) is neither the result of activity that is strictly local-

ized in specific neural structures, nor the result of the brain as
a whole, but it emerges from the dynamics of distributed cor-
tical regions, with each relatively specialized for one or more
aspects of the function. The composition of such systems is
fundamentally enabled by patterns of anatomical connectiv-
ity, but it shifts dynamically and individual cortical fields are
involved in multiple distributed systems (Chang and Glover,
2010; Smith et al., 2012). Thus, the constructs with which we
describe higher function cannot be assigned directly to ana-
tomic structures in the brain. It is at the systems level that anat-
omy, physiology, and function have a direct correspondence,
and it is at this level that the phenomena of neuropsychology
and cognitive psychology can presumably be explained.

A key insight of recent studies is that spontaneous brain ac-
tivity (i.e., in absence of task engagement) measured using
functional magnetic resonance imaging (fMRI) can be used
to map large-scale systems. The connectivity of cortical fields
is reflected through mean correlations in the low-frequency
oscillations in blood oxygen level dependent (BOLD) MRI

time courses of the regions, which are conveniently obtained
during a resting-state scan. Connectivity maps may be
obtained by correlating the timecourse in a region of interest
with other voxels, or by using the data-driven independent
components analysis (ICA) approach (Beckmann and Smith,
2004; Beckmann et al., 2005). The strength of correlation be-
tween regions is thought to be related to the strength and effi-
ciency of communication. Evidence from a variety of subject
populations supports this: A disruption of ‘‘normal’’ patterns
of mean correlations obtained during functional scans (mean
connectivity) has been related to aging (Andrews-Hanna
et al., 2007; Grady et al., 2009), Alzheimer’s disease (Grady
et al., 2001; Greicius et al., 2004; Wang et al., 2007), and a
variety of neuropsychiatric disorders (Hutchison et al., 2013).
Functional connectivity is a new imaging tool that provi-
des unique information about systems-level brain function
which is not obtainable through structural connectivity or
metabolic imaging.

Although intrinsic networks can be detected reliably in
groups and in healthy individuals (Damoiseaux et al., 2006),
mean network activity is only a summary of a more compli-
cated pattern of dynamic network configuration (Smith
et al., 2012) that is not yet well characterized or understood.
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The strength of functional connections varies not only be-
tween scans but also in the order of seconds to minutes
(Allen et al., 2012; Hutchison et al., 2012).

The importance of dynamic intrinsic brain activity is only
recently being appreciated through correlation with behav-
ior. For example, Fox and Raichle (2007) demonstrate that
intrinsic activity in the sensorimotor cortex is related to the
force of finger tapping. It is widely supposed that dynamic
aspects of connectivity reflect physiologic shifts in network
configuration. For example, Bassett et al. (2011) demonstrate
that flexibility of network nodes while learning a motor task
in one session is predictive of learning in a subsequent ses-
sion. A competitive relationship between a task-positive
and a task-negative brain network is related to intraindivid-
ual variability (Kelly et al., 2008). The ability of the default
mode network (DMN) to dynamically reconfigure itself to
facilitate integration with an attentional network is related
to recollection performance (Fornito et al., 2012).

Network dynamics will vary not only with task modulation,
but also with the underlying structural network, regional cor-
tical noise (e.g., caused by alterations in dopaminergic tone,
age-related sensory decline, and vascular insufficiency), and
delay (caused by white matter microstructure damage and

demyelinization). Figure 1, which we will describe more com-
pletely in our results, shows the pattern of time-varying pair-
wise correlations within a subset of nodes in the DMN for a
middle-aged subject and an older subject. The mean correla-
tion for the middle-aged subject, shown by the heavy blue
line, is obviously higher than that of the older subject, and
any analysis of the mean connectivity throughout the scan
would detect such reliable age-related differences. Dynamic
fluctuations of connectivity and mean measures of connectiv-
ity obtained from longer intervals are clearly highly correlated
and closely related. However, we suggest that the more strik-
ing feature of this figure is that the connectivity among the
nodes for the middle-aged subject fluctuates more tightly
than the pattern of connectivity among the nodes for the
older subject. This is an abstraction that describes the chang-
ing behavior of systems and subsystems through time. It may
be a more useful abstraction for quantifying the effect of spe-
cific age-related processes.

Selective reduction of inter-correlations within reproduc-
ible subgraphs of intrinsic networks may be considered a re-
duction in synchronization that occurs with advanced age,
due to the age-related processes described earlier. Some of
this desynchronization may be related to neuronal activity:

FIG. 1. Time-varying pairwise correlations among medial prefrontal cortex (mPFC), left angular gyrus (LAG), right an-
gular gyrus (RAG), and posterior cingulate cortex (PCC) [default mode network (DMN) factor 3] at rest in sliding window of
40 sec (slide width = 2 sec). Bold line is mean of correlations. At the bottom is an older subject (88 years). On top is a middle-
aged subject (64 years). The older subject has more dynamic variability among correlations in this factor of the DMN.
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Evidence from computational modeling and electrocorticog-
raphy suggests that the oscillations observable as mean cor-
relations in the BOLD signal and low-frequency resting-state
networks stem from neuronal oscillations in the gamma band
in structurally connected cortical fields (Cabral et al., 2011;
Deco et al., 2009; Grady et al., 2001; He et al., 2008; Ko
et al., 2011). It has also been demonstrated that although rest-
ing-state networks are dominated by low frequencies in the
raw BOLD signal, they are actually broadband processes
which show temporal coherence over a wide frequency spec-
trum (Niazy et al., 2011), suggesting that higher frequencies
visible within smaller timeframes may contribute to resting-
state connectivity.

Analyzing time-varying correlations, as opposed to the
level of signal, restricts analysis to the linear relationship be-
tween nodes, and might be more sensitive to changes in the
relationship between specific brain regions. This approach
has been used to develop a data-driven method for determin-
ing ‘‘eigenconnectivities’’ using principal components anal-
ysis (PCA) of fluctuating correlations in the brain, showing
that specific eigenconnectivities differ in patients with mul-
tiple sclerosis (Leonardi et al., 2013).

Our hypothesis is that there should be a similarity in time-
varying correlations within subsets of network nodes across
individuals, which we call ‘‘structured variability.’’ This has
not previously been shown. If structured variability within
intrinsic networks reflects an aspect of normal systems-
level physiology, we should expect that age-related desyn-
chronization would be reflected in an alteration of the
structured variability. Older subjects should exhibit greater
desynchronization, or ‘‘unstructured variability,’’ within
specific subgroups of these nodes (which are more vul-
nerable to age, or that have connections which are more
vulnerable to age).

Methods

Participants

Data were obtained from participants in the Seattle Longi-
tudinal Study (SLS), a cohort-sequential longitudinal study
of the relationship between aging, health, cognition, and life-
style (Schaie, 2005). The SLS members at recruitment repre-
sent a stratified-by-age and gender random sample of the
membership of the Group Health Cooperative of Puget
Sound, a large health maintenance organization in western
Washington State. All subjects are cognitively normal. The
group is ethnically homogenous: 97.2% of this sample is
Caucasian, reflecting the demographics of Seattle at the
time of recruitment. Cognitive and behavioral assessments
have been conducted every 7 years starting in 1956 on a
mixed age cohort (age 20–80) with follow-up and recruit-
ment of new subjects every 7 years (1956 through 2005).
This study has been approved by the Group Health Cooper-
ative of Puget Sound Institutional Review Board.

The sample included 145 participants, Mage = 69 (age
range 56–89); Nmales = 64, Nfemales = 81 in the SLS at time
of the third MRI (Table 1). The SLS neuroimaging group
was selected from a larger group of SLS participants
(n = 572) who (i) had two to three assessments of episodic
memory over a 14-year interval during midlife (ages ranged
from 43 to 63 years); (ii) participated in the 2005 SLS data
collection; and (iii) if in old age, had at least one assessment

in old age ( > 64 years). Subjects were excluded for condi-
tions that would contraindicate scanning (e.g., metal im-
plants, pacemakers, and claustrophobia). Structural and
functional image data were obtained on all subjects in
2010–2011. Table 1 shows the demographic information
for the sample.

MRI acquisition and processing

MRI was performed on a Philips 3.0 T Achieva scanner
using an 8-channel head coil. A high-resolution MPRAGE
was obtained using the following parameters: inversion
time (TI) = 850 msec, turbo-field echo (TFE) factor = 214,
repetition time (TR) = 7 msec, echo time (TE) = 3.20 msec,
flip angle = 8�, shot interval = 3000 msec, acquisition matrix
size 224 · 214, reconstructed matrix size 256 · 256 (field of
view = 220 · 220 mm), 160 sagittal slices, and a slice thick-
ness of 1 mm. Functional images were obtained using the fol-
lowing parameters: 43 axial slices, slice thickness 3.5 mm,
repeat time (TR) 2000 msec, TE = 21 msec, acquisition
matrix = 64 · 64, voxel size = 3.50 mm isotropic, FOV =
220 · 220 mm, and volumes = 225 (7.5 min). A B0 field
map was acquired immediately after functional imaging.

All subjects underwent a resting-state scan, for which they
were instructed to keep their eyes open and focus on a visual
fixation cross. Cardiac and respiratory processes were mon-
itored using the scanner’s built-in photoplethysmograph
that was placed on the index finger of the right hand and a
pneumatic belt which was strapped around the upper abdo-
men. Data were sampled at 50 Hz, and files containing car-
diac and respiratory waveform data were generated for
each scan.

Functional images were processed using software from
FSL ( Jenkinson et al., 2011), FreeSurfer (Fischl and Dale,
2000), and AFNI (Cox, 1996). Data were corrected for mag-
netic field inhomogenities using the B0 map, and corrected
for motion using FSL MCFLIRT ( Jenkinson et al., 2002).
Mean relative and absolute displacement were calculated
for each subject. The resting-state pipeline regressed out
noise from cardiac and respiratory signals (Glover et al.,
2000), removed spikes using AFNI, performed slice timing
correction using FSL, and regressed out time series motion
parameters and the mean signal for eroded (1 mm in 3D)
masks of the lateral ventricles and white matter (derived
from FreeSurfer). Three-dimensional spatial smoothing
was performed using a Gaussian kernel with a full-width
half maximum of sigma = 3 mm. Data were not normalized
as a part of the pipeline. We did not perform bandpass filter-
ing to avoid artificially inflating correlations or inducing
structure that was not actually present in the data, and be-
cause resting-state networks exhibit different levels of
phase synchrony at different frequencies (Handwerker
et al., 2012; Niazy et al., 2011).

Table 1. Demographics of Sample

N 145
Age at first scan 69 (7.8)
Sex (number males) 64 (44%)
Education (years) 16 (2.5)

SD or percentage is indicated in parentheses.
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Statistical analysis

We selected Montreal Neurological Institute (MNI) coor-
dinates that have been identified as nodes in the DMN, dorsal
attention network (DAN), and fronto-parietal task control
network (FPTC), republished by Power et al. (2011) and
derived from Raichle (2001) and Dosenbach et al. (2007)
(Supplementary Table S1; Supplementary Data are available
online at www.liebertpub.com/brain). For each coordinate,
we created a 10-mm diameter mask in standard space and
transformed that to subjects’ native space to calculate
mean subject-specific timecourses for each ROI.

Dynamic measures. Correlations change dynamically
throughout the timecourse. We calculated pairwise correla-
tions between nodes in each network in nonoverlapping win-
dows of lengths 10 frames, 20 frames, 40 frames, and the
entire scan (20, 40, 80, and 450 sec). There is no physiological
motivation for these window lengths; the choice of window
length is based on the desire to obtain reliable correlations
while quantifying the individual variability throughout the
scan. Earlier work has suggested that window lengths of
*30 sec satisfy these criteria (Jones et al., 2012). The use of
a single window per scan does not permit modeling of any in-
dividual variability throughout the scan, but enables us to test
the stability of the structure obtained in smaller windows.
These correlations were transformed by Fisher’s z-transform
to convert them to a normally distributed variable for subse-
quent factor analysis using Revolution R Enterprise (www
.revolutionanalytics.com). We used all complete windows
starting from the beginning of the scan. The first five
dummy volumes in our fMRI acquisition are automatically
discarded to achieve steady-state imaging. For each 7.5 min
scan, this yielded 11 data points per subject for 40 sec nonover-
lapping windows (22 data points per subject using windows of
10 frames, 5 data points per subject using windows of 40
frames, and 1 data point per subject using the entire scan).

Factor analysis. Factor analysis is used to identify the
structure underlying groups of correlated variables and to es-
timate scores to measure latent factors. Factor analysis is
conceptually similar to PCA except that the factor analysis
model does not extract all the variance among the observed
variables; it extracts only the variance which is shared by
the observed variables and is due to the common factors
(Gorsuch, 1983). We use factor analysis, because we hypoth-
esize a latent structure to fluctuating correlations, which we
are treating as measurements of connectivity, and because
we may, ultimately, be able to leverage methods drawn
from confirmatory factor analysis to verify factor structure.
We conducted an exploratory factor analysis using chained
P-technique factor analysis on the pairwise correlations be-
tween nodes on all individuals for each network to obtain a
factor structure. P-technique factor analysis (Cattell, 1963)
applies the common factor model to multivariate repeated
measures of one individual obtained over many occasions.
Here, we concatenate subject data, a method called chained
P technique (Cattell, 1966), and apply varimax rotation to
the factor-loading matrix. Varimax rotation is an orthogonal
rotation that tries to create a loading matrix with a simple
structure (a pattern of loadings where items load most
strongly on one factor, and more weakly on the other factors)

(Kaiser, 1958). The resulting factors represent subgroups of
correlations that covary in time across all individuals. The
factors represent the structure of the fluctuating correlations
(e.g., subnetworks). A factor score is obtained for each win-
dow for each factor; we average these scores for each factor
for each individual to obtain individual-level mean factor
scores. Scores represent the expression of each factor (e.g.,
how tightly coupled the correlations are within the subnet-
work). When testing the relationship between age and factor
scores, we report uncorrected significance values, applying
Bonferroni correction for multiple comparisons over all
comparisons in all networks.

Optimal numbers of factors for this analysis were deter-
mined by establishing factor reliability through a split-half
validity analysis. Our goal was to identify a subset of factors
that are robust across individuals. Given the complexity of
the factor structure, we used an exploratory procedure de-
scribed by McCrae et al. (1996) both to select an appropriate
number of factors to extract and to conduct a split-half reli-
ability analysis. This procedure enables the exploration of
factor reliability in an exploratory framework, rather than a
confirmatory structural equation modeling framework, and
may be more appropriate for replication of complex factor
structures. Beginning by factors with eigenvalues greater
than one (the Kaiser criterion); we conducted a factor analy-
sis as described earlier for each half of a random group split.
We then rotated the factor loadings of the second half to
match the first using orthogonal Procrustes rotation. This
procedure maximizes the size of the total congruence coeffi-
cient by optimally aligning real factors. We then computed
the congruence of the factors and the significance of the Pro-
crustes statistic. If the factor congruence was not greater than
0.8 in all but one factor, we reduced the number of extracted
factors. A typical rule of thumb is that a factor congruence of
0.8–0.95 is a practical lower bound to define a factor, al-
though there is no firm rule (Barrett, 1986). We repeated
this reliability analysis on successively smaller numbers of
factors to identify a set of reproducible factors within our
sample for subsequent analysis.

To determine whether the temporal fluctuations that we ob-
serve in our factor structure could occur by chance, we ran-
domly shuffled the nonoverlapping windows for each ROI
and compared the congruence of the factor structure with
the original solution after Procrustes rotation. This approach
retains the local time series information within each window
while destroying the long-range dynamic relationships.

R scripts for these analyses are available from the corre-
sponding author on request.

Results

Inter-regional connectivity is correlated
with age and fluctuates in time

Table 2 shows minimum, maximum, and mean correla-
tions, computed using nonoverlapping windows of 40 sec,
for each pair of ROIs across individuals. A window size of
40 sec reveals a large range in average correlation strength.
We tested for interactions between window length and age,
or window position within the scan and age, but did not
find any significant interactions that would make correlations
with age systematically different in different window sizes or
observations. Table 2 also shows the correlation of the
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connectivity strength (correlation over the entire scan) with
age. The strength of connectivity between many regions is
significantly negatively correlated with age. Our subsequent
factor analysis explores whether connectivity between these
regions fluctuates independently or in distinct sub-networks,
and whether all sub-networks are equally vulnerable to age.

Factor structure of intrinsic networks is robust

For the DMN and DAN, both eigenvalues and our proce-
dure using Procrustes rotation yielded four factors. The struc-
ture of the FPTC is more variable: There are seven
eigenvalues greater than one, but, ultimately, only four reli-
able factors could be extracted. The remaining three factors
vary significantly by population (i.e., factor correspondence
was low). Figure 2 shows the factor structure for time-
varying intercorrelations in these three networks, where
lines indicate loadings greater than 0.4 for the entire sample.
Factor loadings for the entire sample, using a window size of
40 sec, are shown in Supplementary Tables S2–S4.

Factor analysis results for window sizes of 20 and 80 sec and
the entire scan are similar to the solution obtained at 40 sec. We
quantify the similarity by rotating the solutions at different win-
dow sizes to maximum congruence with the 40 sec solution and
calculating the Procrustes correlations: DMN20 = 0.99,
DMN80 = 0.99, DMN450 = 0.98, DAN20 = 0.99, DAN80 = 0.98,
DAN450 = 0.92, FPTC20 = 0.99, FPTC80 = 0.95, and FPTC450 =
0.83. The structure is virtually identical, as indicated by the ex-
tremely high correlations, at window sizes of 20 and 80 sec; so,
we report results from window sizes of 40 sec. We note that the
congruence of the DMN factor structure derived from the full
scan (450 sec) is almost identical to the DMN structure derived
from smaller timescales. The task-positive network factor struc-
tures derived from the full scan are quite similar to those de-
rived from the shorter windows in the task-positive networks,
although slightly less so than the DMN. This suggests that
there is more individual variability in task-positive networks,
so that long windows might obscure dynamic patterns which
are visible at smaller time windows.

In the DMN, the factor accounting for the most variance
(15.1%) consists of inter-correlations of the posterior cingu-
late cortex (PCC), the left and right angular gyrus (LAG and

Table 2. Dynamic Fluctuation of Inter-Regional

Connectivity and Relationship to Age

Edge r (age) p Min Max Mean

DAN
LaIPS.LFEF �0.16 0.055 0.03 0.77 0.46
LaIPS.LpIPS �0.12 0.162 0.19 0.84 0.58
LaIPS.RaIPS �0.28 0.001a 0.13 0.80 0.52
LaIPS.RFEF �0.25 0.003 �0.04 0.75 0.41
LaIPS.RpIPS �0.09 0.259 0.08 0.81 0.51
LFEF.LpIPS �0.15 0.065 �0.05 0.72 0.38
RaIPS.LFEF �0.26 0.001 �0.09 0.70 0.36
RaIPS.LpIPS �0.22 0.009 �0.04 0.76 0.41
RaIPS.RFEF �0.17 0.044 �0.01 0.75 0.42
RaIPS.RpIPS �0.08 0.367 0.07 0.80 0.49
RFEF.LFEF �0.21 0.012 0.09 0.77 0.48
RFEF.LpIPS �0.26 0.002 �0.10 0.70 0.35
RFEF.RpIPS �0.14 0.089 �0.06 0.71 0.38
RpIPS.LFEF �0.07 0.376 �0.11 0.71 0.36
RpIPS.LpIPS �0.24 0.003 0.32 0.88 0.66

DMN
LAG.mPFC �0.30 0.000a �0.07 0.73 0.39
LAG.PCC �0.17 0.040 0.16 0.83 0.56
Llattemp.LAG �0.01 0.909 �0.26 0.60 0.20
Llattemp.mPFC �0.28 0.001a �0.27 0.59 0.19
Llattemp.PCC �0.09 0.262 �0.31 0.58 0.17
Llattemp.RAG 0.01 0.897 �0.32 0.57 0.13
mPFC.PCC �0.40 0.000a �0.05 0.72 0.39
RAG.LAG �0.19 0.019 0.17 0.84 0.57
RAG.mPFC �0.30 0.000a �0.12 0.69 0.33
RAG.PCC �0.10 0.249 0.10 0.82 0.54
Rlattemp.LAG �0.05 0.567 �0.33 0.57 0.14
Rlattemp.Llattemp �0.13 0.120 0.10 0.79 0.50
Rlattemp.mPFC �0.17 0.040 �0.28 0.57 0.18
Rlattemp.PCC �0.19 0.024 �0.33 0.57 0.14
Rlattemp.RAG �0.05 0.543 �0.32 0.58 0.15

FPTC
LdlPFC.RdlPFC �0.13 0.119 �0.07 0.74 0.40
Lfrontal.LdlPFC �0.15 0.071 0.11 0.81 0.53
Lfrontal.RdlPFC �0.18 0.032 �0.11 0.72 0.36
Lfrontal.Rfrontal �0.19 0.019 �0.13 0.72 0.34
LIPL.LdlPFC �0.06 0.492 �0.06 0.73 0.39
LIPL.Lfrontal �0.09 0.292 �0.13 0.72 0.35
LIPL.RdlPFC �0.12 0.155 �0.11 0.71 0.35
LIPL.Rfrontal �0.01 0.915 �0.18 0.68 0.29
LIPL.RIPL �0.09 0.259 �0.03 0.76 0.42
LIPS.LdlPFC �0.26 0.002 �0.01 0.77 0.45
LIPS.Lfrontal �0.26 0.002 0.00 0.77 0.46
LIPS.LIPL 0.05 0.570 0.11 0.81 0.52
LIPS.RdlPFC �0.29 0.000a �0.06 0.74 0.39
LIPS.Rfrontal �0.14 0.086 �0.10 0.73 0.37
LIPS.RIPL �0.15 0.081 �0.10 0.73 0.38
LIPS.RIPS �0.28 0.001a 0.15 0.83 0.55
Rfrontal.LdlPFC �0.10 0.242 �0.19 0.68 0.29
Rfrontal.RdlPFC �0.01 0.865 0.06 0.81 0.50
RIPL.LdlPFC �0.14 0.097 �0.19 0.68 0.29
RIPL.Lfrontal �0.20 0.014 �0.21 0.65 0.26
RIPL.RdlPFC �0.31 0.000a �0.17 0.69 0.32
RIPL.Rfrontal �0.20 0.015 �0.24 0.63 0.23
RIPS.LdlPFC �0.17 0.039 �0.18 0.68 0.29
RIPS.Lfrontal �0.22 0.007 �0.13 0.70 0.35
RIPS.LIPL 0.13 0.106 �0.16 0.69 0.31

(continued)

Table 2. (Continued)

Edge r (age) p Min Max Mean

RIPS.RdlPFC �0.32 0.000a �0.12 0.72 0.35
RIPS.Rfrontal �0.15 0.078 �0.14 0.70 0.32
RIPS.RIPL 0.11 0.207 0.00 0.76 0.45

Min, max, and mean correlation strength is computed on 40 sec
windows and averaged across individuals. Correlation with age is
computed using mean correlation from entire scan. Values in bold
represent significant correlations with age at p < 0.05.

Values marked with (a) survive Bonferonni correction for multiple
comparisons.

DMN, default mode network; FPTC, fronto-parietal task control
network; DAN, dorsal attention network; PCC, posterior cingulate
cortex; LAG, left angular gyrus; RAG, right angular gyrus; dlPFC,
dorsal lateral prefrontal cortex; mPFC, medial prefrontal cortex;
LFEF, left frontal eye field; RFEF, right frontal eye field; LaIPS,
left anterior intraparietal sulcus; RaIPS, right anterior intraparietal
sulcus; LpIPS, left posterior intraparietal sulcus; RpIPS, right poste-
rior intraparietal sulcus.
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RAG), and the medial prefrontal cortex (mPFC) with the
right lateral temporal lobe (Rlattemp). The second largest
factor (13.5% of the variance) is the symmetric opposite.
The third largest factor (11.9% of variance) connects the
mPFC to the PCC, the LAG, and the RAG (the frontal part
of the DMN). The last factor (11% of variance) connects
the PCC with the LAG and RAG, and it connects the RAG
with the LAG (the posterior part of the DMN).

In the DAN, the factor accounting for the most variance
(16.7%) consists of intercorrelations among the left and right
anterior intraparietal sulcus (LaIPS and RaIPS) and the left
and right posterior intraparietal sulcus (LpIPS and RpIPS).
The second largest factor (14.0%) consists of correlations be-
tween the left frontal eye field (LFEF) and the LaIPS, LpIPS,
and RpIPS. The third factor (14.0% of variance) consists of
correlations between the right frontal eye field (RFEF) and
the RpIPS, LpIPS, and LaIPS. The fourth factor (12.5% of
variance) loads on all intercorrelations between the left and
right FEFs and the left and right aIPS.

In the FPTC, the first factor (12.3% of variance) connects
the right IPL and the right and left dorsal lateral prefrontal cor-
tex (dlPFC), RIPS, LIPS, LIPL, and left and right frontal. It
also loads on intercorrelations between the RIPS and the
LIPL and the LIPL and the LIPS. The second factor (12.3%
of variance) is dominated by connections between the right
frontal and all other nodes. In addition, this factor loads on
the correlation between the right dlPFC and the LIPS. The
third factor (11.3%) is nearly a left-handed subset of factor
two, including connections between the left frontal and

LIPS, RIPS, and left dlPFC, with a link between the left
dLPFC and the LIPS. The fourth factor (7.8% of variance)
includes correlations between the LIPL and the left and right
dlPFC, left frontal, and LIPS (a left-handed subset of factor 1).

The factor structures obtained from an analysis of the
whole sample were reproducible in a split-half analysis
with high congruence (Procrustes correlations for the
DMN = 0.89, DAN = 0.90, and FPTC = 0.83). Tables 3–5
give the factor loadings for the split-half analysis.

Congruence-of-factor structures derived from shuffled win-
dows to the entire sample were much lower than for the
unshuffled windows (Procrustes correlation for DMN = 0.56,
FPTC = 0.61, DAN = 0.56). In addition, the factor structure
obtained from an analysis of shuffled windows showed little
temporal co-fluctuation of correlations and accounted for
significantly less of the total variance than the original solu-
tions (Supplementary Tables S5–S7). Thus, the unshuffled
relationship is special, suggesting that temporal dynamics
are meaningful.

Specific factors show increased variability
among correlations with age

We examined the correlations between the mean factor score
for each subject and age. In the DMN, the mean individual
scores for the factor that loads most highly on connections be-
tween the mPFC to the PCC, LAG, and RAG are significantly
negatively correlated with age [r(143) =�0.41, p < 0.001]
(Fig. 3). On average, subjects with higher values of this factor

FIG. 2. Factor structure (showing factors with loadings > 0.4) of the DMN, dorsal attention network (DAN), and
fronto-parietal task control network (FPTC).
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score have more similar correlations in that these networks link
through time. Figure 1 shows the intercorrelations of nodes
loading most highly on this factor for subjects with extreme
values of this factor score. The younger subject has much
more tightly coupled intercorrelations through time than the
older subject.

In the DAN, scores for factors 1, 3, and 4 were negatively
correlated with age: [factor 1: r(143) =�0.18, p = 0.031, fac-
tor 3: r(143) =�0.22, p = 0.008, factor 4: r(143) =�0.24,
p = 0.004]. In all cases, subjects with higher factor scores
have more similar correlations in network links in each factor
throughout time.

In the FPTC, scores for factor 3 (connecting the left dlPFC
with the RIPS, LIPS, Lfrontal, and Lfrontal with the RIPS and
LIPS) are negatively correlated with age [r(143) =�0.30,
p < 0.001]. Higher factor scores are associated with similar
correlations in network links throughout time.

All correlations with age except for the DAN factor 1 and
3 survive Bonferroni correction for multiple comparisons
(12 factors tested, Bonferroni threshold p < 0.004).

Motion does not account for the relationship
between factor scores and age

Power et al. (2011) have recently demonstrated that mo-
tion systematically causes artificially reduced or exaggerated
patterns of correlations in resting-state data, and they recom-
mend the scrubbing of frames surrounding motion artifacts
as a preprocessing step to prevent this. Since we are looking
at patterns of correlations through time, we cannot scrub our
data without changing the number of observations available
for each subject. We examined the potential impact of mo-
tion on our findings as follows. For each subject, the absolute
and relative mean displacement during the resting state scan
was computed. Age was uncorrelated with absolute displace-
ment [r(143) = 0.047, p = 0.570] but was slightly correlated
with mean relative displacement [r(143) = 0.183, p = 0.028].
This correlation was due to five older subjects with mean ab-
solute displacement > 0.23 mm. Removing these five sub-
jects and repeating the factor analysis did not qualitatively
change the factors obtained or our split-half validity analysis.

Table 3. Split-Half Validity Results for DMN

Factor 1 Factor 2 Factor 3 Factor 4 Factor 1 Factor 2 Factor 3 Factor 4

DMNPCC.DMNRlattemp 0.827 0.158 0.060 0.080 0.691 0.381 0.141 0.075
DMNLAG.DMNRlattemp 0.626 0.405 0.086 0.086 0.800 0.103 0.062 0.124
DMNRAG.DMNRlattemp 0.711 0.192 0.054 0.153 0.690 0.211 �0.022 0.105
DMNPCC.DMNLlattemp 0.408 0.540 0.121 0.070 0.269 0.992 0.210 0.100
DMNLAG.DMNLlattemp 0.193 0.966 0.125 0.099 0.372 0.547 0.094 0.110
DMNPCC.DMNmPFC 0.114 0.103 0.720 0.200 0.111 0.114 0.754 0.189
DMNmPFC.DMNLAG 0.106 0.118 0.780 0.174 0.128 0.027 0.757 0.223
DMNmPFC.DMNRAG 0.161 0.021 0.623 0.302 0.148 0.018 0.650 0.312
DMNPCC.DMNLAG 0.059 0.181 0.271 0.570 0.015 0.210 0.261 0.530
DMNPCC.DMNRAG 0.096 0.018 0.090 0.822 0.083 0.087 0.166 0.668
DMNLAG.DMNRAG 0.030 0.083 0.189 0.581 0.097 0.070 0.156 0.651
DMNRAG.DMNLlattemp 0.341 0.537 0.090 0.227 0.320 0.498 0.054 0.216
DMNmPFC.DMNLlattemp 0.285 0.322 0.359 0.013 0.244 0.386 0.272 0.001
DMNmPFC.DMNRlattemp 0.503 0.119 0.246 �0.073 0.536 0.124 0.235 �0.066
DMNLlattemp.DMNRlattemp 0.224 0.069 0.161 0.043 0.180 0.063 0.185 0.109

Congruence of factors is 0.94, 0.72, 0.98, and 0.98 (correlation = 0.89, p = 0.001).
Loadings > 0.4 are shaded.

Table 4. Split-Half Validity Results for DAN

Factor 1 Factor 2 Factor 3 Factor 4 Factor 1 Factor 2 Factor 3 Factor 4

DANLpIPS.DANRaIPS 0.190 0.519 0.622 0.038 0.107 0.613 0.517 0.071
DANLpIPS.DANLaIPS 0.214 0.581 0.179 0.131 0.208 0.585 0.247 0.232
DANRpIPS.DANRaIPS 0.087 0.374 0.533 0.205 0.133 0.452 0.466 0.046
DANRpIPS.DANLaIPS 0.142 0.575 0.201 0.264 0.237 0.444 0.396 0.187
DANRaIPS.DANLaIPS 0.291 0.219 0.696 0.019 0.251 0.223 0.651 0.016
DANLpIPS.DANLFEF 0.353 0.375 0.077 0.550 0.318 0.450 �0.036 0.777
DANLFEF.DANRpIPS 0.249 0.315 0.132 0.871 0.276 0.302 0.120 0.668
DANLFEF.DANLaIPS 0.451 0.130 0.256 0.434 0.383 0.070 0.243 0.670
DANRFEF.DANRaIPS 0.489 0.085 0.327 0.239 0.555 0.094 0.385 0.056
DANRFEF.DANLaIPS 0.717 0.176 0.213 0.117 0.782 0.171 0.248 0.095
DANLpIPS.DANRFEF 0.733 0.473 0.093 0.130 0.669 0.533 �0.002 0.120
DANLpIPS.DANRpIPS 0.114 0.586 0.122 0.115 0.181 0.463 0.263 0.195
DANLFEF.DANRFEF 0.491 0.058 0.305 0.226 0.499 0.083 0.234 0.335
DANLFEF.DANRaIPS 0.418 0.006 0.556 0.388 0.295 �0.034 0.618 0.455
DANRpIPS.DANRFEF 0.616 0.365 0.105 0.307 0.664 0.387 0.067 0.112

Congruence of factors is 0.95, 0.95, 0.90, 0.83 (correlation = 0.90, p = 0.001).
Loadings > 0.4 are shaded.
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We re-examined the relationship between the factors in
each network that were significantly related to age, controlling
for relative displacement. All correlations decreased slightly
but remained significant [DMN factor 3 r(143) =�0.38,
p < 0.001, DAN factor 1 r(143) =�0.17, p = 0.045, DAN fac-

tor 3 r(143) =�0.20, p = 0.015, DAN factor 4 r(143) =�0.23,
p = 0.005, FPTC factor 3 r(143) =�0.26, p = 0.001].

Discussion

The contribution of this work is to demonstrate that fluctu-
ating connectivity within large-scale networks of the brain
exhibits a factor structure that can be replicated, is stable
across multiple timescales, and that the expression of specific
factors within networks is related to age. In the introduction,
we emphasize that this abstraction may reveal more about
age-related processes in functional networks than mean cor-
relations.

Our approach of analyzing the fluctuations of correlations
among nodes enables us to quantify a finer-grained network
structure that can be isolated by regional covariation of the
BOLD signal. Shuffling the nonoverlapping windows for
each ROI, thereby destroying the long range of temporal fluc-
tuations, removed this structure. We refer to this co-fluctuation
of correlations within subnetworks as ‘‘structured variability’’
to indicate that this type of variability is a physiological man-
ifestation of the dynamic behavior of the brain. We hypothe-
sized and determined that older adults exhibit additional
‘‘unstructured variability,’’ or lower inter-correlations within
subnetworks, resulting in lower dynamic connectivity in
some, but not all, factors. The correlation of specific factor
scores with age makes it unlikely that meaningful factors
are solely due to our sample, scanner, or method of fMRI pre-
processing. The relationship of specific factor scores to age

Table 5. Split-Half Validity Results for Fronto-FPTC

Factor 1 Factor 2 Factor 3 Factor 4 Factor 1 Factor 2 Factor 3 Factor 4

FPTCLdlPFC.FPTCRIPL 0.404 0.075 0.461 0.108 0.304 0.044 0.384 0.285
FPTCLfrontal.FPTCRIPL 0.460 0.042 0.428 0.054 0.367 0.039 0.443 0.240
FPTCRIPL.FPTCLIPL 0.046 0.054 0.640 0.147 0.168 0.043 0.378 0.228
FPTCRIPL.FPTCRIPS 0.049 0.124 0.558 0.092 0.142 0.143 0.627 0.106
FPTCRIPL.FPTCLIPS 0.094 0.119 0.800 0.047 0.244 0.126 0.597 0.225
FPTCLfrontal.FPTCLIPL 0.475 0.075 0.121 0.386 0.249 0.043 0.195 0.469
FPTCLfrontal.FPTCRIPS 0.667 0.223 0.199 0.023 0.579 0.279 0.363 �0.071
FPTCLfrontal.FPTCLIPS 0.694 0.198 0.096 0.113 0.502 0.243 0.125 0.206
FPTCLdlPFC.FPTCRfrontal 0.224 0.543 0.053 0.168 0.285 0.560 �0.067 0.303
FPTCRfrontal.FPTCLfrontal 0.282 0.523 0.109 0.080 0.234 0.612 �0.089 0.255
FPTCRfrontal.FPTCLIPL �0.014 0.492 0.168 0.388 �0.099 0.530 0.257 0.409
FPTCRfrontal.FPTCRIPS 0.249 0.638 0.252 �0.025 0.156 0.638 0.311 �0.066
FPTCRfrontal.FPTCLIPS 0.150 0.718 0.171 0.159 0.029 0.701 0.223 0.192
FPTCRdlPFC.FPTCLdlPFC 0.266 0.264 0.060 0.405 0.506 0.277 �0.033 0.258
FPTCRdlPFC.FPTCLfrontal 0.350 0.274 0.123 0.343 0.482 0.338 0.015 0.250
FPTCRdlPFC.FPTCRIPS 0.282 0.429 0.265 0.156 0.401 0.389 0.388 �0.087
FPTCRdlPFC.FPTCRfrontal 0.065 0.507 0.007 0.196 0.076 0.488 �0.012 0.206
FPTCRdlPFC.FPTCRIPL 0.139 0.284 0.479 0.150 0.322 0.170 0.346 0.228
FPTCRdlPFC.FPTCLIPL 0.098 0.237 0.161 0.677 0.171 0.240 0.247 0.478
FPTCRdlPFC.FPTCLIPS 0.253 0.398 0.175 0.414 0.383 0.401 0.225 0.234
FPTCLdlPFC.FPTCLfrontal 0.464 0.182 0.016 0.150 0.479 0.107 �0.016 0.220
FPTCLdlPFC.FPTCLIPL 0.444 0.064 0.057 0.491 0.278 �0.055 0.164 0.528
FPTCLdlPFC.FPTCRIPS 0.605 0.238 0.248 0.103 0.628 0.286 0.343 �0.026
FPTCLdlPFC.FPTCLIPS 0.637 0.135 0.070 0.248 0.590 0.167 0.073 0.252
FPTCRfrontal.FPTCRIPL 0.084 0.545 0.481 �0.059 0.115 0.382 0.342 0.211
FPTCLIPL.FPTCRIPS 0.161 0.160 0.521 0.375 0.113 0.195 0.643 0.129
FPTCLIPL.FPTCLIPS 0.168 0.037 0.348 0.465 0.041 0.086 0.409 0.355
FPTCRIPS.FPTCLIPS 0.265 0.243 0.407 0.079 0.316 0.353 0.594 �0.082

Split half validity results for FPTC. Congruence of factors is 0.81, 0.95, 0.84, and 0.66 (correlation = 0.83, p = 0.001).
Loadings > 0.4 are shaded.

FIG. 3. Correlation of DMN factor 3 and age (r =�0.41).
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lends interpretability to the general age-related reduction of
connectivity (Table 2) as affecting specific subsystems.

The analysis of multiple small windows per individual en-
ables us to quantify dynamic (within-scan) connectivity. Our
ability to replicate this structure in a split-half sample means
that this dynamic structure is robust across individuals.
Finally, we found that factors obtained using correlations
from multiple window sizes ranging from 20 to 450 sec
(the entire scan) generated similar factor structures, with
task-positive networks showing slightly more variability of
factor structure at larger window sizes than the DMN. This
scale-free characteristic does not mean that there is no dy-
namic information within each scan; as correlations fluctuate
throughout a scan, so do factor scores describing the expres-
sion of each factor at each window. The findings indicate we
can be confident that scores computed for smaller window
sizes reflect the same structure which is evident across indi-
viduals at large timescales. Determining how these scores
can predict ongoing performance in dynamic analyses is a
subject for future work.

We are able to subdivide each network into at least four
replicable subnetworks. The patterns of loadings are deter-
mined by rotating the solution using varimax rotation, but
this solution is not unique; one could imagine alternate rota-
tions with different loading patterns. Different rotations and
consequent loading patterns are formally equivalent, and
they may be more interpretable neurobiologically. We pres-
ent the rotation (varimax) that tries to create a pattern of
loadings where items load most strongly on one factor, and
weaker on other factors. The rotation criteria are analogous
to spatiotemporal independence in ICA. Although in ICA
the solution is unique, it is based on the assumption of max-
imizing spatiotemporal independence, and to the degree that
the data violate these assumptions, either approach will gen-
erate results which may not be interpretable. The key obser-
vation is that we can quantify an intrinsic substructure based
on the fluctuations of connectivity.

We cannot in this study attribute specific function to the
identified subnetworks. There is precedent for dividing
DMN into anterior and posterior components with unique
patterns of connectivity (Uddin et al., 2009). These findings
mirror our separate DMN factors 3 and 4. Andrews-Hanna
et al. (2010) identified a midline (anterior MPFC and PCC)
core and a medial temporal lobe subsystem that share some
functional properties. Similarly, using accelerated imaging
data, Smith et al. (2012) show that the DMN is the sum of
multiple distinct temporal processes, including a lateralized
semantic network. Task-positive networks are also the sum
of multiple temporal processes.

Our approach differs from the approach of identifying
‘‘temporal functional modes’’ (Smith et al., 2012) in several
ways. First, we examine the time-varying behavior of corre-
lations of network ROIs rather than the fluctuations of the
BOLD signal within spatially derived components. We be-
lieve that this enables us to examine features of the time-
varying correlation graph structure of brain networks without
a fast TR sequence. Instead of temporal functional modes,
we obtain factor scores that describe how closely correlations
among subgroups of nodes covary in each individual for each
time window. Our approach does not tell us anything about
what modes are present spatially, and nothing about whether
the BOLD signal in correlated ROIs is increasing or decreas-

ing. Second, we go further to relate individual factor scores
to age.

Noise caused by motion artifacts likely affects the time-
varying correlation structure as it does the mean correlation
structure (Power et al., 2011). However, we do not believe
that this alters the pattern of results. First, removing subjects
with large relative motion does not qualitatively change the
observed factor structure or its robustness across individuals.
Second, although it is an imperfect method, controlling for
relative motion does not alter the significance or relative
magnitude of the relationships between factors related to
age. Our interpretation is that motion introduces a small
amount of noise into the individual factor scores, which is
difficult to control for. Longer resting-state acquisitions
that would permit removal of windows with motion, or the
use of multi-echo EPI denoising (Kundu et al., 2012) may re-
duce the impact of noise.

The factor structure which we observe may capture impor-
tant information about the dynamic structure of the brain at
rest that describes its health and ability to support higher-
order cognitive processes. The results converge with prior
studies showing reduced mean functional connectivity with
age (Andrews-Hanna et al., 2007), but provide a richer de-
scription that enables one to postulate biological mechanisms
for differential variability of individual factors. We find that
not all network subcomponents show decreased synchroniza-
tion with age. This suggests that the cause of this desynchro-
nization of correlations in the BOLD signal is not global, but
instead reflects damage to age-vulnerable network subcom-
ponents and their interconnections. In particular, we notice
that the only age-related component in the DMN involves
the connection between the medial prefrontal wall and the
posterior nodes of the DMN (PCC and angular gyri). This
connectivity between the anterior hub of the DMN and the
parietal hubs may be particularly vulnerable to age, suggest-
ing a closer investigation of the intrinsic functioning of the
medial prefrontal wall or long-range connectivity between
these association hubs.

We used Fischer z-transformed correlations between re-
gions of interest, our measurements of connectivity, as raw
input into a factor analysis. Correlations are sample statistics
that partial out extraneous variance. As such, the input to our
factor analyses reflects these concentrated linear relation-
ships, excluding any systematic nonlinear relationships.
These correlations are also very susceptible to noise within
any time period. Although this limited focus is almost cer-
tainly incomplete, the fact that it allows us to extract a robust
structure of covarying fluctuations, some of which are related
to age, is important.

Although sliding windows have been used to quantify dy-
namics (e.g., Chang and Glover, 2010; Hutchison et al.,
2012; Jones et al., 2012), there are several open issues with
regard to the use of fixed window sizes [see Hutchinson
et al. (2013) for a review]. Nonstationary sources of noise
in fMRI time series and white noise can induce changes in
functional connectivity over time (Smith, 2012). Further-
more, the window size should be large enough to provide a
good signal-to-noise ratio while being short enough to reflect
the underlying dynamics. Since our approach quantifies the
structure of fluctuations in connectivity and models error ex-
plicitly, it is relatively insensitive to noise. We have demon-
strated that factors obtained using correlations from multiple
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window sizes generated similar factor structures, indicating a
robustness of the method to noise in small windows.

The approach that we have adopted to demonstrate robust-
ness of factors relies on the congruence of factors derived
from exploratory analysis. This approach is not state of the
art in behavioral studies, where typically the replicability of
factor structures is tested with confirmatory factor analysis.
We chose a model-free approach for evaluating factor replica-
bility because of the complexity of the factor structure and our
lack of theoretical understanding of what these factors should
resemble. Future work remains to determine to what degree
this structure can be reproduced in confirmatory factor analy-
sis, and across different populations and ages. Confirmatory
factor analysis, or a framework such as exploratory structural
equation modeling (ESEM) (Asparouhov and Muthén, 2009)
is necessary for completely testing invariance of the factor
structure across groups. However, commonly useful factor
structures (e.g., the ‘‘Big Five’’ personality factor structure)
often do not fit confirmatory factor models well, and confirma-
tory models may inflate correlations among factors or generate
other misleading results (Browne, 2001; McCrae et al., 1996).
Analogous to existing approaches for finding spatiotemporal
components based on ICA that assume maximal independence
of components, we assume factors are orthogonal. This as-
sumption is probably an oversimplification, and more work
will be necessary to test this hypothesis.

Our emphasis here was on within-network dynamic con-
nectivity. An important goal, addressed by Smith et al.
(2012), is to examine between-network connections. A factor
analysis approach does not scale to the interconnections of
the brain, because there should be more observations than
variables to fit a factor model, motivating the PCA approach
taken to identify eigenconnectivities (Leonardi et al., 2013).
However, factor analysis within a structural equation frame-
work enables testing of the significance of factor loadings in
a hypothesis-driven analysis, to carefully examine interrela-
tionships between dynamic connectivity of networks. This is
a direction of future research.

We have not yet speculated on the underlying reason for ro-
bust patterns of dynamic connectivity. It is possible that these
are a result of the brain’s normal operation as a nonlinear sys-
tem of coupled oscillators as filtered through the BOLD
response. Evidence from computational modeling and electro-
corticography suggests that the oscillations observable as
mean correlations in the BOLD signal and low-frequency
resting-state networks stem from neuronal oscillations in the
gamma band in structurally connected cortical fields (Cabral
et al., 2011; Deco et al., 2009; Grady et al., 2001; He et al.,
2008; Ko et al., 2011). Therefore, structural connectivity and
cortical network architecture should largely determine the ob-
served factor structure, with individual differences in structure
and function causing deviations from normal operation. This
opens possibilities for the use of dynamic connectivity as a
physiological marker for brain functioning in normal aging.
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