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Abstract

Human saliva is clinically informative of both oral and general health. Since next generation shotgun sequencing (NGS) is
now widely used to identify and quantify bacteria, we investigated the bacterial flora of saliva microbiomes of two healthy
volunteers and five datasets from the Human Microbiome Project, along with a control dataset containing short NGS reads
from bacterial species representative of the bacterial flora of human saliva. GENIUS, a system designed to identify and
quantify bacterial species using unassembled short NGS reads was used to identify the bacterial species comprising the
microbiomes of the saliva samples and datasets. Results, achieved within minutes and at greater than 90% accuracy,
showed more than 175 bacterial species comprised the bacterial flora of human saliva, including bacteria known to be
commensal human flora but also Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, and Gamma
proteobacteria. Basic Local Alignment Search Tool (BLASTn) analysis in parallel, reported ca. five times more species than
those actually comprising the in silico sample. Both GENIUSand BLAST analyses of saliva samples identified major genera
comprising the bacterial flora of saliva, but GENIUS provided a more precise description of species composition, identifying
to strain in most cases and delivered results at least 10,000 times faster. Therefore, GENIUS offers a facile and accurate
system for identification and quantification of bacterial species and/or strains in metagenomic samples.
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Introduction

The microbial flora of the human mouth has been extensively

studied, providing an understanding of the role of bacterial species,

not only in maintaining wellness, but also in dental caries and

gingivitis[1,2,3]. The reductionist approach to understanding the

microbiology of the human mouth that was followed in the early

days of dental microbiology, in some ways inhibited achievement

of full understanding of the oral flora as a microbial ecosystem.

Recent research on the human microbiome has provided valuable

information concerning a variety of processes, including interac-

tions among microbial species in the human mouth. Next

generation sequencing (NGS) permits an even more extensive

characterization of the microbial ecology of the human body and

has triggered an explosion in human microbiome discovery. As a

result, the microbiome is now considered by some investigators to

represent yet another organ of the human body, dictating health

and well-being[4]. From the avalanche of data reported to date,

spatio-temporal and host induced variations in microbiomes have

been associated with a variety of human conditions, including

colorectal carcinoma[5,6], cardiovascular disease[7], inflammato-

ry bowel disease[8], obesity [9], white blood cell cancer [10], and

even psychiatric conditions[11].

The oral cavity is a major gateway for bacterial entry to the

human body and a natural route for passage to respiratory and

digestive tracts and, ultimately, the blood stream. Historically,

microorganisms in the oral cavity were found to comprise a diverse

and complex community [12], comprised of hundreds of

individual bacterial species[13,14]. Recent evidence shows that

some bacterial species of the mouth microbiome are linked to oral

disease, but are also important in the general health of an

individual [12,15,16,17,18,19]. To date, the oral microbiome has

been linked to many diseases, namely alveolar osteitis and

tonsillitis [12,14,20,21,22,23], bacteremia [24], endocarditis [25],

brain and liver abscesses [26,27], stroke [28], diabetes [29,30],

pneumonia [31], and premature birth [32]. The mouth can also

be considered an important site of genetic exchange among

members of the bacterial flora, because of its high bacterial load

and richness in species diversity, even where antibiotic resistant

bacteria can become established through contact transmission
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[33]. The oral microbiome is not homogenous but is made up of

subpopulations inhabiting microenvironments within the mouth

[15]. A primary example is saliva, which contains a specific

bacterial community that helps maintain homeostasis of the mouth

ecosystem. Thus, it is not surprising that the oral or salivary

microbiome has attracted increased attention as a potential

diagnostic tool [23,34,35,36]. Collection of saliva samples is

simple and not invasive [15,16,37]. Saliva itself is clinically

informative, containing many soluble biomarkers typically found

in blood and urine [38,39] that are useful in prognosis of several

systemic and oral conditions. In fact, the uniqueness of individual

oral commensal flora provides a forensic tool, contributing to the

development of the new discipline microbial forensics [40,41].

Because the salivary microbiome has diagnostic, epidemiological,

and forensic value, we investigated the bacterial flora of saliva

using direct whole genome shotgun (WGS) metagenomic sequenc-

ing, an unbiased metagenomic approach to determine the

bacterial species and strain composition.

Historical microbiological studies employing conventional

culture methods had shown that the human salivary microbiome

is comprised of a complex assemblage of bacteria, viruses, fungi,

and parasites, with less than half of the bacterial species cultured

[12,13,14,42]. 16S rRNA-based identification revealed extensive

bacterial diversity, providing results more quickly than traditional

culture [23]. However, 16S rRNA is a single gene-centric method,

providing less resolution in differentiating closely related species. It

also suffers from limitations imposed by non-uniform distribution

of sequence dissimilarity among taxa, presence of multiple copies

of the 16S rRNA gene [43], failure of target amplification of

polymerase chain reaction (PCR) primers [44], and generation of

chimeric sequences [45,46].

The accuracy and robustness of any identification methods is

dependent on the quality and breadth of the reference database

[12]. The popular sequence alignment tool, BLAST [47] relies on

the NCBI public database from which even NCBI removes

sequences and genomes due to errors [48]. The known limitations

of 16S rRNA sequencing for microbial identification has

prompted investigators to use WGS sequencing for characteriza-

tion and resolution of metagenomic communities [12,36], The

large amounts of data produced by WGS sequencing, however,

present significant challenges in data analysis and interpretation

[49]. There are many approaches that have been devised for

analysis of WGS data, including alignment, assembly, binning,

and gene prediction based methods [50,51]. Read reference

alignment or mapping performs reasonably well, but these are

computationally very expensive [52]. Compositional binning tools,

i.e. MEGAN [53] and MG-RAST [54], are also computationally

expensive and do not resolve closely related taxa with the short

reads as generated by Illumina and Life Technologies NGS

platforms [50].

NGS has progressed today to being able to deliver highly

accurate sequences economically and with fast turn-around. As a

result, whole genome shotgun (WGS) metagenomic sequencing

emerged as a powerful tool for studying the human microbiome

[55]. At present, WGS metagenomic data comprise millions to

billions of short reads, aiding necessary sequencing depth as

needed as well as offering an unprecedented opportunity to

identify individual species at or near strain level and determine

their relative abundance. In this study, WGS metagenomics was

employed, in combination with GENIUS algorithms, to identify

and quantitate bacterial species comprising the salivary micro-

biome.

Materials and Methods

Sample Collection and DNA Isolation
Total DNA was collected from saliva samples provided by two

anonymous healthy adult donors following the approved protocol

of the Battelle Memorial Institute Internal Review Board. DNA

was purified from saliva employing the Oragene-DNA isolation kit

(DNA Genoteck, Kanata, ON, Canada), following the manufac-

turer’s recommended protocol.

Next Generation Sequencing and Filtering
DNA samples for metagenomics were prepared for 150 bp and

100 bp single-end sequencing using the Illumina GAIIx and

HiSeq 2000 instrument (Illumina, San Diego, CA), respectively.

Numerically coded aliquots of approximately 0.5–1 mg DNA per

sample were used to create sequencing libraries. First, genomic

DNA was fragmented using a CovarisTM S220 Sonicator (Covaris,

Inc., Woburn, MA) to approximately 300 base pairs (bp).

Fragmented DNA was used to synthesize indexed sequencing

libraries using the TruSeq DNA Sample Prep Kit V2 (Illumina,

Inc., San Diego, CA), according to manufacturer’s recommended

protocol. Cluster generation was performed on the cBOT using

the TruSeq PE Cluster Kit v3 – cBot – HS (Illumina). Libraries

were sequenced with an Illumina HiSeq 2000 at Nationwide

Children’s Hospital (NCH) Biomedical Genomics Core (Colum-

bus, Ohio) using the TruSeq SBS Kit v3 reagents (Illumina) for

paired end sequencing with read lengths of 100 base pairs (bps)

(200 cycles) and at CosmosID with an Illumina GAIIx for 150 base

pairs (bps) single read using the TruSeq SBS Kit v5 reagents

(Illumina). Primary analysis (image analysis and basecalling) were

performed using HiSeq Control Software (HCS) version 1.5.15.1

and Real Time Analysis (RTA) version 1.13.48. Secondary

Analysis (demultiplexing) was performed using Illumina CASAVA

Software v1.6 Post processing of GAIIx reads was performed with

RTA/SCS v1.9.35.0 and CASAVA 1.8.0 software. High through-

put sequencing reads were quality filtered using the fastq_quali-

ty_filter program provided with the FASTX-Toolkit (http://

hannonlab.cshl.edu/fastx_toolkit/index.html) (v. 0.0.13). Only

those reads with a quality score $17 for at least 80% of the read

length (i.e., probability of correct base call ,98%) were retained.

Ion Torrent (Life Technologies, NY) sequencing was also

performed using amplicons specific to the V4 region of the 16S

rRNA gene. Sequence reads are available under NCBI BioProject

ID PRJNA231652.

BLASTn Analysis
Sequence data were compared to the NCBI RefSeq database (v.

May 19, 2012), but restricted to microbial gis, the NCBI 16S

database (v. October 30, 2012), using BLASTn [47] (top hit only)

(v. 2.2.25, National Library of Medicine, Bethesda, MD). Table 1

provides details of analyses carried out for each sample with data

bases used. Resulting BLASTn hits were filtered to retain only

those hits with percent identity $97%. An additional filter was

applied to the BLASTn hit report to reduce false positives (i.e.,

reads whose corresponding taxonomic identifier (taxid) appeared

#0.01% (1:1000)). This was accomplished using a custom script.

The Krona (v. 2.2) [56] program, ClassifyBLAST.pl, was also used

within a custom script, to obtain a list of organisms identified with

read counts associated with each taxon. Krona ImportBLAST.pl

program was used to provide interactive visualization of identified

bacterial species.

Shotgun Metagenomics for Human Salivary Microbiome
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GENIUS Analysis
Raw unassembled WGS short reads generated by the Illumina

GAIIx and HiSeq 2000 platforms were analyzed using GENIUS

software package for rapid identification of bacterial species and

relative abundance. GENIUS creates sample libraries from

unassembled short WGS reads using two algorithms, 5VCE and

NmerCE, and utilizes GeneBookH reference libraries derived from

curated genomic databases to assign taxonomic membership of

sample libraries, employing probabilistic matching. Identification

is achieved at species, sub-species, and/or strain level, depending

on adequate representation of relevant reference genomes in the

GeneBookH libraries

In silico Metagenome Construction
A synthetic metagenome was created comprising a total of

5.5 M reads from ten bacterial species and the human genome

(Table 2). The reads, each 100 nucleotides in length, were created

using a custom R script from each of the ten bacterial genome and

the human chromosome 21 using Illumina sequencing error

model.

Results and Discussion

Description of the human microbiome has been made possible

by NGS with its significant reduction in cost and improvement in

throughput. Metagenomics, as a result, is moving from a16S

rRNA gene-centric approach to WGS metagenomic approach. To

date, 16S rRNA gene sequencing has been used to identify major

taxa and explore the microbial diversity of the human salivary

microbiome [23,35,57] linking composition of the microbiome

with oral health and/or systemic disease. In this study, WGS

metagenomics was used, along with several bioinformatics analysis

methods e.g., BLASTn, mapping, and GENIUS, to determine

relative performances of taxonomic assignment, and identification

of community composition and structure, thereby achieving

improved understanding of the human salivary microbiome.

GENIUS 5VCE algorithm was employed to determine the

bacterial species composition of a human saliva sample, VFD10-

018, sequenced by the Illumina GAIIx (150 bp, ,22 M reads)

platform. A total of 26 bacterial genera and 58 species were

identified with majority of genera and species previously identified

Table 1. Multi-platform BLASTn analysis of two salivary samples against various databases.

Sample Sequencing Platform

Illumina HiSeq 2000 Illumina GAIIx Ion Torrent (16S, V4)

Reference Database used with BLASTn

VFD10-018 Greengenes 16s1 Greengenes 16s4 Greengenes 16s3

NCBI 16s NCBI 16s4 NCBI 16s3

NCBI RefSeq (microbial subset)1 NCBI RefSeq (microbial subset)4 NCBI RefSeq (microbial subset)3

VFD12-006 Greengenes 16s1 Greengenes 16s2 Greengenes 16s3

NCBI 16s1 NCBI 16s2 NCBI 16s3

NCBI RefSeq (microbial subset)1 NCBI RefSeq (microbial subset)2 NCBI RefSeq (microbial subset)3

1Illumina HiSeq2000 sequencing carried out at Nationwide Children’s Hospital, Columbus, OH.
2Illumina GAIIx sequencing carried out at CosmosID.
3Ion Torrent sequencing performed by SeqWright, Inc., Houston, TX.
4Illumina GAIIx sequencing performed at The Ohio State University, Columbus, OH.
doi:10.1371/journal.pone.0097699.t001

Table 2. Species composition and simulation statistics of the synthetic metagenomic dataset.

Simulations Statistics BLAST (RefSeq_genomic)

Species
Genome
Coverage

Number of
Reads

Relative
Abundance Number of Reads

Homo sapiens 0.08 4034394 72.81 3349

Rothia dentocariosa ATCC 17931 47.21 537919 9.71 554

Prevotella melaninogenica ATCC 25845 52.69 430335 7.77 440

Fusobacterium nucleatum subsp. nucleatum ATCC 25586 5.44 53791 0.97 58

Streptococcus oralis Uo5 12.08 107583 1.94 106

Streptococcus mitis B6 11.02 107583 1.94 88

Veillonella parvula DSM 2008 11.1 107583 1.94 83

Peptostreptococcus stomatis DSM 17678 0.99 46261 0.83 NA

Peptostreptococcus anaerobius 653-L 0.94 46261 0.83 NA

Porphyromonas gingivalis W83 0.84 46261 0.83 46

Mycoplasma pneumoniae FH 1.21 23130 0.42 23

The right most column represents number of reads from the sample that BLAST was able to assign to species. NA: Not Assigned due to lack of RefSeq entries.
doi:10.1371/journal.pone.0097699.t002
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as members of the human salivary and/or oral microbiome

(http://www.homd.org/index.php, Fig. S1). BLASTn (microbial

subset) and short read mapping (CLC genomic workbench, using

same genome database as GENIUS 5VCE) identified 45 and 102,

and 67 and 108, bacterial genera and species in this data set

respectively, indicating a much larger microbial community

compared to that identified by GENIUS 5VCE (Fig. S1). A

global 16S metagenic survey of saliva samples collected from 120

healthy individuals in 12 geographically different locations

reported that an individual salivary microbiome typically contains

six to 30 bacterial genera [41], an observation in agreement with

GENIUS 5VCE identification. Dominant genera identified by

GENIUS 5VCE (Streptococcus,Prevotella, Veillonella, Mycoplasma,

Rothia, Haemophilus, Fusobacterium etc.) were also in agreement with

genera identified in the global survey [41]. It is concluded that

bacterial taxa identified by BLASTn and short read mapping

produces an overestimation of diversity. GENIUS 5VCE per-

formed favorably in both speed, at least 10,000X faster than

BLAST, and accuracy in identifying the most likely bacterial

community of this dataset with significantly reduced false

prediction.

As the actual microbial composition of the saliva samples from

the volunteers was unknown, only comparative analysis between

orthogonal methods was possible. Therefore, an in silico sample

(Table 2) containing a composite of 5.5 M reads from ten bacterial

species and the human genome was prepared to measure accuracy

of the metagenomic analysis. Results show that GENIUS

accurately identified bacterial species composition with a negligi-

ble computation time (2 minutes for NmerCE and 29 minutes for

5VCE) (Figs. 1 and S2). Despite the fact that the number of

sequencing reads for each of the genomes comprising the test set

was small, the GENIUS algorithms identified the bacterial species

with appropriate strain designation. Identification obtained using

GENIUS 5VCE and NmerCE algorithms were in agreement, with

one possible false positive identification (Streptococcus pneumoniae) by

5VCE. When statistical analysis was carried out, which is a built in

function in GENIUS 5VCE algorithm, to provide point estimates

for genome coverage and detection confidence limits using

random k-mers for each of the identified species, S. pneumoniae

had the lowest confidence interval (Fig. S2). Furthermore,

considering the marginal coverage of strain specific attributes

(only 1.6% of unique identifiers), error rate of the sequencing

platform, and abundant presence of other Streptococcus species in

the dataset, this call, at best, would have been tallied as dubious. In

contrast, results of BLASTn analysis reported 48 species, even

though the sample contained only ten bacterial species, confirming

what has been suspected by other investigators as over-estimation

of diversity by BLASTn analysis. In contrast, GENIUS was

efficient in filtering out false positive signals caused by high

genomic similarity among closely related genera and species.

Briefly, GENIUS was successful in identifying species of the saliva

microbial community, even when only limited sequencing data

were available, accomplishing identification that required only

minimum computational time. Precise identification was achieved

in most cases even with only a small number of reads, i.e.,

fractional coverage (,1%) of the genome (i.e.,Peptostreptococcus

stomatis, Peptostreptococcus anaerobius, and Porphyromonas gingivalis) were

available and also when the target pathogen (i.e., Mycoplasma

pneumoniae) was present at very low concentration (,1%).

For comparative purposes, 16S rRNA (V4 region)sequencing

was carried out using Ion Torrent PGM for salivary samples

VFD10 and VFD12 and the sequence data were analyzed by

BLAST, using the NCBI 16S ribosomal database (v. 10/30/2012)

to enable direct comparison of bacterial communities inferred by

both 16S metagenic and WGS metagenomics analysis. Compar-

ison of the accuracy of identification between the two methods was

assessed by the number of overlapping genera, since extrapolation

of 16S data beyond genus is very limited [43,58,59]. Saliva

microbiomes VFD10 and VFD12 showed high concordance

(,80%), with respect to genera identified by GENIUS algorithms

5VCE and NmerCE (Fig. 2). Concordance was shared, to a large

extent, with 88 genera identified by BLAST-16S (Fig. 2a).

GENIUS algorithms 5VCE and NmerCE identified 27 and 26

genera, respectively, in VFD10. Of the 21 genera identified by

both algorithms, 17 were also identified by BLAST-16S. The six

additional genera identified by5VCE (n= 2) and NmerCE (n= 4)

were also identified by BLAST-16S. However, five genera were

identified by GENIUS, either by5VCE (n= 4) or NmerCE (n= 1)

that were not detected by BLAST-16S. Relative abundance ($

1%)of genera determined by GENIUS algorithms and byBLAST-

16S (Table S1) were in agreement, with respect to dominant

genera, with26 genera comprising 97–99% of the bacterial

community.

Results for saliva sample VFD12 are shown in Fig. 2b, with

comparison of relative abundance showing 22 genera accounting

for 98–99% of the bacterial community (Table S2), providing very

little evidence for the large number of genera (n = 82) identified by

BLAST-16S. In fact, the global survey of saliva samples

[41]reported individual salivary microbiomes contained six to 30

bacterial genera, reinforcing overestimation of diversity by 16S

analysis. Based on the literature,16S rRNA sequencing can be

biased by unequal amplification of 16S rRNA genes [46] and by

taxon-specific biases arising from the primer set used [60].

Generation of chimeric sequences also can skew and inflate

diversity estimates significantly [45,46]. Chimera formation is most

pronounced when 16S rDNA amplicons are present in low

amount, making identification of minor species suspect without

supporting data [61].

WGS metagenomics sequencing reads (GAIIx) were compared

with the NCBI RefSeq database (microbial subset, v. 05/19/

2012), using BLASTn for comparison of species identified by

GENIUS algorithms and BLASTn. Fig. 3 shows estimated relative

abundance of species at $2% for saliva sample VFD10,

determined by both GENIUS and BLASTn analyses. A phyloge-

netic tree of 23 species (depicted as shaded squares) in Fig. 4 shows

relative abundance estimated by each method. Most prevalent

were Streptococcus and Prevotella. Similar results were obtained for

saliva sample VFD12 (Fig. 4).

A vexing problem in metagenomics is sample diversity, that is,

whether sequencing captures the total diversity of a given sample.

Libraries generated for saliva sample VFD10 were sequenced

using all eight lanes of a GAIIx flow cell, with 18 to 24 million

reads (average ,22 million) generated per lane (Fig. S3). GENIUS

analysis, with respect to number of species identified, showed good

concordance in both identification and relative abundance of

bacterial species, for all eight lanes (Fig. S3). Thus, use of an entire

flow cell for a single sample library did not influence the diversity

estimate.

Illumina HiSeq 2000 allows ca.180 million reads per lane, with

TruSeq v3 chemistry, compared to ca. 40 million reads per lane,

with GA v5 chemistry and the GAIIx instrument. When the larger

number of reads generated by HiSeq (66–75 million) was

analyzed, the number of species identified and percent of each

species increased for both saliva samples VFD10 and VFD12,

indicating that a larger number of HiSeq reads will contribute

breadth and depth in genome coverage (Fig. S4). These results

suggest that identification of bacterial species, particularly those

present in low number, can be improved with a larger number of

Shotgun Metagenomics for Human Salivary Microbiome
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reads, especially in the case of samples containing large a mounts

of human DNA. Analysis of saliva sample VFD10, using GAIIx

sequence data, showed approximately 97% of the sequenced reads

was from human DNA. Since background human DNA can range

from less than 1% in stool samples to greater than 99% in nasal

and vaginal samples [62], the effect of having an increased number

of reads to capture species diversity will vary according to host

DNA content, as well as complexity of the bacterial population.

Improved sampling, extraction, and library construction methods,

therefore, should be considered for maximum coverage of species

diversity.

Figure 1. Screenshot of GENIUS client software displaying tabular output of in silico metagenomic data. Left panel indicates projects
loaded to this graphical user interface. Three table views to the rightmost panel represent output of 5VCE (a)NmerCE (b) and merged output from
both 5VCE and NmerCE (c) algorithms, respectively.
doi:10.1371/journal.pone.0097699.g001

Figure 2. Genus overlap for sample VFD10-018 (a) and VFD12-006 (b) estimated by 16S sequencing/NCBI 16S BLAST and GAIIx
sequencing/5VCE-NmerCE.
doi:10.1371/journal.pone.0097699.g002
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GENIUS was used to analyze salivary datasets from the Human

Microbiome Project (HMP) (http://hmpdacc.org/HMASM/).

Five human salivary microbiomes were analyzed and nine major

phyla were identified by GENIUS 5VCE with Firmicutes,

Bacteroidete, Actinobacteria, and Proteobacteria most abundant,

Fusobacteria and TM7moderately abundant, and Spirochaetes,

Synergistetes, and Tenericutes least abundant. Sixty seven

bacterial genera belonging to nine phyla were identified, with

eleven genera, Streptococcus, Prevotella, Veillonella, Neisseria, Haemoph-

ilus, Campylobacter, Fusobacterium, Rothia, Mycoplasma,Actinomyces,and

Aggregatibacter comprising ,90% of the bacterial community.

Relative abundance estimates of phyla and genera varied (Fig.

S5). Overall abundance and distribution of phyla and genera were

in agreement with results of studies of human saliva reported by

other investigators [34,63,64]. Interestingly, Streptococcus was

observed to be prevalent in most of the HMP datasets, whereas

Prevotella predominated in the saliva samples, VFD12 and

SRS014692, analyzed in this study (Fig. S5). That is, a readily

distinguishable abundance profile of Prevotella species and

strains was observed in saliva samples VFD10, VFD12, and

SRS014692 (Fig.S6). Greater abundance of Prevotella in caries-

active, compared to healthy, individuals has been reported with

caries-active individuals often carrying a mixture of Prevotella

species different from normal healthy individuals [65].

GENIUS identified more than 175 bacterial species, including

bacteria commensal to the human salivary microbiome

([65],HOMD, www.homd.org) but also others not usually found

in the saliva flora of healthy individuals, including Haemophilus

influenzae, Neisseria meningitidis, Streptococcus pneumoniae and Gamma-

proteobacteria. Several bacterial species, including Aggregati-
bacter actinomycetemcomitans, Porphyromonas gingi-
valis, Treponema denticola, Fusobacterium nucleatum, Campylobacter

rectus, Parvimonas micra, Eikenella corrodens, Prevotella melaninogenica,

Prevotella nigrescens, Eubacterium saburreum, and Eubacterium yurii,

associated with periodontitis [12,66,67,68], were also identified

in varying abundance and distribution (Fig. S7). Although

presence of these bacterial species may indicate disease, i.e.,

periodontitis, it has been shown that periodontitis can be

attributed to genetic factors [69]. Therefore, diagnosis of

periodontitis cannot yet be made by bacteria present in saliva.

Principal component analysis (PCA) of the five HMP saliva

samples and the two saliva samples sequenced in this study showed

the bacterial species composition comprised two major clusters

(Fig. 5). Four saliva samples, VFD10, VFD12, SRS015055, and

SRS014692, clustered separately from SRS09210, SRS013942,

and SRS014468. Distinction between clusters, as well as variation

within each population, was apparent from a double hierarchical

dendrogram showing abundance and distribution of the bacterial

species (Fig. 6). Even though two major clusters were observed,

Figure 3. Relative abundance of species in VFD10-018 estimated by GAIIx sequencing and BLAST (microbial reference database),
5VCE, and NmerCE algorithms.
doi:10.1371/journal.pone.0097699.g003
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clearly diversity and species assemblage of the saliva samples were

not identical. Such differences reflect diet, hygiene, and/or family

and culture, all of which influence the oral microbiome. Centroid

classification [70] within the two major groupings showed four

genera, Haemophilus, Streptococcus, Neisseria, and Aggregatibacter, were

over-represented in cluster B (Fig. S8). Over representation of

Haemophilus species, i.e., H. influenzae, H. parainfluenzae, and

Aggregatibacter aphrophilus(née, Haemophilus aphrophilus)in cluster B is

particularly interesting, since these bacterial species have been

shown to be associated with Haemophilus endocarditis [71,72].

Although Haemophilus species can cause adult endocarditis (0.8–

1.3%) [73], the presence of a significant number of each of these

species represent a skewing from healthy human saliva.

Conclusion

WGS metagenomics applied to the human microbiome has

provided useful information applicable to public health and

personalized medicine, especially as high-throughput ultra-deep

sequencing approaches real time and becomes cost effective.

However, post sequencing processing and analysis of data

generated by WGS metagenomics are extremely challenging.

While traditional BLAST analysis is hindered by factors like time

for analysis, low resolution, and large computational requirements,

a marker gene approach will speed detection, but sacrifices

resolution. Genome mapping and reconstruction ensure precise

identification but takes a long ‘time to identification’ and require

powerful computational infrastructures and skilled manpower. In

this study, GENIUS algorithms and WGS metagenomic data were

used to identify the bacterial community composition of human

saliva. Compared to16S metagenic sequencing and analysis, WGS

metagenomics provided greater accuracy, both in identification

and quantitation of bacterial species and less biased estimate of

diversity, when GENIUS algorithms were used. Superior speed,

accuracy, and precision in identification were achieved compared

to 16S which significantly overestimated diversity. GENIUS

algorithms provide high specificity and accurate identification of

species, even those present in low abundance and with fractional

genome coverage. WGS metagenomics employing GENIUS

algorithms is proposed as method of choice for rapid, accurate,

and user friendly bacterial identification and metagenomics.

In this study, it has been demonstrated that WGS metagenomics

provides a practical approach in answering questions about the

human salivary microbiome. Therefore, metagenomic analysis of

clinical samples, not only of the salivary microbiome, but also

other microbial flora, in general, offers greater power of decision

making, precision, and speed compared to traditional methods.

Figure 4. Relative abundance of species in VFD12-006 estimated by GAIIx sequencing and BLAST (microbial reference database),
5VCE, and NmerCE algorithms.
doi:10.1371/journal.pone.0097699.g004
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The typical ‘‘time to answer’’ for culture-based methods requires

weeks for completion, whereas sequencing approaches can reduce

the timeline to a few days. For WGS metagenomics for microbial

detection and identification, laboratory protocols require a

fraction of time compared to culture-based methods, especially

since culturing is not required prior to library construction. The

time required for a sample being processed and sequenced is

approximately two days if MiSeq, 454 GS junior, Ion Torrent

PGM, NextSeq or HiSeq X platforms are used for sequencing

throughput. However, this timeline could be reduced through

automation and will soon be less than a day. The main difference

is actually the data analysis, when GENIUS is used, it takes only

half an hour or less for analysis of metagenomic data derived from

any routine clinical samples and does not require time-consuming

alignment or mapping.

The cost of NGS has reduced dramatically and continues to

decrease. It is clear that sequencing is not yet the least expensive

method, but considering the amount of information obtained from

NGS and the depth of resolution of the analyses, it is proving to be

more cost-effective because of the greater breadth and depth of

information provided compared to traditional methods involving

culture and other bioassays, with battery of tests and reagents

required. Metagenomics also provides opportunity to interrogate

the same dataset against multiple databases (i.e, GeneBook

libraries) for detection of bacteria, viruses and their virulence

factors and/or antibiotic resistance in a single assay. It is

concluded that application of GENIUS and GeneBook libraries

can be utilized effectively for wider application in the clinical

laboratory.

Supporting Information

Figure S1 Comparative analysis of human saliva sample VFD10

sequenced by Illumina GAIIx using GENIUS 5VCE, BLAST

(NCBI, microbial subset) and short read mapping.

(TIFF)

Figure S2 Statistical analysis of confidence interval by GENIUS

and visualization of the metagenomic community using the Krona

visualization tool.

(TIFF)

Figure S3 GENIUS 5VCE prediction of species relative

abundance in eight lanes of an Illumina GAIIx flowcell. The

smaller chart to the upper right corner represents the number of

reads generated per lane.

(TIFF)

Figure 5. Principal component analysis of data for seven saliva samples analyzed by GENIUS.
doi:10.1371/journal.pone.0097699.g005

Figure 6. Double hierarchical dendrogram showing bacterial
distribution at the species level for seven saliva samples. The
relative values for bacterial species are depicted by color intensity, with
legend indicated at the top of the figure.
doi:10.1371/journal.pone.0097699.g006
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Figure S4 GENIUS 5VCE prediction of percent of total hits for

identified bacterial species in VFD10 and VFD12, sequenced by

both GAIIx and HiSeq 2000. The smaller chart to the upper right

corner shows number of reads generated for two samples by

GAIIx and HiSeq 2000.

(TIFF)

Figure S5 Abundance of bacterial phyla and genera identified in

the salivary microbiome by GENIUS.

(TIFF)

Figure S6 Distribution and abundance of different Prevotella spp.

and strains in salivary microbiomes.

(TIFF)

Figure S7 Occurrence and relative abundance of bacterial

species associated with periodontal disease.

(TIFF)

Figure S8 The centroid classification analysis of cluster A and B

salivary samples. The top ranking markers can differentiate cluster

B (green) and cluster A (red) by the centroid scores. Species and

genera with nonzero components in each class are almost mutually

exclusive.

(TIFF)

Table S1 Comparison of relative abundance of genera in

VFD10-018 using different methods.

(DOCX)

Table S2 Comparison of relative abundance of genera in

VFD12-006using different methods.

(DOCX)
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