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Abstract

On a global basis, at least 15 million individuals suffer some form of a stroke every year. Of these

individuals, approximately 800,000 of these cerebrovascular events occur in the United States

(US) alone. The incidence of stroke in the US has declined from the third leading cause of death to

the fourth, a result that can be attributed to multiple factors that include improved vascular disease

management, reduced tobacco use, and more rapid time to treatment in patients that are clinically

appropriate to receive recombinant tissue plasminogen activator. However, treatment strategies for

the majority of stroke patients are extremely limited and represent a critical void for care. A

number of new therapeutic considerations for stroke are under consideration, but it is the

mammalian target of rapamycin (mTOR) that is receiving intense focus as a potential new target

for cerebrovascular disease. As part of the phosphoinositide 3-kinase (PI 3-K) and protein kinase

B (Akt) cascade, mTOR is an essential component of mTOR Complex 1 (mTORC1) and mTOR

Complex 2 (mTORC2) to govern cell death involving apoptosis, autophagy, and necroptosis,

cellular metabolism, and gene transcription. Vital for the consideration of new therapeutic

strategies for stroke is the ability to understand how the intricate and complex pathways of mTOR

signaling sometimes lead to disparate clinical outcomes.
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Incidence and Current Therapeutic Strategies for Cerebrovascular Disease

For 2011, an approximate 1% decrease in the age-adjusted death rate was reported for the

United States population derived from information on mortality data for the years of 2000

through 2011 (1). Life expectancy is now believed to be approaching almost 80 years for all

individuals. The five leading causes of death are cardiac disease, cancer, chronic lower

respiratory disease, stroke, and traumatic accidents (2). Interestingly in this analysis, stroke

is no longer ranked as the third leading cause of death. A number of factors may have

contributed to this lower ranking for stroke that include improved long-term care with
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disorders tied to hypertension and low-density lipoprotein cholesterol management,

reduction in tobacco consumption, improved public education and awareness for the need

for rapid treatment of cerebrovascular disorders, and improved management of metabolic

disorders such as diabetes (3, 4). Furthermore, treatment with recombinant tissue

plasminogen activator in an applicable sub-group of patients that requires a narrow

therapeutic window also has led to a reduction in mortality and morbidity in patients

presenting with stroke (5, 6). However, overall therapeutic strategies for patients presenting

with stroke remain limited for the majority of patients. A number of new therapeutic

considerations for stroke, ischemic vascular disease, and central nervous system

inflammation under investigation focus upon cytokines (7–19), growth factors (20),

progenitor cells (21), normobaric hyperoxia (22), metallic ions (23), cellular metabolism

(24), small molecular regulators of hypoxia inducible factor (25), tissue kallikrein (26), and

retinoblastoma protein (27). Yet, gaining exceptional and more recent interest as a novel

strategy for stroke and cerebrovascular disease is the role of the mammalian target of

rapamycin (mTOR) (28–30).

Mechanistic Avenues of Consideration for mTOR

mTOR (also known as the mechanistic target of rapamycin and FK506-binding protein 12-

rapamycin complex-associated protein 1) is a 289-kDa serine/threonine protein kinase. It

was initially isolated in yeast in Saccharomyces cerevisiae with the identification of the

genes TOR1 and TOR2 that encode two isoforms in yeast Tor1 and Tor2 (31). A single gene

FRAP1 encodes mTOR in mammals, is ubiquitously expressed throughout the body, and

modulates metabolism, cellular survival, gene transcription, and cytoskeletal components

(29, 32–36).

The protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2)

each contain the protein mTOR and have been identified based on their components and

their sensitivity to rapamycin (28, 35–39) (Figure 1). mTORC1 has the regulatory-associated

protein of mTOR (Raptor) protein. Phosphorylation of Raptor that controls mTORC1

activity can proceed through a number of pathways that involve the protein Ras homologue

enriched in brain (Rheb) (40). Rheb phosphorylates Raptor residue serine863 as well as other

residues that include serine859, serine855, serine877, serine696, and threonine706. mTORC1

activity can be limited if serine863 remains unphosphorylated, (41). mTOR itself can

phosphorylate Raptor following stimulation by insulin. In contrast, rapamycin, a macrolide

antibiotic from Streptomyces hygroscopicus, inhibits mTOR activity (41). mTORC1 is more

sensitive to the inhibitory effects of rapamycin than mTORC2 (42). Rapamycin inhibits

mTORC1 by binding to immunophilin FK-506-binding protein 12 (FKBP12) that attaches to

FKBP12 - rapamycin-binding domain (FRB) at the C-terminal of mTOR to prevent the

phosphorylation of mTOR (43). Chronic exposure of rapamycin also can inhibit mTORC2

that may involve a mechanism that disrupts the assembly and the integrity of mTORC2 (42).

The N-terminal portion of mTOR has at least a 20 HEAT (Huntingtin, Elongation factor 3,

A subunit of Protein phosphatase-2A, and TOR1) repeat (34). This region promotes binding

with two important, and mutually exclusive, regulatory proteins, Raptor (regulatory-

associated protein of mTOR) and Rictor (rapamycin-insensitive companion of mTOR) (32,
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44). It is the association with either Raptor or Rictor that determines whether mTOR is a

component of mTORC1 or mTORC2.

mTORC1 consists of a number of other components in addition to Raptor that include the

proline rich Akt substrate 40 kDa (PRAS40), Deptor (DEP domain-containing mTOR

interacting protein), and mLST8/GβL (mammalian lethal with Sec13 protein 8, termed

mLST8). PRAS40 competitively inhibits the binding of mTORC1 to Raptor (45). The

maintenance of mTORC1 activity occurs through the inhibitory phosphorylation of PRAS40

by protein kinase B (Akt). PRAS40 is phosphorylated on several residues that include

serine183, serine212, serine221, and threonine246 (46, 47). The serine sites are targets of

mTOR and the residue of threonine246 is the phosphorylation target of Akt. The

phosphorylation of PRAS40 leads to its dissociation with Raptor (48) and promotes the

binding of PRAS40 to the cytoplasmic docking protein 14-3-3 (49–51). This removes

PRAS40 from interacting with Raptor and facilitates the activation of mTORC1 (52). Deptor

also is an inhibitory subunit of mTORC1. Deptor binds to the FAT domain of mTOR (for

FKBP associated protein, Ataxia-telengiectasia, and Transactivation/transformation domain-

associated protein) to inhibit the activity of mTORC1. In the absence of Deptor, the activity

of Akt, mTORC1, and mTORC2 increase (53). mLST8 is a 36 kDa peripheral membrane

protein that is a component of both mTORC1 and mTORC2. mLST8 promotes mTOR

kinase activity with p70S6K and 4EBP1 (54), controls insulin signaling through the

transcription factor FoxO3 (55), is necessary for the phosphorylation of Akt and protein

kinase C-α (PKCα) (55), and is required for the association between Rictor and mTOR

(55).

Two important targets of mTORC1 are p70S6K and the eukaryotic initiation factor 4E

(eIF4E)-binding protein 1 (4EBP1) (33, 35). mTORC1 fosters mRNA biogenesis, translation

of ribosomal proteins, and cell growth through p70S6K phosphorylation (56). Amino acids,

such as glutamate and leucine, also have been shown to phosphorylate p70S6K. Through

amino acid activation of the mTOR-p70S6K pathway, glutamate may control neuronal

synaptic signaling (57) and leucine can decrease food intake (58). In contrast,

phosphorylation of 4EBP1 results in its inactivation. When 4EBP1 is hypophosphorylated, it

can block protein translation by binding to eukaryotic translation initiation factor 4 epsilon

(eIF4E) through eIF4 gamma (eIF4G), a protein that helps transport mRNA to the ribosome.

mTORC1 phosphorylation of 4EBP1 leads to the dissociation of 4EBP1 from eIF4E,

allowing eIF4G to begin mRNA translation (59). Binding of 4EBP1 and p70S6K to Raptor

can be prevented during activation of PRAS40.

Different from mTORC1, mTORC2 contains the rapamycin-insensitive companion of

mTOR termed Rictor. Similar to mTORC1, mTORC2 has the components of mTOR,

mLST8, and Deptor. mTORC2 contains additional components that are the mammalian

stress-activated protein kinase interacting protein (mSIN1) and the protein observed with

Rictor-1 (Protor-1). Rictor and mSIN1 can form the structural basis of mTORC2. mTORC2

utilizes Rictor to activate and phosphorylate Akt at Ser473, facilitating threonine308

phosphorylation by phosphoinositide-dependent kinase 1 (PDK1) (60). mSIN1 is necessary

for mTORC2 to activate Akt. mTOR has also been shown to phosphorylate mSIN1,

preventing the lysosomal degradation of mSIN1 (61). Protor-1 is a Rictor-binding subunit of
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mTORC2 that does not appear to alter other mTORC2 components in a way that would lead

to the phosphorylation of Akt or PKCα. However, Protor-1 may function to activate serum

and glucocorticoid induced protein kinase 1 (SGK1). Loss of Protor-1 in animal models

reduces the hydrophobic motif phosphorylation of SGK1 and its substrate NRDG1 (N-Myc

downregulated gene 1 in the kidney) (62).

Targets of mTORC2 are Akt, protein kinase C alpha (PKCα), P-Rex1, P-Rex2, Rho

GTPases, and SGK1. mTORC2 promotes cell survival through the activation of Akt and

uses PKCα for cytoskeleton remodeling. mTORC2 phosphorylates and activates SGK1, is a

member of the protein kinase A/protein kinase G/protein kinase C (AGC) family of protein

kinases, and is activated by growth factors to control ion transport and growth (63).

mTORC2 modulates cell migration through activating Rac guanine nucleotide exchange

factors P-Rex1 and P-Rex2 and uses Rho signaling during cell-to-cell contact (64). P-Rex1

and P-Rex2 are phosphorylated by Akt through mTORC2 acting as a catalytic complex and

are linked to Rac activation and cell migration (64).

Akt activates mTORC1 in response to growth factors and several other Akt mediated

pathways (33). Tuberous sclerosis complex (TSC) 1 (hamartin)/TSC2 (tuberin) complex is

an inhibitor of mTORC1 and one of the targets of Akt for the regulation of mTORC1

activity. Although several regulatory phosphorylation sites are known to exist for TSC1,

phosphorylation of TSC2 by Akt, extracellular signal-regulated kinases (ERKs), activating

protein p90 ribosomal S6 kinase 1 (RSK1), AMP activated protein kinase (AMPK), or

glycogen synthase kinase -3β (GSK-3β) appear to be more significant for controlling the

TSC1/TSC2 complex. TSC2 functions as a GTPase-activating protein (GAP) converting a

small G protein Ras homologue enriched in brain (Rheb-GTP) to the inactive GDP-bound

form (Rheb-GDP). Once active, Rheb-GTP can directly interact with Raptor to activate

mTORC1 and also regulate the binding of 4EBP1 to mTORC1 (65). Akt phosphorylates

TSC2 on multiple sites that leads to the destabilization of TSC2 and disruption of its

interaction with TSC1. The phosphorylation of TSC2 (serine939, serine981, and

threonine1462) can increase its binding to protein 14-3-3 and lead to cellular sequestration,

disruption of the TSC1/TSC2 complex, and subsequent activation of Rheb and mTORC1

(66). In contrast to mTORC1, TSC1/TSC2 fosters the activity of mTORC2 (67). Loss of a

functional TSC1/TSC2 complex can lead to the loss of mTORC2 kinase activity in vitro

(67). The TSC1/TSC2 complex can associate with mTORC2 to promote mTORC2 activity

that involves the N-terminal region of TSC2 and the C-terminal region of Rictor.

On an additional note, it is important to recognize that mTOR signaling is part of cascade of

pathways that include phosphoinositide 3 –kinase (PI 3-K), Akt, and AMPK (68). AMPK

phosphorylates TSC2 to lead to increased GAP activity to turn Rheb-GTP into Rheb-GDP

and thus inhibits the activity of mTORC1 (69). AMPK also can control TSC1/2 activity

through RTP801 (REDD1/ product of the Ddit4 gene) (70). During hypoxia, AMPK activity

can increase REDD1 expression to suppress mTORC1 activity by releasing TSC2 from its

inhibitory binding to protein 14-3-3 (70). Increased AMPK activation has been shown to

reduce myocardial infarct size in experimental models of diabetes (71). However, down-

regulation of the AMPK pathway may be detrimental. For example, loss of AMPK activity

can increase insulin resistance in skeletal muscle (72). In addition, the liver kinase B1

Maiese Page 4

Curr Neurovasc Res. Author manuscript; available in PMC 2014 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(LKB1) can regulate the activation of AMPK through phosphorylation (73). Loss of LKB1

impairs cardiac function during ischemic conditions (74), illustrating the importance of

AMPK signaling in the mTOR pathway for the vascular system.

Cell Injury Through Apoptosis, Autophagy, and Necroptosis

Ischemic injury as aresult of oxidative stress in the brain (75, 76) can ultimately initiate

programmed cell death pathways that oversee apoptosis, autophagy, and necroptosis (77–79)

(Figure 1). In acute and chronic degenerative disorders, apoptosis, autophagy, and

necroptosis have been associated with cell injury. Apoptotic DNA degradation and the

presence of caspase 3 in neurons has been reported in the postmortem nigra of Parkinson's

disease patients, suggesting that apoptosis results in neuronal cell death (80). Apoptotic

DNA fragmentation (81) and caspase activation (82) also have been reported in the brains of

patients with Alzheimer's disease as well as in cell models of Alzheimer's disease and

cognitive loss (83–88). Apoptotic cell loss has also been associated with acute traumatic

injury (84, 88).

mTOR has been shown through Akt to protect endothelial cells against apoptosis (89) and to

block “pro-apoptotic” forkhead transcription factors, such as FoxO3a (89, 90). Inflammatory

cells also can undergo apoptotic injury during oxidative stress if deprived of Akt and mTOR

activation (86, 91). Apoptotic cell death in dopaminergic neurons can be blocked during

application of agents that increase Akt and mTOR activity (92). Akt also functions to

modulate apoptosis with mTOR through the inhibition of PRAS40. Phosphorylation of

PRAS40 by Akt can block the activity of this substrate, lead to its dissociation from

mTORC1 to promote mTOR activation and prevent apoptosis (49, 87, 93).

mTOR also can regulate apoptotic cell death through downstream signaling pathways such

as p70S6K and BAD. Phosphorylation of BAD leads to the dissociation of this protein from

the “anti-apoptotic” protein Bcl-2/Bcl-xL and increases BAD binding to protein 14-3-3.

Activation of p70S6K promotes the phosphorylation of BAD in astrocytes to limit apoptotic

cell injury (94). The activation of mTOR and p70S6K may also decrease apoptosis through

pathways that can increase “anti-apoptotic” Bcl-2/Bcl-xL expression (94). In addition,

insulin prevents apoptosis in rat retinal neuronal cells against serum deprivation through the

activation of mTOR and p70S6K (95). Activation of p70S6K in the PI3-K/Akt pathway that

may not involve BAD also can foster neuronal (96) and cardiac protection (97). Over-

expression of wild type p70S6K or a rapamycin resistant form of the p70S6K kinase

enhances the cytoprotective effect of insulin (95). Other growth factors similar to insulin,

such as erythropoietin (EPO) (98), also have been reported to be dependent upon mTOR

activation for cytoprotection against apoptosis (86, 99, 100).

Yet, activation of mTOR does not consistently block apoptosis. During Alzheimer's disease,

post-mitotic neurons that attempt to enter the cell cycle do not replicate, but can result in

apoptotic cell death (27, 101). In studies with amyloid oligomer exposure, neurons can be

prevented from entering the cell cycle during the inhibition of mTOR and thus be protected

from apoptosis (102).
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In contrast to apoptosis that can lead to the ultimate destruction of a cell, autophagy allows

cells to recycle cytoplasmic components and remove defective organelles for tissue

remodeling. Of the three categories of autophagy that include microautophagy,

macroautophagy, and chaperone-mediated autophagy, macroautophagy is the most

prominent and involves the degradation of cytoplasmic material and the sequestration of the

cytoplasmic protein and organelles into autophagosomes (78, 79, 103, 104). mTOR controls

autophagy through the regulation of autophagic genes. mTOR phosphorylates the

mammalian homologue of autophagy related gene 13 (Atg13) and the mammalian Atg1

homologue ULK1 and ULK2 to prevent the progression of autophagy (105). The focal

adhesion kinase family interacting protein of 200 kDa (FIP200) has been identified as a

ULK binding protein. FIP200 and Atg13 are vital for the stability and activation of ULK1.

Mammalian Atg13 binds to ULK1/2 and FIP200 to activate ULKs and facilitates the

phosphorylation of FIP200 by ULKs (105). It is believed that mTOR activation prevents

autophagy in mammalian cells through the inhibition of the ULK-Atg13-FIP200 complex by

phosphorylating Atg13 and ULKs.

In the nervous system, it remains unclear under what specific circumstances pathways such

as autophagy may be beneficial. Autophagy can lead to cell death in cerebral astrocytes

(106), in purkinje neurons (107), in sympathetic neurons (108), in cortical neurons (109),

and in spinal cord motor neurons (110). Activation of the mTOR pathway that blocks

autophagy may be necessary to protect against spinal cord injury (111) and maintain

synaptic plasticity (112). Yet, in other scenerios, autophagy also may invoke a protective

component (113). Trophic factor neuronal protection may be mediated through the induction

of autophagy (114). Induction of autophagy also may be necessary with combined inhibition

of mTOR signaling to improve cognitive function, limit amyloid (Aβ) cell injury (115), and

clear mutant huntingtin in Huntington's disease (116). Activation of autophagy also may be

required to protect against neuronal cell loss and α-synuclein toxicity in Parkinson's disease

(117).

Given the varied outcomes that can occur with programmed cell death pathways, it may

come as no surprise to learn that apoptosis and autophagy also share a complex relationship.

For example, inhibition of mTOR activity in squamous carcinoma cell lines can lead to the

combined activation of apoptosis and autophagy (118). Methamphatamine leads to cell

death not only through apoptosis, but also through autophagy by inhibiting the

disassociation of the Bcl-2/Beclin 1 complex (119). Bcl-2/Bcl-xL is an “anti-apoptotic”

protein that blocks autophagy through its inhibitory interaction with Beclin 1 (120).

Autophagy and apoptosis also may have opposing roles. Induction of apoptosis may

conversely require the inhibition of autophagy (78, 121, 122).

Necroptosis is a regulated necrotic cell death pathway that is controlled by receptor-

interacting protein (RIP-1 and RIP-3) kinases and cylindromatosis (turban tumor syndrome)

(CYLD). Necroptosis can be closely tied to autophagy and has been shown that inhibition of

mTOR in acute lymphoblastic leukemia leads to autophagy dependent cell loss with features

that are consistent with necroptosis (77). In human carcinoma cell lines, agents that can slow

cell cycle progression have been shown to be dependent upon necroptosis (123), suggesting

a potential new pathway of treatment for neurodegenerative disorders such as Alzheimer's
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disease. Furthermore, the ability to proliferate by glioblastoma cells has been linked to a

number of mechanisms that include inhibition of Akt, mTORC1 and mTORC2, cell-cycle

block at G2-M, and the initiation of necroptosis and autophagy (124).

Targeting mTOR in Cerebrovascular Disease

Given the potential role of mTOR in a number of neurodegenerative disorders (29, 35, 36,

39, 125–130), new enthusiasm is now focusing upon the mTOR pathway for the treatment

of cerebrovascular disease. In an experimental model of ischemic-reperfusion injury, the

agent salvianolate has been shown to decrease stroke volume that was associated with the

up-regulation of Golgi phosphoprotein-3 and mTOR phosphorylation (131). The

neuroprotective agent ferulic acid reduces middle cerebral artery infarction in a rat

experimental model with phosphorylation and activation of mTOR signaling to include

mTOR and p70S6K (132). In animal models of ischemic preconditioning, activation of

mTOR pathways are also believed to be necessary for neuroprotection. Phosphorylation and

activation of mTOR has been observed during remote ischemic preconditioning of the

hippocampus that was neuroprotective and improved memory function during global brain

ischemia (133). In models of ischemic post-conditioning, long-term cerebral focal ischemic

damage and neurological disability were reduced and mediated by enhanced Akt and mTOR

activity (134).

Cerebrovascular protection in these models may be mediated in part through modulation of

glutamate uptake and a reduction in excitotoxicity modulated through mTOR signaling in

glia. During oxygen-glucose deprivation, the Akt-mTOR axis through mTORC1 and

mTORC2 has been demonstrated to be necessary for glutamate transporter subtype 2

(GLT-1) expression that would promote glutamate uptake during brain ischemia and limit

ischemic injury (135). Prior work supports such a premise with the illustration that mTOR

signaling is vital to protect other non-neuronal cells such as those that involve microglia (86,

91, 100). An additional mechanism of protection through mTOR to consider involves small

non-coding micro RNAs (miRNAs). In adult animal models of stroke, a small cohort of

circulating miRNAs that were related to PI3-K, Akt, and mTOR were associated with a

greater degree of neuroprotection in adult females, suggesting that miRNAs with the

presence of a sex factor could offer clinical protection through mTOR signaling (136).

Despite the number of investigations that support a role for mTOR activation in

neuroprotection during cerebral ischemia, other experimental studies offer a counter

perspective. Some studies suggest that inhibition of mTOR through PRAS40 activation may

reduce cerebral infarction through work that over-expresses PRAS40 as well as eliminates

the presence of PRAS40 in murine models of stroke (137). However, other experimental

models employing neuronal cell lines and microglia have shown that PRAS40 either in

conjunction with the inhibition of mTOR signaling or independently can lead to detrimental

cell injury and that cell protection requires the reduction of PRAS40 activity (49, 87).

Studies also show that antagonism of the histamine H3 receptor leads to protection

following cerebral ischemia and reperfusion through inhibition of mTOR phosphorylation

and induction of autophagy (138). In hippocampal neurons, damage from excitotoxicity can

be reduced with promotion of autophagy and mTOR inhibition (139). During oxygen-
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glucose deprivation in human umbilical vein endothelial cells, rapamycin with subsequent

inhibition of mTOR protectes vascular cells from injury in conjunction with autophagy

activation (140). Rapamycin also was found to be protective during oxygen-glucose

deprivation in cortical neuronal cells. Application of rapamycin prevented the activation of

mTORC1 and mTORC2 and led to increased neuronal survival (141). Using sub-lethal

ischemic precondition to result in ischemic brain tolerance, rapamycin also was found to

promote autophagy, reduce brain damage, and improve neurological scores that was

suggested to be mediated through TSC1 (142).

The current work with examining the role of mTOR during cerebrovascular injury clearly

suggests that a number of parameters may determine whether promotion of the mTOR

signaling pathway or blockade of the mTOR axis is necessary for protection in the brain.

Different experimental models as well multiple factors in clinical trials may impart variables

that lead to a variety of outcomes. However, a case also can be made for the degree of

mTOR activation that may be necessary to prevent or at least limit an injury process and

subsequently lead to cellular and tissue protection. For example, activation of mTOR can

prevent oxidative stress mediated autophagy in dopamine neurons (92). Yet, prolonged

activation of mTOR can lead to dyskinesia in patients with Parkinson's disease (143).

Furthermore, in chronic disorders such as Alzheimer's disease, it is the inhibition of mTOR

with the activation of autophagy that may be necessary to impart clinical benefit (115).

Conclusions and Future Perspectives

Cerebrovascular disease is one of the five leading causes of disability and death in the US

and affects over 800,000 people year at a cost of greater than 75 billion US dollars annually.

Although the incidence of stroke has declined placing it in rank from the third leading cause

of death to the fourth, multiple factors rather than any single entity are most likely

contributors to this result. These factors would include improved management of vascular

disease in patients, reduction of tobacco use, and more rapid time to treatment in patients

during the initial onset of stroke. Yet, stroke continues to remain a significant cause of death

and disability worldwide and the available treatments for stroke are markedly restricted. In

addition, therapies such as recombinant tissue plasminogen activator are only applicable for

a small subset of patients. New therapeutic strategies continue to be investigated for the

treatment of stroke but none may be as groundbreaking as well as complex as those that

focus upon mTOR signaling.

Targeting mTOR can offer a wide variety of outcomes that appear beneficial with either the

activation or the inhibition of mTOR pathways, suggesting that the degree of mTOR activity

may play a significant role in attempts to achieve neuroprotection during the treatment of

stroke. However, current studies also indicate that mTOR most likely does not function in

isolation and the axis that involves PI 3-K, Akt, and mTOR should be considered more

broadly in relation to potential mechanisms that affect cellular survival. For example,

regulation of the combined PI 3-K, Akt, and mTOR cascade has been shown to be important

to promote increased radiosensitivity against tumor cell growth and the vascular supply of

tumors (144). Furthermore, combined loss of 70S6K activity with the loss of the mTORC2

substrate Akt2 is necessary for defective insulin activity and β-cell function (145),
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suggesting that both of these pathways may require targeting when considering therapeutic

strategies to maintain glycemic control. New studies also indicate that metformin may limit

prostate cancer growth and disrupt membrane initiated androgen signaling through

combined mTOR, 70S6K, and AMPK signaling (146). Additional studies also have

highlighted the critical role of other linked pathways to the PI3-K, Akt, and mTOR axis for

cellular survival and injury that involve wingless (Wnt) signaling (86, 100, 147–150), the

CCN family (87, 151, 152), cytokines such as EPO (49, 86, 99, 100), sirtuins (153–155),

forkhead transcription factors (55, 156–159), neurotransmitter modulation (160), and lipid

metabolism (28).

One also must be cognizant of the potential for tumorigenesis with the activation of the

mTOR pathway. Inhibition of tumor growth and development of metastases usually requires

blockade of the proliferative mTOR pathway (39, 161–163). Experimental studies show that

inhibition of mTOR can block lung cancer growth (39, 163), prostate cancer (164), breast

cancer (165), and colorectal cancer (166). At the clinical level, rapamycin (sirolimus) and

rapamycin derivative compounds (“rapalogs”) are currently approved by the Food and Drug

Administration for the treatment of subependymal giant cell astrocytoma associated with

tuberous sclerosis (everolimus) and neuroendocrine pancreatic tumors (everolimus) (35,

167, 168). As result, activation of mTOR signaling may foster protection against

neurodegenerative disorders but such focus must also consider the potential for unintended

and unchecked cellular growth. Ultimately, knowledge of how the intricate cellular signaling

pathways of mTOR can lead to sometimes very different clinical outcomes will be essential

for the development of clinical strategies for stroke that rely upon mTOR.
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Figure 1. mTOR signaling in Stroke
Activation of phosphoinositide 3 kinase (PI 3-K) following cerebral ischemia onset leads to

phosphorylation and activation of Akt (protein kinase B). Subsequently, Akt activates

mTORC1 through phosphorylating TSC2 and disrupting the interaction between TSC2 and

TSC1. Akt also can directly phosphorylate proline rich Akt substrate 40 kDa (PRAS40) to

reduce its binding to regulatory associated protein of mTOR (Raptor), lead to activation of

mTORC1, and prevent apoptosis. mTORC1 phosphorylates the downstream target p70

ribosome S6 kinase (p70S6K) to phosphorylate pro-apoptotic protein BAD and increase the

expression of Bcl-2/Bcl-xL which functions as an anti-apoptotic protein. mTORC1

activation also inhibits autophagic proteins autophagy related gene 13 (Atg13) and UNC-51

like kinase 1/2(ULK1/2) through phosphorylation to prevent autophagy. During the

inhibition of mTOR with agents such as rapamycin, autophagy and necroptosis can be

initiated.
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