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Abstract

Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be

used for quantitative scientific data acquisition if images are captured in raw format and processed

so that they maintain a linear relationship with scene radiance. Here we describe the image-

processing steps required for consistent data acquisition with color cameras. In addition, we

present a method for scene-specific color calibration that increases the accuracy of color capture

when a scene contains colors that are not well represented in the gamut of a standard color-
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calibration target. We demonstrate applications of the proposed methodology in the fields of

biomedical engineering, artwork photography, perception science, marine biology, and underwater

imaging.

1. INTRODUCTION

State-of-the-art hardware, built-in photo-enhancement software, waterproof housings, and

affordable prices enable widespread use of commercial off-the-shelf (COTS) digital cameras

in research laboratories. However, it is often overlooked that these cameras are not

optimized for accurate color capture, but rather for producing photographs that will appear

pleasing to the human eye when viewed on small gamut and low dynamic range consumer

devices [1,2]. As such, use of cameras as black-box systems for scientific data acquisition,

without control of how photographs are manipulated inside, may compromise data accuracy

and repeatability.

A consumer camera photograph is considered unbiased if it has a known relationship to

scene radiance. This can be a purely linear relationship or a nonlinear one where the

nonlinearities are precisely known and can be inverted. A linear relationship to scene

radiance makes it possible to obtain device-independent photographs that can be

quantitatively compared with no knowledge of the original imaging system. Raw

photographs recorded by many cameras have this desired property [1], whereas camera-

processed images, most commonly images in jpg format, do not.

In-camera processing introduces nonlinearities through make- and model-specific and often

proprietary operations that alter the color, contrast, and white balance of images. These

images are then transformed to a nonlinear RGB space and compressed in an irreversible

fashion (Fig. 1). Compression, for instance, creates artifacts that can be so unnatural that

they may be mistaken for cases of image tampering (Fig. 2) [3]. As a consequence, pixel

intensities in consumer camera photographs are modified such that they are no longer

linearly related to scene radiance. Models that approximate raw (linear) RGB from nonlinear

RGB images (e.g., sRGB) exist, but at their current stage they require a series of training

images taken under different settings and light conditions as well as ground-truth raw

images [2].

The limitations and merit of COTS cameras for scientific applications have previously been

explored, albeit disjointly, in ecology [4], environmental sciences [5], systematics [6],

animal coloration [7], dentistry [8], and underwater imaging [9,10]. Stevens et al. [7] wrote:

“… most current applications of digital photography to studies of animal coloration fail to

utilize the full potential of the technology; more commonly, they yield data that are

qualitative at best and uninterpretable at worst.” Our goal is to address this issue and make

COTS cameras accessible to researchers from all disciplines as proper data-collection

instruments. We propose a simple framework (Fig. 3) and show that it enables consistent

color capture (Sections 2.A–2.D). In Section 3, we introduce the idea of scene-specific color

calibration (SSCC) and show that it improves color-transformation accuracy when a non-

ordinary scene is photographed. We define an ordinary scene as one that has colors within
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the gamut of a commercially available color-calibration target. Finally, we demonstrate how

the proposed workflow can be applied to real problems in different fields (Section 4).

Throughout this paper, “camera” will refer to “COTS digital cameras,” also known as

“consumer,” “digital still,” “trichromatic,” or “RGB” cameras. Any references to RGB will

mean “linear RGB,” and nonlinear RGB images or color spaces will be explicitly specified

as such.

2. COLOR IMAGING WITH COTS CAMERAS

Color vision in humans (and other animals) is used to distinguish objects and surfaces based

on their spectral properties. Normal human vision is trichromatic; the retina has three cone

photoreceptors referred to as short (S, peak 440 nm), medium (M, peak 545 nm), and long

(L, peak 580 nm). Multiple light stimuli with different spectral shapes evoke the same

response. This response is represented by three scalars known as tri-stimulus values, and

stimuli that have the same tri-stimulus values create the same color perception [11]. Typical

cameras are also designed to be trichromatic; they use color filter arrays on their sensors to

filter broadband light in the visible part of the electromagnetic spectrum in regions humans

perceive as red (R), green (G), and blue (B). These filters are characterized by their spectral

sensitivity curves, unique to every make and model (Fig. 4). This means that two different

cameras record different RGB values for the same scene.

Human photoreceptor spectral sensitivities are often modeled by the color-matching

functions defined for the 2° observer (foveal vision) in the CIE 1931 XYZ color space. Any

color space that has a well-documented relationship to XYZ is called device-independent

[12]. Conversion of device-dependent camera colors to device-independent color spaces is

the key for repeatability of work by others; we describe this conversion in Sections 2.D and

3.

A. Image Formation Principles

The intensity recorded at a sensor pixel is a function of the light that illuminates the object

of interest (irradiance, Fig. 5), the light that is reflected from the object toward the sensor

(radiance), the spectral sensitivity of the sensor, and optics of the imaging system:

(1)

Here c is the color channel (e.g., RGB), Sc(λ) is the spectral sensitivity of that channel,

Li(λ) is the irradiance, F(λ, θ) is the bi-directional reflectance distribution function, and

λmin and λmax denote the lower and upper bounds of the spectrum of interest, respectively

[13]. Scene radiance is given by

(2)

where F(λ, θ) is dependent on the incident light direction as well as the camera viewing

angle where θ = (θi, ϕi, θr, ϕr). The function k(γ) depends on optics and other imaging
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parameters, and the cos θi term accounts for the changes in the exposed area as the angle

between surface normal and illumination direction changes. Digital imaging devices use

different optics and sensors to capture scene radiance according to these principles (Table

1).

B. Demosaicing

In single-sensor cameras, the raw image is a 2D array [Fig. 6(a), inset]. At each pixel, it

contains intensity values that belong to one of RGB channels according to the mosaic layout

of the filter array. A Bayer pattern is the most commonly used mosaic. At each location, the

two missing intensities are estimated through interpolation in a process called demosaicing

[14]. The highest-quality demosaicing algorithm available should be used regardless of its

computation speed (Fig. 6), because speed is only prohibitive when demosaicing is carried

out using the limited resources in a camera, not when it is done by a computer.

C. White Balancing

In visual perception and color reproduction, white has a privileged status [15]. This is

because through a process called chromatic adaptation, our visual system is able to discount

small changes in the color of an illuminant, effectively causing different lighting conditions

to appear “white” [12]. For example, a white slate viewed underwater would still be

perceived as white by a SCUBA diver, even though the color of the ambient light is likely to

be blue or green, as long as the diver is adapted to the light source. Cameras cannot adapt

like humans and therefore cannot discount the color of the ambient light. Thus photographs

must be white balanced to appear realistic to a human observer. White balancing often refers

to two concepts that are related but not identical: RGB equalization and chromatic

adaptation transform (CAT), described below.

In scientific imaging, consistent capture of scenes often has more practical importance than

capturing them with high perceptual accuracy. White balancing as described here is a linear

operation that modifies photos so they appear “natural” to us. For purely computational

applications in which human perception does not play a role, and therefore a natural look is

not necessary, white balancing can be done using RGB equalization, which has less

perceptual relevance than CAT, but is simpler to implement (see examples in Section 4).

Here we describe both methods of white balancing and leave it up to the reader to decide

which method to use.

1. Chromatic Adaptation Transform—Also called white point conversion, CAT

models approximate the chromatic adaptation phenomenon in humans and have the general

form:

(3)

where VXYZ denotes the 3 × N matrix of colors in XYZ space, whose appearance is to be

transformed from the source illuminant (S) to the destination illuminant (D); MA is a 3 × 3
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matrix defined uniquely for the CAT model and ρ, γ, and β represent the tri-stimulus values

in the cone response domain and are computed as follows:

(4)

Here, WP is a 3 × 1 vector corresponding to the white point of the light source. The most

commonly used CAT models are Von Kries, Bradford, Sharp, and CMCCAT2000. The MA

matrices for these models can be found in [16].

2. RGB Equalization—RGB equalization, often termed the “wrong von Kries model”

[17], effectively ensures that the RGB values recorded for a gray calibration target are equal

to each other. For a pixel p in the ith color channel of a linear image, RGB equalization is

performed as

(5)

where  is the intensity of the resulting white-balanced pixel in the ith channel, and DSi

and WSi are the values of the dark standard and the white standard in the ith channel,

respectively. The dark standard is usually the black patch in a calibration target, and the

white standard is a gray patch with uniform reflectance spectrum (often, the white patch). A

gray photographic target (Fig. 7) is an approximation to a Lamber-tian surface (one that

appears equally bright from any angle of view) and has a uniformly distributed reflectance

spectrum. On such a surface, the RGB values recorded by a camera are expected to be equal,

but this is almost never the case due to a combination of camera sensor imperfections and

spectral properties of the light field [17]. RGB equalization compensates for that.

D. Color Transformation

Two different cameras record different RGB values for the same scene due to differences in

color sensitivity. This is true even for cameras of the same make and model [7]. Thus the

goal of applying a color transformation is to minimize this difference by converting device-

specific colors to a standard, device-independent space (Fig. 8). Such color transformations

are constructed by imaging calibration targets. Standard calibration targets contain patches

of colors that are carefully selected to provide a basis to the majority of natural reflectance

spectra. A transformation matrix T between camera color space and a device-independent

color space is computed as a linear least-squares regression problem:

(6)

Here  and  are 3 × N matrices where N is the number of patches in the

calibration target. The ground truth XYZ tri-stimulus values  can either be the
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published values specific to that chart, or they could be calculated from measured spectra

(Section 3). The RGB values  are obtained from the linear RGB image of the

calibration target. Note that the published XYZ values for color chart patches can be used

only for the illuminants that were used to construct them (e.g., CIE illuminants D50 or D65);

for other illuminants, a white point conversion [Eqs. (3) and (4)] should first be performed

on linear RGB images.

The 3 × 3 transformation matrix T (see [17] for other polynomial models) is then estimated

from Eq. (6):

(7)

where the superscript + denotes the Moore–Penrose pseudo-inverse of the matrix .

This transformation T is then applied to a white-balanced novel image :

(8)

to obtain the color-corrected image , which is the linear, device-independent version

of the raw camera output.

The resulting image  needs to be converted to RGB before it can be displayed on a

monitor. There are many RGB spaces, and one that can represent as many colors as possible

should be preferred for computations (e.g., Adobe wide gamut) but, when displayed, the

image will eventually be shown within the boundaries of the monitor’s gamut.

In Eq. (6), we did not specify the value of N, the number of patches used to derive the matrix

T. Commercially available color targets vary in their number of patches, ranging between

tens and hundreds. In general, a higher number of patches used does not guarantee an

increase in color transformation accuracy. Alsam and Finlayson [18] found that 13 of the 24

patches of a Macbeth ColorChecker (MCC) are sufficient for most transformations.

Intuitively, using patches whose radiance spectra span the subspace of those in the scene

yields the most accurate transforms; we demonstrate this in Fig. 9. Given a scene that

consists of a photograph of a MCC taken under daylight, we derive T using an increasing

number of patches (1–24 at a time) and compare the total color transformation error in each

case. We use the same image of the MCC for training and testing because this simple case

provides a lower bound on error. We quantify the total error using

(9)

where an LAB triplet is the representation of an XYZ triplet in the CIE LAB color space

(which is perceptually uniform); i indicates each of the N patches in the MCC, and GT is the

ground-truth value for the corresponding patch. Initially, the total error depends on the

ordering of the color patches. Since it would not be possible to simulate 24 (6.2045 × 1023)

different ways the patches could be ordered, we computed errors for three cases (see Fig. 9
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legend). The initial error is the highest for patch order 3 because the first six patches of this

ordering are the achromatic, and this transformation does poorly for the MCC, which is

composed of mostly chromatic patches. Patch orderings 1 and 2, on the other hand, start

with chromatic patches, and the corresponding initial errors are roughly an order of

magnitude lower. Regardless of patch ordering, the total error is minimized after the

inclusion of the 18th patch.

3. SCENE-SPECIFIC COLOR CALIBRATION

In Section 2.D, we outlined the process for building a 3 × 3 matrix T that transforms colors

from a camera color space to the standard CIE XYZ color space. It is apparent from this

process that the calibration results are heavily dependent on the choice of the calibration

target or the specific patches used. Then we can hypothesize that if we had a calibration

target that contained all the colors found in a given scene, and only those colors, we would

obtain a color transformation with minimum error. In other words, if the colors used to

derive the transformation T were also the colors used to evaluate calibration performance,

the resulting error would be minimal—this is the goal of SSCC.

The color signal that reaches the eye, or camera sensor, is the product of reflectance and

irradiance (Fig. 5), i.e., radiance [Eqs. (1) and (2)]. Therefore, how well a calibration target

represents a scene depends on the chromatic composition of the features in the scene

(reflectance) and the ambient light profile (irradiance). For example, a scene viewed under

daylight will appear monochromatic if it only contains different shades of a single hue, even

though daylight is a broadband light source. Similarly, a scene consisting of an MCC will

appear monochromatic when viewed under a narrowband light source, even though the

MCC patches contain many different hues.

Consumer cameras carry out color transformations from camera-dependent color spaces

(i.e., raw image) to camera-independent color spaces assuming that a scene consists of

reflectances similar to those in a standard color target, and that the ambient light is

broadband (e.g., daylight or one of common indoor illuminants) because most scenes

photographed by consumer cameras have these properties. We call scenes that can be

represented by the patches of a standard calibration target ordinary. Non-ordinary scenes, on

the other hand, have features whose reflectances are not spanned by calibration target

patches (e.g., in a forest there may be many shades of greens and browns that common

calibration targets do not represent), or are viewed under unusual lighting (e.g., under

monochromatic light). In the context of scientific imaging, non-ordinary scenes may be

encountered often; we give examples in Section 4.

For accurate capture of colors in a non-ordinary scene, a color-calibration target specific to

that scene is built. This is not a physical target that is placed in the scene as described in

Section 2.D; instead, it is a matrix containing tri-stimulus values of features from that scene.

Tri-stimulus values are obtained from the radiance spectra measured from features in the

scene. In Fig. 10, we show features from three different underwater habitats from which

spectra, and in turn tri-stimulus values, can be obtained.

Spectra are converted into tri-stimulus values as follows [12]:
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(10)

where X1 = X, X2 = Y, X3 = Z, and . Here, i is the index of the wavelength steps

at which data were recorded, Ri is the reflectance spectrum, and Ei the spectrum of

irradiance; x̄j,i are the values of the CIE 1931 color-matching functions x, y, z at the ith

wavelength step, respectively.

Following the calculation of the XYZ tri-stimulus values, Eqs. (6) to (8) can be used as

described in Section 2.D to perform color transformation. However, for every feature in a

scene whose XYZ values are calculated, a corresponding RGB triplet that represents the

camera color space is needed. This can be obtained in two ways: by photographing the

features at the time of spectral data collection or by simulating the RGB values using the

spectral sensitivity curves of the camera (if they are known) and ambient light profile.

Equation (10) can be used to obtain the camera RGB values by substituting the camera

spectral sensitivity curves instead of the color-matching functions. In some cases, this

approach is more practical than taking photographs of the scene features (e.g., under field

conditions when light may be varying rapidly); however, spectral sensitivity of camera

sensors is proprietary and not made available by most manufacturers. Manual measurements

can be done through the use of a monochromator [19], a set of narrowband interference

filters [20], or empirically [21–25].

A. SSCC for Non-Ordinary Scenes

To create a non-ordinary scene, we used 292 natural reflectance spectra randomly selected

from a floral reflectance database [26] and simulated their radiance with the underwater light

profile at noon shown in Fig. 11(a) (Scene 1). While this seems like an unlikely

combination, it allows for the simulation of chromaticity coordinates [Fig. 11(a), black dots]

that are vastly different than those corresponding to an MCC under noon daylight [Fig.

11(a), black squares], using naturally occurring light and reflectances. We randomly chose

50% of the floral samples to be in the training set for SSCC and used the other 50% as a

novel scene for testing. When this novel scene is transformed using an MCC, the mean error

according to Eq. (9) was 23.8, and with SSCC, it was 1.56 (just noticeable difference

threshold is 1). We repeated this transformation 100 times to ensure test and training sets

were balanced and found that the mean-error values remained similar. Note that the resulting

low error with SSCC is not due to the high number of training samples (146) used compared

to 24 in an MCC. Repeating this analysis with a training set of only 24 randomly selected

floral samples did not change the results significantly.

B. SSCC for Ordinary Scenes

We used the same spectra from scene 1 to build an ordinary scene (Scene 2), i.e., a scene in

which the radiance of the floral samples [Fig. 11(c), black dots] are spanned by the radiance

of the patches of an MCC [Fig. 11(c), black squares]. In this case, the average color

transformation error using an MCC was reduced to 2.3, but it was higher than the error
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obtained using SSCC [Fig. 11(d)], which was 1.73 when 24 patches were used for training,

and 1.5 with 146 patches.

4. EXAMPLES OF COTS CAMERAS USED FOR SCIENTIFIC IMAGING

Imaging and workflow details for the examples in this section are given in Table 2.

Example I

Using colors from a photograph to quantify temperature distribution on a surface [Fig. 3

Steps: (1) to (3)]

With careful calibration, it is possible to use inexpensive cameras to extract reliable

temperature readings from surfaces painted with temperature-sensitive dyes, whose emission

spectrum (color) changes when heated or cooled. Gurkan et al. [27] stained the channels in a

microchip with thermo-sensitive dye (Edmund Scientific, Tonawanda, New York; range

32°C–41°C) and locally heated it one degree at a time using thermo-electric modules. At

each temperature step, a set of baseline raw (linear RGB) photographs was taken. Then

novel photographs of the chip (also in raw format) were taken for various heating and

cooling scenarios. Each novel photograph was white balanced using the calibration target in

the scene (Fig. 12). Since all images being compared were acquired with the same camera,

colors were kept in the camera color space, and no color transformation was applied. To get

the temperature readings, colors along the microchip channel were compared to the baseline

RGB values using the ΔE2000 metric [28] and were assigned the temperature of the nearest

baseline color.

Example II

Use of inexpensive COTS cameras for accurate artwork photography [Fig. 3 Steps (1) to (4)]

Here we quantify the error associated with using a standard calibration target (versus SSCC)

for imaging an oil painting (Fig. 13). Low-cost, easy-to-use consumer cameras and standard

color-calibration targets are often used in artwork archival; a complex and specialized

application to which many fine art and cultural heritage institutions allocate considerable

resources. Though many museums in the Unites States have been using digital photography

for direct capture of their artwork since the late 1990s [29], Frey and Farnand [30] found

that some institutions did not include color-calibration targets in their imaging workflows at

all. For this example, radiance from 36 points across the painting were measured, and it was

found that their corresponding tri-stimulus values were within the span of the subspace of

the MCC patches under identical light conditions, i.e., an ordinary scene. The MCC-based

color transformation yielded an average ΔE2000 value of 0.21 and 0.22 for SSCC, both

below the just noticeable difference threshold of 1. However, the average error was 31.77

for the jpg output produced by the camera used in auto setting. For this ordinary scene, there

was no advantage to be gained from SSCC, and the use of a standard calibration target with

the workflow in Fig. 3 significantly improved color accuracy over the in-camera processed

image.
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Example III

Capturing photographs under monochromatic low-pressure sodium light [Fig. 3 Steps (1) to

(3)]

A monochromatic light spectrum E can be approximated by an impulse centered at the peak

wavelength λp as E = C · δ(λ − λp), where C is the magnitude of intensity, and d is the

Dirac delta function whose value is zero everywhere except when λ = λp. When λ = λp, δ
= 1. It is not trivial to capture monochromatic scenes using COTS cameras accurately

because they are optimized for use with indoor and outdoor broadband light sources. We

used low-pressure sodium light (λp = 589 nm) to investigate the effect of color (or lack of)

on visual perception of the material properties of objects. Any surface viewed under this

light source appears as a shade of orange because x3 = z = 0 at λ = 589 nm for the CIE XYZ

human color-matching functions (also for most consumer cameras), and in turn, X3 = Z = 0

at λ = 589 nm [Eq. (10)]. Subjects were asked to view real textiles once under sodium light

and once under broadband light and answer questions about their material properties. The

experiment was then repeated using photographs of the same textiles. To capture the

appearance of colors under sodium light accurately, its irradiance was recorded using a

spectrometer fitted with an irradiance probe. Then the tri-stimulus values corresponding to

its white point were calculated and used for RGB equalization of linear novel images. Due

to the monochromatic nature of the light source, there was no need to also apply a color

transformation; adjusting the white point of the illuminant in the images ensured that the

single hue in the scene was mapped correctly. The white point of the illuminant was indeed

captured incorrectly when the camera was operated in auto mode, and the appearance of the

textiles was noticeably different (Fig. 14).

Example IV

In situ capture of a camouflaged animal and its habitat underwater [Fig. 3 Steps (1) to (4)]

Imaging underwater is challenging because light is fundamentally different from what we

encounter on land [Fig. 5(a)], and each underwater habitat is different from another in terms

of the colorfulness of substrates (Fig. 10). Thus there is no global color chart that can be

used across underwater environments, making underwater scenes (except for those very

close to the surface) non-ordinary scenes. The majority of underwater imaging falls into

three categories motivated by different requirements: (1) using natural light to capture a

scene exactly the way it appears at a given depth; (2) using natural light to capture an

underwater scene but postprocessing to obtain its appearance on land; and (3) introducing

artificial broadband light in situ to capture the scene as it would have appeared on land

(Example V). Here we give an example for case (1): capture of the colors of the skin of a

camouflaged animal exactly the way an observer in situ would see them. For this

application, we surveyed a dive site and built a database of substrate reflectance and light

spectra [31]. Novel (raw) images taken at the same site were white balanced to match the

white point of the ambient light. We then used the spectral database built for this dive site

for SSCC (Fig. 15). The green hue in the resulting images may appear unusual for two

reasons. First, a light-adapted human diver may not have perceived that green color in situ

due to color constancy and therefore may not remember the scene to appear that way.
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Second, most professional underwater photographs we are familiar with are either post-

processed to appear less green (Case 2), or they are taken with strobes that introduce

broadband light to the scene to cancel the green appearance before image capture (Case 3).

This kind of processing is indeed similar to the processing that may be performed by a

COTS camera; the camera will assume a common land light profile (unless it is being

operated in a pre-programmed underwater mode), ignorant of the long-wavelength

attenuated ambient light, and this will result in boosting of the red channel pixel values.

Example V

Consistent underwater color-correction across multiple images [Fig. 3 Steps (1)–(4)]

Repeated consistent measurements are the foundation of ecological monitoring projects. In

the case of corals, color information can help distinguish between different algal functional

groups or even establish coral health change [32]. Until now, several color-correction targets

were used for coral monitoring [33] but not tested for consistency. To test our method’s

performance for consistent color capture, we attached one color chart to the camera using a

monopod and placed another one manually in different locations in the field of view (Fig.

16). We tested several correction algorithms: automatic adjustment, white balancing, and the

algorithm presented in this paper (Fig. 3) and defined the error as consistency of the

corrected color. For each of the M = 35 patches in the N = 68 corrected images, we

calculated mean chromaticity as

where r = R/(R + G + B), g = G/(R + G + B) and defined the patch error to be

 with total error as the average across all M

patches. Our algorithm yielded the most consistent colors, opening the possibility for the use

of color targets designed for land photography in marine ecology images.

5. DISCUSSION

We established a framework for the manual processing of raw photographs taken by COTS

cameras for their use as scientific data, demonstrating that the use of linear RGB images and

calibration targets provide consistent quantitative data. We also introduced a method to

perform scene-specific color calibration (SSCC) that improves color-capture accuracy for

scenes that are not chromatically well represented by standard color targets.

We recognize that the methodology described here adds some complication to the very

feature that makes cameras popular: ease of use. For some steps in our workflow, knowing

the spectral sensitivities of a specific camera is advantageous. Camera manufacturers do not

provide these curves, and the burden falls on the users to derive them. Surveying a site to

collect spectra for SSCC requires the use of a spectroscopic imaging device, which adds to

the overall cost of the study and may extend its duration. Yet, despite the extra effort
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required for calibration, COTS cameras can be more useful than hyper-spectral imagers

whose robust use in science is hindered because they are physically bulky, expensive, have

low resolution, and are impractical to use with moving objects or changing light due to long

exposure scanning. Spectrometers are much more affordable and portable, but they collect

point-by-point data and thus lack the spatial dimension. This translates into a slow data-

acquisition process and makes spectrometers unsuitable for recording color information

from objects that may have texture or mottled colors [7,34]. To allow for easier adoption of

the extra steps required and their seamless integration into research projects, we provide a

toolbox of functions written in MATLAB programming language (Mathworks, Inc. Natick,

Massachusetts), which is available for download at http://www.mathworks.com/

matlabcentral/fileexchange/42548.

Although we based our work on the CIE 1931 XYZ color space, it is possible to use non-

human device-independent color spaces such as those modeled by [35]. This should be done

with caution because the domain of COTS cameras is intentionally designed to be limited to

the part of the electromagnetic spectrum visible to humans, making them poor sensors for

most other visual systems. For example, COTS cameras do not capture information in the

ultraviolet region of the electromagnetic spectrum wavelengths to which many animals are

sensitive; however, they can be modified or used in conjunction with ultraviolet-sensitive

instruments to collect data in that region [7].

Applications of a standardized and reproducible workflow with scene-informed color

calibration range well beyond the examples presented in this paper. For example, consumer

cameras can be used for consistent imaging of diabetic wounds, pressure sores and foot

ulcers; for the monitoring of food freshness to prevent illnesses; and for the validation of

hyperspectral satellite imagery.
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Fig. 1.
Basic image-processing pipeline in a consumer camera.

Akkaynak et al. Page 15

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2014 May 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
(a) An uncompressed image. (b) Artifacts after jpg compression: (1) grid-like pattern along

block boundaries, (2) blurring due to quantization, (3) color artifacts, (4) jagged object

boundaries. Photo credit: Dr. Hany Farid. Used with permission. See [3] for full resolution

images.
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Fig. 3.
Workflow proposed for processing raw images. Consumer cameras can be used for scientific

data acquisition if images are captured in raw format and processed manually so that they

maintain a linear relationship to scene radiance.
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Fig. 4.
Human color-matching functions for the CIE XYZ color space for 2° observer and spectral

sensitivities of two cameras; Canon EOS 1Ds mk II and Nikon D70.
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Fig. 5.
(a) Irradiance of daylight at noon (CIE D65 illuminant) and noon daylight on a sunny day

recorded at 3 m depth in the Aegean Sea. (b) Reflectance spectra of blue, orange, and red

patches from a Macbeth ColorChecker (MCC). Reflectance is the ratio of reflected light to

incoming light at each wavelength, and it is a physical property of a surface, unaffected by

the ambient light field, unlike radiance. (c) Radiance of the same patches under noon

daylight on land and (d) underwater.
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Fig. 6.
(a) An original scene. Inset at lower left: Bayer mosaic. (b) Close-ups of marked areas after

high-quality (adaptive) and (c) low-quality (non-adaptive) demosaicing. Artifacts shown

here are zippering on the sides of the ear and false colors near the white pixels of the

whiskers and the eye.
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Fig. 7.
(a) Examples of photographic calibration targets. Top to bottom: Sekonik Exposure Profile

Target II, Digital Kolor Kard, Macbeth ColorChecker (MCC) Digital. (b) Reflectance

spectra (400–700 nm) of Spectralon targets (black curves, prefixed with SRS-), gray patches

of the MCC (purple), and a white sheet of printer paper (blue). Note that MCC 23 has a

flatter spectrum than the white patch (MCC 19). The printer paper is bright and reflects most

of the light, but it does not do so uniformly at each wavelength.
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Fig. 8.
Chromaticity of MCC patches captured by two cameras, whose sensitivities are given in Fig.

4, in device-dependent and independent color spaces.
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Fig. 9.
Using more patches for a color transformation does not guarantee increased transformation

accuracy. In this example, color-transformation error is computed after 1–24 patches are

used. There were many possible ways the patches could have been selected; only three are

shown here. Regardless of patch ordering, overall color-transformation error is minimized

after the inclusion of the 18th patch. The first six patches of orders 1 and 2 are chromatic,

and for order 3, they are achromatic. The errors associated with order 3 are higher initially

because the scene, which consists of a photo of an MCC, is mostly chromatic. Note that it is

not possible to have the total error be identically zero even in this simple example due to

numerical error and noise.
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Fig. 10.
Features from three different dive sites that could be used for SSCC. This image first

appeared in the December 2012 issue of Sea Technology magazine.
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Fig. 11.
Scene-specific color transformation improves accuracy. (a) A “non-ordinary” scene that has

no chromaticity overlap with the patches in the calibration target. (b) Mean error after SSCC

is significantly less than after using a calibration chart. (c) An “ordinary” scene in which

MCC patches span the chromaticities in the scene. (d) Resulting error between the MCC and

scene-specific color transformation is comparable, but on average, still less for SSCC.
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Fig. 12.
Temperature distribution along the microchip channel, which is locally heated to 39°C

(colored region) while the rest was kept below 32°C (black region).
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Fig. 13.
Example II: Use of inexpensive COTS cameras for accurate artwork photography. (a) Oil

painting under daylight illumination. (b) Thirty-six points from which ground-truth spectra

were measured. (b) Chromatic loci of the ground truth samples compared to MCC patches

under identical illumination. (d) sRGB representation of the colors used for scene-specific

calibration. Artwork: Fulya Akkaynak.
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Fig. 14.
Example III Capturing photographs under monochromatic low-pressure sodium light. (a) A

pair of fabrics under broadband light. (b) A jpg image taken with the auto settings of a

camera, under monochromatic sodium light. (c) Image processed using SSCC according to

the flow in Fig. 3.
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Fig. 15.
Example IV: In situ capture of (a) an underwater habitat and (b) a camouflaged cuttlefish

(marked with white arrow) using SSCC with features similar to those shown in Fig. 10 for

Urla, Turkey. (c) and (d) are jpg outputs directly from the camera operated in auto mode and

have a visible red tint as a consequence of in-camera processing.
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Fig. 16.
Example V: Consistent underwater color correction. (a) In each frame, the color chart on the

left was used for calibration, and the one on the right was for testing. Images were taken in

Toyota Reef, Fiji. (b) Average error for several color-corrected methods for training and

testing. Our method achieves the lowest error and is the only method to improve over the

raw images of the test chart.
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Table 1

Basic Properties of Color Imaging Devices

Device Spatial Spectral Image Size Cost (USD)

Spectrometer ✕ ✓ 1 × p ≥2, 000

COTS camera ✓ ✕ n × m × 3 ≥200

Hyperspectral imager ✓ ✓ n × m × p ≥20, 000
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Table 2

Summary of Post-Processing Steps for Raw Images in Examples Given in Section 4

No. Camera, Light Demosaic White Balance Color Transformation

I Sony A700, incandescent
indoor light

4th gray and black in MCC, Eq.
(5)

None: analysis in the camera
color space

II Canon EOS 1Ds Mark II,
daylight

4th gray and black in MCC, Eq.
(5)

MCC and SSCC

III Canon Rebel T2, low-pressure
sodium light

Adobe DNG converter
Version 6.3.0.79 (for list of
other raw image decoders,

see http://
www.cybercom.net/

~dcoffin/dcraw/)

White point of ambient light
spectrum, Eqs. (5) and (10)

None: analysis in the camera
color space

IV Canon EOS 1Ds Mark II,
daylight

4th gray and black in MCC, Eq.
(5)

SSCC

V Canon EOS 5D Mark II,
daylight+2 DS160 Ikelite

strobes

4th gray and black in MCC, Eq.
(5)

MCC
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