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Abstract

Background—New drug regimens of greater efficacy and shorter duration are needed for

tuberculosis (TB) treatment. The identification of accurate, quantitative, non-culture based

markers of treatment response would improve the efficiency of Phase 2 TB drug testing.

Methods—In an unbiased biomarker discovery approach, we applied a highly multiplexed,

aptamer-based, proteomic technology to analyze serum samples collected at baseline and after 8

weeks of treatment from 39 patients with pulmonary TB from Kampala, Uganda enrolled in a

Centers for Disease Control and Prevention (CDC) TB Trials Consortium Phase 2B treatment

trial.

Results—We identified protein expression differences associated with 8-week culture status,

including Coagulation Factor V, SAA, XPNPEP1, PSME1, IL-11 Rα, HSP70, Galectin-8, α2-

Antiplasmin, ECM1, YES, IGFBP-1, CATZ, BGN, LYNB, and IL-7. Markers noted to have

differential changes between responders and slow-responders included nectin-like protein 2,
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EphA1 (Ephrin type-A receptor 1), gp130, CNDP1, TGF-b RIII, MRC2, ADAM9, and CDON. A

logistic regression model combining markers associated with 8-week culture status revealed an

ROC curve with AUC=0.96, sensitivity=0.95 and specificity=0.90. Additional markers showed

differential changes between responders and slow-responders (nectin-like protein), or correlated

with time-to-culture-conversion (KLRK1).

Conclusions—Serum proteins involved in the coagulation cascade, neutrophil activity,

immunity, inflammation, and tissue remodeling were found to be associated with TB treatment

response. A quantitative, non-culture based, five-marker signature predictive of 8-week culture

status was identified in this pilot study.
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Introduction

A number of new chemical entities and repurposed antibiotics are under clinical

development that when combined and optimized in dosing may lead to shorter, safer, and

more effective TB regimens [1]. Establishing the efficacy of newer regimens, however, is a

significant challenge [2–6]. Eight week sputum culture status is the most frequently used

surrogate marker of treatment outcome. However, its ability to distinguish efficacy of

regimens has come under scrutiny recently [7–12]. The discovery of a robust, quantitative,

non-culture based biomarker or “biomarker signature” of treatment effect that can be

measured early in treatment could speed up clinical development of new regimens and could

potentially also be helpful for individual monitoring of patients on treatment [13, 14].

Using an unbiased, aptamer-based platform, we sought to identify and quantify protein

markers associated with sputum culture status after 8 weeks of rifamycin-based combination

therapy for active TB that might be a measure of treatment response. To this end, we

analyzed data and specimens made available by a Phase 2B CDC-funded TB Trials

Consortium (TBTC) clinical trial, Study 29, comparing the efficacy of rifampin 10

mg/kg/day versus rifapentine 10 mg/kg/day as part of the intensive phase of treatment. We

previously cataloged and described our biomarker discovery efforts using these serum

samples via the SOMAscan proteomics technology [15].

The SOMAscan assay uses slow off-rate modified aptamers (SOMAmers), which are

ssDNA aptamers that contain pyrimidine residues carrying hydrophobic entities at their 5-

position [16] and have been selected for slow dissociation rates. The affinity of these

reagents is, on average, over an order of magnitude higher compared to simple RNA or

DNA aptamers [17–19]. Measurements of proteins in SOMAscan have been previously

validated by ELISA and by SOMAmer-based pull-down followed by LC-MS/MS [17].

Performance criteria have also been determined for all SOMAmers used in our study,

including binding affinity constants, serum and plasma titrations, intra- and interrun %CV,

and limits of quantitation [17, 18].
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In this study, we incorporated all demographic, clinical, radiographic and microbiologic data

available from the selected patients from Study 29 in addition to the measured 1030 human

proteins to ascertain which markers and which marker combinations measured at baseline

and at 8 weeks are closely associated with two established intermediate microbiologic

endpoints currently used in Phase 2 clinical trials, namely culture status after 8 weeks of

treatment and time-to-culture-conversion.

METHODS

Study Population

Patients were enrolled from CDC TBTC Study 29, a prospective, multicenter, open-label

Phase 2B clinical trial (ClinicalTrials.gov Identifier NCT00694629) comparing efficacy and

safety of standard TB therapy comprised of rifampin, isoniazid, pyrazinamide and

ethambutol with rifapentine replacing rifampin [20]. The 39 participants included in this

pilot project were all from the TBTC site based in Kampala, Uganda, were 18 years or older,

sputum smear positive and HIV-uninfected. Author PN selected for inclusion in this study

samples from patients free of significant co-morbidities reported at enrollment (December,

2008 to July, 2009), and who had relatively normal renal, hepatic and hematologic function.

The study participants had signed a written informed consent and agreed to HIV testing. IRB

approval for TBTC Study 29 was obtained from all participating institutions and from the

Center for Disease Control and Prevention (CDC). Additionally, this pilot project was also

approved by the Committee on Human Research of the University of California, San

Francisco (H45279-34102-02A).

Study Design and Data Analysis

Serum was collected, processed and stored at baseline (time of enrollment), and after 8

weeks (40 doses) of intensive phase therapy using a standardized protocol. Efficacy of the

regimens was assessed through determination of sputum culture status on both Lowenstein-

Jensen (LJ) solid media and BACTEC Mycobacterial Growth Indicator Tube (MGIT,

Becton Dickinson and Co., Franklin Lakes, NJ) liquid media with the MGIT 960 system. Of

the 39 participants included in this case-control study, 19 were culture negative at

completion of 8 weeks of treatment on both media types and were classified as “responders”

(controls), whereas 20 participants who remained culture positive on either (or both) of the

culture media were classified as “slow responders” (cases). Additionally, 25 of the 39

participants had been randomly assigned to the rifapentine arm and 14 to the rifampin arm,

out of whom 4 received between 3–5 days of therapy prior to enrollment. All 39 pairs of

baseline and end of intensive phase treatment (8-week) serum samples, respectively, were

included in the proteomic assay to measure 1030 proteins. The investigators were blinded to

all participant clinical, radiographic and microbiologic data until after all proteomic

measurements were completed and submitted to the CDC. Additional information including

total duration of treatment and end of treatment cure status was retrieved from patient charts

by author GM in Kampala, Uganda.
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Proteomic Methods

Proteomic measurements were performed at SomaLogic Inc., (Boulder, CO) in a single

SOMAscan™ assay run that was performed as previously described [19, 21]. The

SOMAmer reagents used for SOMAscan™ assay had been generated in vitro by a process

called SELEX (Systematic Evolution of Ligands by Exponential Enrichment) via multiple

rounds of selection, partitioning, and amplification [17]. The version 2 SOMAscan assay

used serum at three different concentrations (5%, 0.3%, 0.01%) to ensure the precise

measurement of low-, medium-, and high-abundant proteins within the dynamic range of the

assay. Established procedures to monitor known sample handling artifacts [22] were

followed to assess the integrity of the provided serum samples. The SOMAmer-based

proteomic assay is based on equilibrium binding in solution of fluorophore-tagged

SOMAmers and proteins, automated capture of the SOMAmers that are in complexes with

their cognate proteins [17], and hybridization to an antisense probe array (Agilent

Technologies, Santa Clara, CA, USA). The fluorescent signal generated in the hybridization

step is captured, and protein concentrations are reported in relative fluorescence units

(RFU).

Statistical analysis

Matlab™ (www.mathworks.com/matlab) and the R environment for statistical computing

(http://www.r-project.org/) were used for statistical analysis. Fisher’s exact test [23] was

used to compare the proportions of radiographic findings in responders and non-responders.

Linear regression analysis [24] was used to assess the association between protein levels

measured in log RFU and culture conversion times. The non-parametric Kolmogorov-

Smirnov (KS) test [23] was applied for unpaired comparisons of the protein distributions in

rapid and slow-responders at baseline and week 8 separately. The KS statistic is an unsigned

quantity, though we report a “signed” value to convey the directionality in the differential

expression, that is, positive or negative KS distances for increased or decreased protein

levels, respectively, in a given comparison of interest. The Wilcoxon rank sum test [23] was

used to identify proteins with paired (within-subject) differential response between baseline

and week 8 in the responders and slower responders respectively. Multiple comparison

corrections were performed using the false discovery rate (FDR) methodology [25]. For

each statistic we report both p-values and the associated FDR corrected “q-values”

computed with the R package q-value [26]. Given the modest sample size in this pilot study

we used a 30% false discovery rate threshold for reporting findings. Stability selection [27]

using the randomized LASSO applied to a logistic regression model was used to identify

proteins that distinguish responders from slow-responders with high probability over a wide

range of regularization parameters. A final logistic regression model was re-fit (without

regularization) to the markers with highest selection probability, and the resulting sensitivity

and specificity when classifying subjects by treatment response was estimated using

stratified cross-validation.
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RESULTS

Basic demographic parameters and their correlation with treatment response

Ages of the 39 study participants ranged from 19 to 53 years, and 28 were males. The

average body mass index (BMI) was 19.3 kg/m2, and 22 (56%) participants had cavitary

disease, three of whom had bilateral cavities at baseline. The severity of disease had been

assessed in detail from chest radiographs, reporting CXR class (1, absent; 2, < 4 cm; 3, > 4

cm) and CXR extent (A, limited; B, moderate; C, extensive) [15, 20].

Younger age was significantly associated with enhanced TB treatment response in this study

(Figure 1A). Responders were younger than slow-responders (median age 25.7 yrs vs. 31.8

yrs, p=0.01). Though responders had slightly higher BMI than slow-responders (BMI of

19.7 vs 18.8), the difference was not significant (p>0.1), nor was the difference in

quantitative culture analysis at baseline, determined as number of days to detection in liquid

culture (p>0.1). Among radiographic parameters used to assess the degree or severity of TB

infection, chest radiograph (CXR) extent differed between responders and slow-responders

(p= 0.02), with twice as many responders having CXR extent B (moderate) and twice as

many slow-responders having CXR extent C (extensive), as shown in Figure 1A.

Protein markers at baseline based on treatment response

Proteins that distinguish responders from slow-responders at baseline were identified using

the Kolmogorov-Smirnov (KS) test. The KS distances were calculated for all 1030 proteins

and are depicted in Figure 1B. Figure 1C shows plots of the empirical cumulative

distribution functions of the relative fluorescence units (RFU) for the top 20 proteins with

the largest KS distances between responders (red) and slow-responders (blue). Table 1

(upper half) shows the top ten proteins with the largest KS distances for the comparison

between responders and slow-responders among all 1030 proteins. The top five proteins

have a 29% false discovery rate indicating that we may expect one or two of these five to be

false discoveries. Responders had higher levels than slow-responders of proteasome

activator complex subunit 1 (PSME1), heat shock 70 kDa cognate protein 8 (HSP 70), α2-

antiplasmin, interferon lambda 2 (IFN-λ), and matrix metalloproteinase 12 (MMP-12). In

turn, slow responders had higher levels of interleukin 11 receptor antagonist (IL-11 Rα),

Galectin-8, matrix metalloproteinase 13 (MMP-13), iC3b, and a proliferation inducing

ligand of the TNF ligand family (APRIL) as compared to rapid responders.

Protein markers at 8 weeks based on treatment response

The KS distances between responders and slow-responders were determined for all proteins

measured in the 8-week samples (Figure 2A), and cumulative distribution function plots

(Figure 2B) are shown for the top 20 proteins with the largest KS distances between

responders (red) and slow-responders (blue). Table 1 (bottom half) show the proteins that

exhibited the largest differential expression between responders and slow-responders at

week 8 based on the KS distances. Coagulation Factor V showed the most significant

difference and was elevated in responders compared to slow-responders. Xaa-Pro

aminopeptidase 1 (XPNPEP1), soluble gp130, transforming growth factor-beta-induced

protein ig-h3 (BGH3), metalloproteinase inhibitor 2 (TIMP-2), extracellular matrix protein 1
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(ECM-1), vasoactive intestinal peptide (VIP), interferon alpha-2 (IFN-αA), IL-11 were also

elevated in responders compared to slow-responders. Of the other proteins listed in that

section of Table 1, only tumor necrosis factor ligand superfamily member 13 (APRIL) was

lower in responders than slow-responders.

A paired analysis of responders and slow-responders was conducted using the log-ratio of

within-subject week 8-to-baseline response as a “fold change” metric (Figure 2C). This

analysis targets proteins that exhibit differential change between the two time points in the

responders (red) compared to slow-responders (blue). Proteins were subsequently ranked

using the Wilcoxon rank sum test to identify those with different median fold changes in the

responders and slow-responders. The ten proteins with the most differential change are listed

in Table 2. For the first nine of these proteins, the fold-change in signal from baseline to

week 8 was larger in responders than in slow responders. These features were nectin-like

protein 2, EphA1 (Ephrin type-A receptor 1), gp130, CATZ, CNDP1, TGF-b RIII, MRC2,

ADAM9, and CDON. IL-2 sRa was the only protein that decreased in both groups, but

decreased to a greater extent in responders compared to slow-responders.

The association of treatment response with combinations of markers

In this pilot study we explored several strategies for generating signatures of treatment

response, specifically measuring the association of serum protein measurements with the

culture status at 8 weeks. In a first approach we sought the best combination of protein

measurements and clinical covariates to classify slow-responders from responders. Stability

selection was used to identify a subset of covariates from the set of 1030 protein

measurements combined with age, gender, BMI, smear status, CXR class, CXR extent of

disease, and time to detection after inoculation in liquid culture. The most stable predictive

markers at baseline were IL-11 Rα, α2-Antiplasmin, PSME1, SAA, and subject age (Figure

3A). Three of the proteins are among those with large KS distances between responders and

slow-responders as mentioned above, and the associated q-values suggested on average at

least 1 of these was falsely discovered. This assessment is consistent with the average

number of false discoveries expected by stability selection at different selection probabilities

(Figure 3A, dashed lines). At eight weeks, the most highly associated stable markers with

treatment response were ECM1, YES, IGFBP1, CATZ, Coagulation Factor V, and SAA

(Figure 3B).

As an example of a five-marker signature to associate with treatment response, baseline

measurements of IL-11 Rα, α2-Antiplasmin, PSME1, and SAA were combined with subject

age in a logistic regression model. The corresponding sample classification (Figure 3C) and

resulting ROC curve (Figure 3D) show the performance of this model on the training data.

Since there were too few samples in this pilot study to withhold an independent “test set”,

we used 5-fold stratified cross-validation to estimate model performance. Under cross-

validation, the estimated AUC was 0.8±0.06 with sensitivity 0.8±0.11 and specificity

0.8±0.07. Similar performance was observed from a naive Bayes model constructed using

baseline measurements of the first 5 proteins in Table 1 with the best KS distances (PSME1,

IL-11 Rα, HSP70, Galectin-8, and α2-Antiplasmin).
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The final analysis looked at markers that changed over the course of active therapy only in

the responders, while their levels in the slow-responders remained the same as at baseline. In

a scatter plot of the KS distances for the comparison of week-8 slow-responders to all

baseline samples vs. the KS distances for the comparison of week-8 responders to slow-

responders, markers associated with treatment response congregate in the lower right area

(Figure 3E). Many of the proteins identified above were confirmed, such as Coagulation

Factor V, XPNPEP1, YES, vasoactive intestinal peptide, and ECM1, but additional markers

were found that distinguished responders from slow-responder in this analysis, including

BGN (matrix proteoglycan), LYNB (tyrosine kinases), and IL-7. Empirical cumulative

distribution functions for these markers illustrate that the levels of these proteins track

closely together in baseline and week-8 slow-responders, but are clearly different in week-8

responders (Figure 3F).

Markers associated with time-to-culture-conversion

Toward the identification of surrogate markers for treatment response, meta data and serum

protein data were analyzed with regard to time-to-culture-conversion (TTCC), defined as the

first of at least two consecutive time-points where negative cultures (solid and liquid) were

obtained. Among the 39 participants there were six responder groups, with TTCC of 4

weeks (n=3), 6 weeks (n=4), 8 weeks (n=12), 12 weeks (n=10), 16 weeks (n=9), and 20

weeks (n=1). TTCC did not correlate with clinical data obtained at baseline, such as smear/

culture results, chest X-ray classifications, presence of cavities, smoking status, or BMI

(data not shown). Univariate regression analysis of baseline and week-8 protein

measurements (log RFU) on TTCC was performed and sorted by statistical significance

(Table 3). At baseline, lower levels of ERP29, peroxiredoxin-5, HSP-70, and α2-

antiplasmin were associated with longer TTCC (Figure 4A). At 8 weeks, NKG2D (KLRK1)

and CDK8 showed increased levels in samples from participants with longer TTCC, while

XPNPEP1, and BGH3 (TGFBI) levels were lower (Figure 4B). Comparison of the medians

of all 8-week measurements within the different responder groups showed a large number of

proteins associated with neutrophil function (Figure 4C). BPI (bactericidal permeability-

increasing factor) and IL-1 R4 were higher in fast-responders compared to slow-responders,

and cathepsin D was lower in fast-responders compared to slow-responders. The largest

differences between the responder groups were for SAA measured at 8 weeks, and a more

detailed regression analysis using baseline data and week-8 data showed that signals

dropped from baseline to week 8 by almost 10-fold, but a much sharper decrease was

observed in samples from the fast-responders (Figure 4D).

DISCUSSION

In this pilot study, we identified a number of proteins that differed between treatment slow-

responders and responders, at baseline or after 8 weeks of TB treatment. Serum amyloid A

(SAA) protein was strongly associated with treatment response in multiple analyses

performed. Many proteins involved in innate and adaptive immunity were differentially

expressed, including gp-130, TNF pathway molecules, complement components, catalase,

IgG, IFN-λ, PSME, and PSD7. At baseline, the strongest association of a marker with

treatment response was PSME, an IFN-γ-inducible component of the immunoproteasome.
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Levels of this protein are increased under conditions of intensified immune response and are

important for efficient antigen processing [28]. IL-11 Rα is a receptor for IL-11 and uses the

high affinity gp130-transducing domain, which also appeared in both the baseline and week

8 data, and both are acute phase response proteins [29]. APRIL [30], a TNF family ligand, is

involved in TGF-β signaling, and has been shown to have a role in the response to

pathogens [31]. Both TGF-β and TNF are important cytokines in the immune response to

TB [10, 32, 33]. APRIL has also been shown to be involved in promoting T-cell

proliferation and survival [34]. MMP-12 and MMP-13 were differentially expressed at

baseline. The major substrate for MMP-12 is elastin, an important constituent of lung

connective tissue. MMP-12 appears to have a role in progression of lung diseases in which

there is turnover of extracellular matrix components, and MMPs have been shown to be key

mediators in TB pathology [35, 36]. Matrix proteoglycan (BGN) and BGH3 may also be

involved in extracellular matrix and tissue remodeling [37]. Proteins involved in amyloids/

fibrils (BGH3) and potentially HSP70 deserve greater attention and may have to do with the

makeup of the TB lesions and can change with therapy. XPNPEP1 is a

metalloaminopeptidase involved in the degradation of neuropeptides and the finding of VIP

in these analyses is intriguing. Coagulation Factor V was the strongest differentially

expressed marker at 8 weeks between responders and slow-responders and may suggest

either better protein calorie nutrition in responders [38] or that tissue remodeling, changes in

fibrinolysis and the resolution of pulmonary TB lesions has connections with the

coagulation cascade that have not been described previously [39, 40].

In this study, we explored several mathematical models for the prediction of 8 week culture

status. A logistic regression model using four features obtained during our measurements of

serum protein levels at baseline together with subject age performed accurately in sample

classification and resulted in an ROC curve with AUC=0.96. Similar performance was

observed for a model containing the top five serum protein markers at baseline based on KS

distances. Separately, we also selected the top markers at 8 weeks based on large KS

distances (≥0.5), and constructed a five-feature (Coagulation Factor V, XPNPEP1, gp130,

TIMP-2 and ECM1) naïve Bayes classifier to “predict” treatment response, which revealed

an ROC curve with an AUC was 0.8±0.06. Given the small sample size of this pilot, such

models are at risk for “over-fitting” and they need to be tested in properly designed

validation studies using independent sample test sets to confirm their performance. Our

attempt to correlate serum protein measurements with time to culture conversion showed

limited significance, but corroborated some of the markers found in previous analyses and

several other proteins linked to neutrophil function. While the presence of bilateral cavitary

disease, or high sputum bacillary load as assessed by rapid time-to-detection on initial

sputum cultures are reported predictors of a longer conversion time [41, 42], we did not find

such a correlation in our sample set.

Our study has several limitations. We did not have additional time points or samples

obtained earlier during treatment (i.e., at weeks 2, 4 or 6) and hence may have missed early

changes in biomarker concentrations that may have stabilized by the 8-week time point. In

addition, we recognize that culture status at 8 weeks is a less than perfect surrogate marker

for treatment response or durable cure [7]. Patients who ultimately relapse can be culture

negative at 2 months [12, 47, 48] and many of those who are culture positive at 2 months are
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ultimately cured, as was observed with all 39 patients in our study. We also cannot comment

on markers previously linked with TB but not present on our array, and these include serum

CA-125 [43, 44] and transthyretin [45]. Lastly, given the small sample size, false discovery

rates exceed 25% in all analyses. Such high rates are not uncommon in small pilot studies –

rather they are indicative of the challenges associated with large-scale statistical hypothesis

testing in the presence of small effect sizes. It remains to be seen if serum protein signatures

identified in this work will improve upon simple clinical measures of treatment response like

extent of radiographic abnormalities, age, and BMI [46]. Moreover, it is also plausible that

some of the biomarkers discovered in our study may be associated with baseline factors

predicting conversion, rather than the outcome itself. Additional discovery efforts using

larger sample sets will address these issues, as it will allow for analyses adjusted for

potential confounders as well as permit using lower false discovery rate thresholds for

reporting. Despite these limitations our data contribute to further understanding of the

complexity of changes occurring during anti-TB treatment and provide us with biomarkers

that warrant further investigation for the prediction of treatment response.

In conclusion, our study has identified biomarkers predictive of the currently established

surrogate endpoint for phase 2 TB trials, and has also highlighted the complexity of

proteomic changes accompanying TB treatment. Studies that follow patients long term to

capture clinical endpoints of interest, namely treatment failure and relapse, along with

additional serial time points for serum collection, will be needed to fully scrutinize the

predictive capabilities of the biomarkers discovered.
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Figure 1.
Assessment of correlation of markers measured at baseline with treatment response. A, Box

plots of patient demographic parameters in responders (red) and slow-responders (blue),

depicting quartiles, medians, and outliers. B, KS distance plots of 1030 proteins measured in

baseline samples from responders versus slow-responders. Colored dots mark the top ten

proteins that are higher in responders (red) or slow-responders (blue). The dashed line

indicates a 30% false discovery rate. C, Cumulative distribution function (CDF) plots of the

most differentially expressed proteins in responders (red) versus slow-responders (blue) at

baseline. Axis labels and scales for RFU (x axis) and for cumulative fraction of all samples

within each group (y axis) were omitted for clarity.
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Figure 2.
Protein markers at 8 weeks based on treatment response. A, KS distance plots of all 1030

proteins measured in 8-week samples from responders versus slow-responders. Colored dots

mark the top ten proteins that are higher in responders (red) or slow-responders (blue). The

dashed line indicates a 30% false discovery rate. B, Cumulative distribution function (CDF)

plots of the most differentially expressed proteins in responders (red) versus slow-

responders (blue) at 8 weeks of TB treatment. Axis labels and scales for RFU (x axis) and

for cumulative fraction of all samples within each group (y axis) were omitted for clarity. C,

Box plots for the log2 ratio of week 8 to baseline signal in responders (red) and slow-

responders (blue).
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Figure 3.
Models and algorithms to “predict” treatment response at week 8. A, Stability paths for L1-

regularized logistic regression using randomized lasso (weakness=0.25, W=0.9) applied to

combination of baseline measurements and clinical covariates to classify responders from

non-responders. Dashed lines indicate number of false positive (FP) discoveries at different

selection probability thresholds computed from class-randomized observations. B, Stability

paths for L1-regularized logistic regression of 8-week measurements and clinical covariates

to classify responders from non-responders. C, Training sample classification based on (log)

odds ratio produced by logistic regression model using five markers (IL-11 Rα, α2-

Antiplasmin, PSME1, SAA, and subject age) measured at baseline. Red solid dots represent

true positive classifications (responders), blue solid dots are true negative classifications

(slow-responders); open dots are false positive or false negative results. D, ROC curve and

point-wise 95% CI for training samples, showing AUC=0.96 and bootstrapped 95% CI

(0.88, 0.99). E, Scatter plot of the KS distances of slow-responders (week 8) to baseline (all)

versus responders (week 8) to slow-responders (week 8). Potential treatment response

markers fall into the lower right area. F, CDF plots of representative candidate treatment

response markers identified via KS distance; this metric illustrates that week 8 responder

samples are distinctly different from week 8 slow-responder samples and baseline samples.
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Figure 4.
Association of serum protein levels with TTCC. A, Regression of baseline protein data

(log10 RFU) on TTCC. B, Regression of week-8 protein data (log RFU) on TTCC. C,

Differential expression of proteins based on the medians of the responder groups at baseline

(top) and at 8 weeks (bottom). D, Regression of SAA data (log10 RFU) on TTCC at

baseline (top) and at 8 weeks (bottom).
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