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Abstract

Many neuron types exhibit preferred frequency responses in their voltage amplitude (resonance)

or phase shift to subthreshold oscillatory currents, but the effect of biophysical parameters on

these properties is not well understood. We propose a general framework to analyze the role of

different ionic currents and their interactions in shaping the properties of impedance amplitude and

phase in linearized biophysical models and demonstrate this approach in a two-dimensional linear

model with two effective conductances gL and g1. We compute the key attributes of impedance

and phase (resonance frequency and amplitude, zero-phase-frequency, selectivity, etc.) in the

gL−g1 parameter space. Using these attribute diagrams we identify two basic mechanisms for the

generation of resonance: an increase in the resonance amplitude as g1 increases while the overall

impedance is decreased, and an increase in the maximal impedance, without any change in the

input resistance, as the ionic current time constant increases. We use the attribute diagrams to

analyze resonance and phase of the linearization of two biophysical models that include resonant

(Ih or slow potassium) and amplifying currents (persistent sodium). In the absence of amplifying

currents, the two models behave similarly as the conductances of the resonant currents is increased

whereas, with the amplifying current present, the two models have qualitatively opposite

responses. This work provides a general method for decoding the effect of biophysical parameters

on linear membrane resonance and phase by tracking trajectories, parametrized by the relevant

biophysical parameter, in pre-constructed attribute diagrams.
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Introduction

A variety of rhythmic oscillations are observed in different areas of the central nervous

system which are known to be critical in cognitive and motor behaviors and are thought to

emerge from the coordinated activity of the neurons in the respective networks (Gray 1994;

Marder and Calabrese 1996; Wang 2010). Recent work suggests that the frequency of the

network oscillations may crucially depend on the intrinsic preferred frequencies of the

constituent neurons (Lau and Zochowski 2011; Wu et al. 2001; Tohidi and Nadim 2009;

Ledoux and N. 2011; Moca et al. 2012; Sciamanna and Wilson 2011). These preferred

frequencies arise in different contexts: the ability of a neuron to generate subthreshold

oscillations at a particular frequency, often in response to a DC current input (Dickson and

Alonso 1997; Lampl and Yarom 1997; Schmitz et al. 1998; Reboreda et al. 2003); the

tendency of a neuron to produce subthreshold membrane potential resonance, a peak in the

impedance amplitude in response to an oscillatory input current at a non-zero (resonant)

frequency (Hutcheon and Yarom 2000); or membrane potential oscillations with zero phase

lag in response to an oscillatory current input at a specific frequency (zero-phase-frequency).

The properties of membrane resonance has been investigated in various systems (Gutfreund

et al. 1995; Llinás and Yarom 1986; Reboreda et al. 2003; Schreiber et al. 2004; Hu et al.

2002; Reinker et al. 2004; Tohidi and Nadim 2009; Dembrow et al. 2010; Narayanan and

Johnston 2007) but the biophysical mechanisms underlying the generation of membrane

resonance and its relationship to suprathreshold oscillations are not well understood

(Richardson et al. 2003). Membrane resonance results from a combination of low- and high-

pass filter mechanisms that also require a negative feedback effect (Hutcheon and Yarom

2000). The passive membrane currents typically act as a low-pass filter, and the so-called

resonant voltage-gated currents oppose voltage changes at low frequencies and act as a high-

pass filter, thus creating a preferred frequency band. Other voltage-gated ionic currents,

labeled amplifying currents, do not produce resonance but generate a positive feedback

effect that amplifies voltage changes and hence make existing resonance more pronounced

(Hutcheon and Yarom 2000).

Although many studies have examined the impedance amplitude, much less attention has

been paid to the phase of impedance which determines the phase of the subthreshold voltage

response to oscillatory input currents (Richardson et al. 2003). In a linear approximation, as

the amplitude of the oscillatory input increases, the phase of the output determines the phase

at which the neuron first reaches threshold. This provides a first-order measure of the

spiking phase of the neuron with respect to the input. For linear RLC circuits in series, this

phase is zero at the resonant frequency. On the other hand, for RLC circuits in parallel, such

as neural circuits, the zero-phase and the resonant frequencies do not necessarily coincide.

We refer to the phase corresponding to the resonant frequency as the resonant phase, to the

occurrence of a zero-phase voltage output at a positive input frequency as the zero-phase-

frequency (fphase). Although fphase is often measured experimentally (Gutfreund et al. 1995)

and its importance for synchronization has been explored (Fuhrmann et al. 2002), the

mechanisms underlying the occurrence of the zero-phase-frequency in biophysical neuronal

systems have not been carefully investigated.
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It is clear that the parameters of resonant and amplifying ionic currents shape the impedance

and phase profiles but the relationship between these factors is far from intuitive. For

instance, as we show in this study, increasing the maximal conductance of a so-called

resonant current may lead to an increase or decrease of the maximal impedance value

depending on the properties of this ionic current. As such, the characterization of the

impedance and phase profiles (and the corresponding membrane resonance frequency and

zero-phase-frequency) in terms of the properties of the ionic current parameters can provide

valuable information on how interactions among biophysical properties of neurons may lead

to emergent preferred frequencies.

The existence of subthreshold oscillations implies the presence of an intrinsic time scale in

the neuron that is comparable in magnitude to the subthreshold oscillation period. The

resonant frequency, on the other hand, reflects an emergent time scale which is a property of

the interaction between the neuron and the input it receives. Intrinsic subthreshold

oscillations and subthreshold resonance are related (Lampl and Yarom 1997) but are not

equivalent phenomena. Linear models, for instance, may exhibit one but not the other

(Richardson et al. 2003). Similarly, emergent time scales may be different from the neuron's

intrinsic time scale, and are expected to be more relevant in the communication of

subthreshold activity to the spiking and network activity. For instance, with large enough

DC current, spikes are more likely to occur at the subthreshold oscillation peaks, whereas,

with increased amplitude levels of an oscillatory input, spikes are more likely to occur at the

resonant phase and inherit the resonant frequency.

In this paper we investigate the biophysical mechanisms underlying the emergence of the

resonance and zero-phase-frequencies in two-dimensional models. In particular, we examine

the role that different ionic currents and their associated time constants play in determining

the resonant and zero-phase-frequencies and in shaping other relevant properties of a

neuron's voltage response to oscillatory inputs. Our study consists of two parts. First we

investigate the basic mechanisms of generation of resonance and zero-phase-frequency in a

reduced two-dimensional linear model with two effective dimensionless conductances, a

leak conductance gL and a “resonant” conductance g1 (Richardson et al. 2003). This reduced

system represents a linearization of a non-dimensionalized two-variable conductance-based

model. We construct diagrams of the basic attributes (resonant and zero-phase-frequencies,

amplitude, etc.) of the impedance and phase profiles in the gL − g1 parameter space. We then

investigate the effect of gL and g1 on these attributes by exploring changes in their properties

along horizontal (constant g1) and vertical (constant gL) lines in the corresponding attribute

diagrams. In these reduced linear models, the kinetics of the resonant gating variable is not

explicit but included in the effective conductances (Richardson et al. 2003). Additionally,

we show that the effect of the corresponding time constants can be examined in the attribute

diagrams along oblique lines in the gL − g1 parameter space.

In the second part of the study we use the attribute diagrams mentioned above to investigate

the mechanisms of generation of resonance and zero-phase-frequency in two-dimensional

linearized conductance-based models. We consider two types of models, each with a

resonant current. In the first model, the resonant current is a hyperpolarization-activated

inward current Ih (Haas and White 2002; Hutcheon et al. 1996; Schreiber et al. 2004). In the
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second model, the resonant current is a slow potassium current IKs activated by

depolarization (Gutfreund et al. 1995). In each model we also examine the effect of a fast

amplifying current IP (Haas and White 2002; Hutcheon et al. 1996; Schreiber et al. 2004;

Gutfreund et al. 1995) considered here with instantaneous kinetics. The study of the

interaction between two distinct resonant currents with slow dynamics leads to models with

at least three variables and is outside the scope of this paper. Changes in the biophysical

conductances associated with these currents are reflected in changes in the effective

conductances gL and g1. The model nonlinearities are captured by nonlinear trajectories in

the gL − g1 parameter space as one of the biophysical conductances change. We show that,

although both Ih and IKs are resonant currents, the dependence of the resonance attributes on

the biophysical conductances, in particular, the mechanisms underlying the amplification of

the voltage responses are qualitatively different.

Methods

Conductance-based models

In this paper we consider biophysical (conductance-based) models of Hodgkin-Huxley type

(Hodgkin and Huxley 1952). The current-balance equation is given by

(1)

where V is the membrane potential (mV), t is time (msec), C is the membrane capacitance

(μF/cm2), Iapp is the applied DC current (μA/cm2), IL = GL(V−EL) is the leak current, and Ixk
are generic expressions for ionic currents of the form

(2)

with maximal conductance Gx (mS/cm2) and reversal potentials Ex (mV). All gating

variables x follow a first order differential equation of the form

(3)

where x∞(V) and τx(V) are, respectively, the voltage-dependent activation/inactivation

curves and time constants. The function Iin(t) is a time-dependent input current (in μA/cm2).

For sinusoidal input currents, we use the following notation

(4)

Where T = 1000 msec and f is in Hz.

The generic ionic currents (Eq. (2)) we consider here are restricted to have a single gating

variable x and are linear in x. This choice is motivated by the persistent sodium current IP,

hyperpolarization-activated inward current Ih and slow M-type potassium current IKs found

in a variety of neurons that exhibit subthreshold resonance (Schreiber et al. 2004; Acker et
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al. 2003; Rotstein et al. 2006). Ionic currents of this form have been used in a variety of

other models (Morris and Lecar 1981; Rinzel and Ermentrout 1998). The methods we use in

this paper can be easily adapted for currents with two gating variables and gating variables

raised to powers higher than 1.

We focus on two-dimensional models that describe the dynamics of voltage V and a gating

variable x1, respectively. Additional currents whose gating variables evolve on a fast time

scale (faster than all other variables), such as persistent sodium currents, can be included by

using the adiabatic approximation, xk = xk,∞(V). Here we consider one such additional

(generic) current Ix2 with x2 = x2,∞(V). Additional fast currents can be considered without

significantly changing the formalism used here.

Linearized conductance-based models

Linearization of conductance-based models around a stable fixed-point (V ̅, x̅1) with V̅ below

threshold for spike generation is a standard procedure (Ermentrout and Terman 2010). In its

simplest form, it consists of substituting the right hand side of Eqs. (1) and (3) by their first

order Taylor expansions calculated at the fixed point.

Here we follow Richardson et al. (Richardson et al. 2003) and linearize the autonomous part

of system (1)–(3) around the fixed-point (V̅, x̅1) for the isolated system (Iin(t) = 0) by

defining

(5)

where x̅1 = x1,∞(V̅). The linearized equations are given by (Richardson et al. 2003)

(6)

where the effective leak and ionic conductances and time constants are defined by

(7)

(8)

respectively. Note that the effective leak conductance gL includes components from both the

biophysical leak conductance GL and the voltage-dependent ionic conductances: the slow

ionic currents contributes a single term G1 whereas the fast current Ix2 contributes two

terms, G2 and g2.

The effective ionic conductance g1 can be either positive or negative. The sign of g1

determines whether the associated gating variable is resonant (g1 > 0) or amplifying (g1 < 0)

(Richardson et al. 2003; Hutcheon and Yarom 2000). In our discussion, we will limit the

values of g1 to the positive range which produces resonance. Note that g2, the last term of
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gL, may also be positive or negative, depending on whether V̅ > Ex2, and is of the same form

as g1. Thus, if g2 is negative, the fast current is amplifying.

Note that the gating variable w1 in (5) has units of voltage. Note also that the linearization

process described above is not restricted to ionic currents of the form (2) and can be applied

to models with an arbitrary number of ionic currents and any voltage-dependent time

constant (Richardson et al. 2003).

System (6) can be rescaled in order to reduce the number of parameters (from four to two)

that effectively govern its dynamics with no loss of information. We follow (Richardson et

al. 2003) and define the following dimensionless time and parameters

(9)

Substituting into (6) we obtain

(10)

where

(11)

with T̂ = T/τ̅1 = 1000/τ̅1. Note that [f] = Hz, and [ν] = [w1] = V. We refer to γL and γ1 as the

dimensionless effective conductances. We will use dimensionless variables and parameters

in Figs. 1–6.

Impedance and impedance-like functions

The voltage response of a linear system receiving sinusoidal current inputs of the form (4) is

given by

(12)

where ϕ(f) is the phase offset (time difference between the peaks of the input current and the

output voltage normalized by 2π) and ω is given by the second equation in (4). Linear

systems exhibit membrane (amplitude) resonance, if there is a peak in ratio of the output

voltage and input current amplitudes:

(13)

at some positive (resonant) frequency fres, and zero-phase-frequency, if the phase offset ϕ(f)

vanishes at some positive frequency fphase. We calculate the phase as the time difference

between the output voltage and input current peaks normalized by the oscillation period.

Henceforth, we will refer to the amplitude of impedance as impedance.

Rotstein and Nadim Page 6

J Comput Neurosci. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figs. 1A and 1B show two representative graphs for the impedance profile of a low-pass

filter RC model (panel A) and a band-pass filter model (panel B) exhibiting resonance at f =

fres. We will use four parameters to characterize impedance profiles:

i. the resonant frequency fres,

ii. the maximum impedance Zmax = Z(fres),

iii. the resonance amplitude or power QZ = Zmax − Z(0), and

iv. the characteristic right-band-width Λ1/2 defined as the range of values of f ≥ fres

such that Z(f) ≥ Zmax/2.

Λ1/2provides information about the selectivity of the neuron to input frequencies. The

smaller the value of Λ1/2, the higher the selectivity, i.e., the impedance profile is peakier

around the resonant frequency fres. The choice of ½ is arbitrary and other values can be

used. The restriction f ≥ fres is useful for comparison between cases where Z(0) > Zmax/2 in

one or more of the impedance profiles. In these cases, a “full” bandwidth will not be

representative of the difference between impedance profiles. For a low-pass filter RC cell as

in Fig. 1A, fres = 0 and QZ = 0.

Figs. 1C and 1D show two representative graphs for the phase (ϕ). They both approach π/2

for large values of f. The phase in panel C is always increasing and positive; the voltage

response is always delayed by at most one quarter of a cycle. The phase in panel D, on the

other hand, is negative for f < fphase and positive for larger values of f. The negative phase

can be interpreted as the response leading the input. For f = fphase, voltage response and

input are in phase, so fphase represents the zero-phase-frequency. We characterize the phase

profile with an additional parameter ϕmin measuring the minimum phase.

In this paper we consider sinusoidal current inputs of the form (4) where Ain is a non-

negative constant and the frequency f is measured in number of oscillations per 1000 units of

time. For dimensional consistency with most experimental measurements, in Figs. 8–12,

time t is expressed in milliseconds and f is measured in Hz.

Results

1. Generation of resonance and zero-phase-frequency in two-dimensional linear models

In the first part of the Results we consider the 2D linear system (6) and sinusoidal current

inputs Iin (t) of the form (4) with constant values of Ain. Because the system is linear,

without loss of generality, we assume Ain = 1. For simplicity in the notation, we drop the

“bar” from τ1 and the “hat” from t and other parameters in (6) and (10). The eigenvalues,

impedance, and resonant frequency for system (6) can be calculated from Eqs. (18), (21) and

(22) in Appendix A by substituting , and .

Alternatively, one can use the rescaled system (10) and compute the eigenvalues,

impedance, and resonant frequency (r̂1,2, Ẑ and ω̂res respectively) by substituting a = −γL, b

= −γ1, c = 1 and d = −1 in Eqs. (18), (21) and (22) of Appendix A. This information can then

be used in the two-dimensional parameter space of effective conductances to investigate the

effects of the biophysical parameters gL, g1, τ1, and C using
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(14)

For C = 1 and τ1 = 1, gL = γL and g1 = γ1 the two systems (6) and (10) are equivalent.

Without loss of generality, we let C = 1 and only consider the effects of changing τ1.

Changes in τ1 affect the magnitude of the eigenvalues but not their sign. These changes,

therefore, do not affect the stability properties of the autonomous system but do affect, for

instance, the natural frequency fnat (when the autonomous system exhibits damped

oscillations). Changes in τ1 also affect the shape of the impedance function and the resonant

frequency as will be discussed.

In Fig. 2A1 (magnified in 2A2) we show the stability diagram for the 2D linear system (6)

with τ1 = 1. This diagram is similar to that presented in (Richardson et al. 2003). The blue

curves separate regions in parameter space with different stability properties or distinct fixed

point types (focus, node or saddle). The system is stable in the regions marked with blue

symbols and unstable in regions marked with red. The green curve, referred to as the

resonance curve, separates the regions in parameter space for which the system exhibit

resonance (shaded green) and exhibit no resonance. Note that the regions in parameter space

where the system exhibits intrinsic (damped) oscillations and resonance do not coincide

(Richardson et al. 2003). In particular, resonance can occur in the absence of intrinsic

oscillations where the fixed point is a node.

Representative impedance profiles show a variety of possible resonant behaviors (Figs. 2B

to 2E). For γ1 = 0, the first equation in the 2D linear system is independent of w1; the system

has no resonance and simply describes a low-pass filter (Fig. 2B). As γL increases, Zmax(=

Z(0)) decreases (and Λ1/2increases linearly; not shown). In this case, the phase ϕ shows a

delayed response for all values of γL but this delay decreases as γL increases (not shown).

The expression of resonance in this system occurs when γ1 > 0. For any fixed positive value

of γ1, increasing the value of γL results in an increase in the value of the resonance

frequency fres and a concomitant decrease in Zmax (Figs. 2C and 2D). Note, however, that

resonance can occur with γL = 0 (Fig. 2E).

An increase in g1 generates resonance by an unbalanced decrease in Zmax

and Z(0)—In order for the 2D linear system to exhibit resonance, the value of γ1 has to be

in the resonant region above the resonance curve in Fig. 2A. For small enough values of γ1,

the system acts as a low-pass filter similar to the γ1 = 0 case described above. For resonance

to emerge, a difference between Zmax and Z(0) (hence, a positive value of QZ = Zmax − Z(0))

has to be generated as γ1 crosses the resonance curve. Figs. 3A and 3B show that, below the

resonance curve, both the Zmax (and Z(0)) level curves are almost linear and parallel to the

line γ1 + γL = 1, and they also nearly coincide (e.g., see Fig. 3C for γ1 < 0.5). Above the

resonance curve, the Zmax level sets are no longer linear while the Z(0) level sets remain

linear. Thus, as γ1 increases along vertical lines in γL − γ1 parameter space, resonance

emerges because Z(0) decreases faster than Zmax (Figs. 3C and 3B inset). The difference

(QZ) is more attenuated for larger values of γL (Fig. 3B inset).
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The resonance line is marked by a peak in the half-band-width Λ1/2 in the γL − γ1 parameter

space as γ1 increases (Figs. 3E and 3F). As γ1 increases further, Λ1/2 settles into an almost

constant value. The selectivity of resonance is therefore independent of γ1 for large enough

values of γ1 (Fig. 3F). In contrast, Λ1/2 increases monotonically with γL (Fig. 3G).

An increase in gLgenerates low amplitude resonance—Resonance occurs for all

values of γL within the stability region for the underlying autonomous system, provided γ1 is

large enough to be above the resonance curve (Fig. 2A, green region). For smaller values of

γ1 (as in Fig. 2C), resonance can be generated by decreasing γL along horizontal lines that

cross the resonance curve (solid gray curve in Figs. 3A–B). Along these lines, both Zmax and

Z(0) decrease (as 1/γL) but at a slightly different pace (Fig. 3D), thus generating resonance.

The resonance generated by this mechanism is much weaker as compared to the one

described above for increasing values of γ1 in the sense that QZ is much smaller (Fig. 3B

inset). This is because, as γL decreases, both Zmax and Z(0) change almost in parallel (e.g.,

Fig. 3D; also compare Figs. 3A and 3B).

A decrease in gLamplifies the voltage response and decreases fres—A decrease

in the effective leak conductance gL (Eq. (7)) can be caused by a decrease in the biophysical

leak conductance GL, a decrease in the ionic conductances G1 and G2, or an increase in the

fast ionic conductance g2 when the associated gating variable is amplifying (g2 < 0; see

Methods). In the latter case there is a competition between the relative magnitudes of the last

two terms in Eq. (7). In some cases, as with the biophysical model we discuss later in this

paper, the effective leak conductance gL can in fact be negative.

Figs. 3A and 3B show that, as γL decreases, both Zmax and Z(0) increase, and so does QZ due

to the different rates at which Zmax and Z(0) change in parameter space (Fig. 3D; see also

Fig. 2D). The amplification of the voltage response is more dramatic for values of γL close

to the boundary between the stability and instability regions, and is more pronounced for

larger values of γ1. In addition to these changes, Λ1/2 decreases with γL; i.e., as γL decreases,

the impedance profile becomes narrower and the selectivity increases (Figs. 3E and 3G). For

values of γ1 close to the resonance curve, for which Zmax and Z(0) are not significantly

different, resonance can be abolished for larger values of γL (see Fig. 2D).

Together, these results show that a decrease in γL (and therefore gL) causes an amplification

of resonance, marked by an increase in the resonance amplitude QZ and an increase in the

selectivity (decrease in Λ1/2), accompanied by a decrease in fres. An increase in gL,

therefore, causes an attenuation of resonance accompanied by an increase in fres.

Resonance and oscillations—To explore the distinction between membrane resonance

and oscillations in the 2D linear model (i.e., the presence of a focus fixed point), we plotted

the resonance and natural oscillation frequencies in the γL − γ1 parameter space (Fig. 4). A

frequency of 0 indicates lack of oscillation or resonance, as indicated. We found that both

fnat and fres increase with γ1 but do not generally coincide (see, for example, FIG. 4C). As γL

is increased, both fnat and fres increase for small γL values but only fres continues to increase

with large γL values whereas fnat decreases back to 0 in this range (Fig. 4D). Note that if γ1
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is large (e.g., γ1 = 1 here), fres and fnat almost coincide during the increasing part of fnat as γL

increases (not shown).

An increase in g1 generates zero-phase-frequency with fphase ≠ fres—We

examined how the response phase of the membrane potential shifts with respect to the

sinusoidal input current for the 2D linear system (6) with τ1 = 1 and under what conditions

the system exhibits zero-phase-frequency. For γ1 = 0 (low-pass filter), the phase ϕ is always

positive with ϕmin = ϕ(0) = 0 and the system does not exhibit zero-phase-frequency. Fig. 5A

shows that this persists for values of γ1 < 1 for which the 2D system exhibits resonance but

not zero-phase-frequency. For γ1 > 1, a negative frequency band of length fphase emerges

(see also Fig. 5C). This band starts at f just above zero and its width also determines the

zero-phase-frequency (= fphase). The value of fphase increases with γ1 but is independent of

γL. It should be noted that fphase is different from the resonant frequency fres, and the two

variables have different monotonic dependencies on γ1. Note also that the minimum phase

ϕmin increases with γ1, and therefore with fphase, but decreases with γL (Fig. 5B).

The effect of the time constant τ1 on resonance—We now consider the effect of the

time constant τ1 of the gating variable w1 (Eq. (6)). Although Figs. 2 to 5 were produced

with τ1 = 1, the effects of changes in τ1 can be investigated using these figures and Eqs.

(14). When τ1 ≠ 1, the normalized parameters are changed and therefore γL ≠ gL and γ1 ≠ g1.

For fixed values of gL and g1, changes in τ1 cause γL and γ1 to move in parameter space

along lines (parametrized by τ1) with slopes γ1/γL = g1/gL as shown in Fig. 6A. Each of

these lines converges to the origin as τ1 approaches zero, and its slope has the same sign as

gL (in the region of resonance for which g1 > 0). Fig. 6A shows that, for small enough

values of τ1, the system exhibits neither intrinsic (damped) oscillations nor resonance,

reflecting the fact that both phenomena depend upon a (relatively) slow negative feedback.

As τ1 increases, the system exhibits first intrinsic oscillations with no resonance for small τ1

and then, for larger values of τ1, both intrinsic oscillations and resonance (Figs. 6B1–B3;

most clearly seen in 6B2). Depending on the slope γ1/γL, intrinsic oscillations may disappear

as τ1 increases further. Note that for gL < 0, relatively small increases in τ1 causes the

system to reach the instability region in parameter space.

An increase in τ1 amplifies the voltage response and this amplification is marked by an

increase in Qz and Zmax (while Z(0) remains constant; Fig. 6C1–C3) and a decrease in Λ1/2

(i.e., increase in selectivity; not shown). The mechanism of generation of resonance as τ1

increases is different from the mechanism described above for increasing values of g1 (with

constant τ1). Direct substitution of the model parameters (gL, g1 and τ1) into Eq. (21) in

Appendix A yields Z(0) = (gL + g1)−1. In other words, changes in τ1 do not affect the value

of Z(0) and hence QZ = Zmax for all values of τ1. As such, an increase in the time constant τ1

generates resonance by an increase in Zmax with no changes in Z(0)(Fig. 6C1–3).

Increasing the time constant τ1 causes the natural and resonant frequencies to increase for

small values of τ1 and to decrease for larger values. Information about the effect of τ1 on the

resonant and natural frequencies can, in principle, be extracted from Figs. 6B and 6C and the

expressions for r1,2 and fres in Eqs. (14). However, in most cases, especially when fnat or fres
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increase along lines in parameter space, the net effect of increasing values of τ1 is not

readily apparent from the graphs because both the numerator and denominator are increasing

functions of τ1. In these cases, it is more useful to analyze the expressions fnat and fres given

by Eqs. (19) and (22) in Appendix A. Substituting , and 

yields

(15)

Equation (15) gives the imaginary part of the eigenvalues (18) and is valid for calculating

fnat so long as the eigenvalues are complex. As such, fnat is zero for the minimum value of τ1

for which it is defined, reaches a maximum at τ1 = (2g1 + gL)−1 (provided this value is

positive) and is zero again for large enough τ1 when the right hand side of (15) fails to be a

real number. fres is zero for the minimum value of τ1 for which it is defined

, it is positive for larger values of τ1 (e.g., ),

and approaches zero as τ1 approaches infinity (Figs. 6B1–3).

The non-monotonic effect of τ1 on fres is particularly clear in the impedance profile shown

in Fig. 6C2. Note, however, that increasing τ1 always results in an increase of the peak

impedance value as seen in Fig. 6C1–3.

We now examine the effect of the time constant τ1 on phase. Increasing τ1 generates zero-

phase-frequency with fphase ≠ fres. As before, it is useful to examine the expression for ϕ

given by Eq. (23) in Appendix A. The zero-phase-frequency is obtained when the

denominator in Eq. (23)vanishes. Substituting , and 

yields

(16)

Zero-phase-frequency occurs for values of time constant τ1 above  as illustrated in Fig.

6D. Figs. 6D and 6C also illustrate that the critical value of τ1 above which zero-phase-

frequency occurs is different from the critical value above which resonance occurs. From

Eq. (16), the zero-phase-frequency fphase increases with τ1 for  and decreases for

larger values of τ1. A comparison between Eq. (16) and the second equation in (15) shows

that in general fphase ≠ fres.

2. Generation of resonance and zero-phase-frequency in linearized biophysical two-
dimensional models

The study of the roles of the effective conductances g1 and gL (or their dimensionless

versions γ1 and γL) on the generation of both resonance and zero-phase-frequency using the

diagrams in Figs. 2 to 7 provides a mechanistic insight into these phenomena. However, it

does not produce a useful explanation of the mechanisms underlying resonance and zero-
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phase-frequency in realistic biophysical models. In this section we will use the description

of the dependence of resonance and zero-phase-frequency in the 2D linear system,

developed thus far, to explain how linear approximations to biophysical models can be

mapped onto our framework of the linear systems and how biophysical ionic currents shape

preferred frequencies for impedance and phase.

In the previous sections we kept one parameter fixed and varied another. Changes in either

gL or g1 resulted in trajectories in the gL − g1 parameter space that moved along horizontal

and vertical lines (Figs. 3–5). Additionally, changes in τ1 generated oblique linear

trajectories (Fig. 6). In contrast to these parameters, changes in the biophysical conductances

may lead to nonlinear trajectories in the gL − g1 parameter space. While changes in the

biophysical leak (GL) and fast conductance (Gx2) directly affect only the effective leak

conductance gL (Eq. (7)), changes in the biophysical conductances with slower time scales

(Gx1) affect both gL and g1. It is important to note, however, that changing GL (or the fast

conductances) may change the value of g1 indirectly, by changing the position of the fixed

point.

In this section we investigate the effects of changes in the resonant and amplifying currents

on the mechanisms of generation of resonance and zero-phase-frequency in two prototypical

biophysical models Ih + Ip and IKs + Ip. The governing equations are given in Appendix B.

The nonspecific cation h current Ih is a hyperpolarization-activated inward current whereas

the slow non-inactivating potassium current (e.g., the M current) IKs is a depolarization-

activated outward current and, as such, both Ih and IKs are resonant currents (Hutcheon and

Yarom 2000). The depolarization-activated persistent sodium current IP is an amplifying

current (Hutcheon and Yarom 2000). The fact that Ih and IKs activate by moving the

membrane potential in different directions (hyper- or depolarizing) results in qualitatively

different effects on resonance and zero-phase-frequency properties, and their dependence on

the biophysical conductances. These two models were chosen as representative models that

are known to produce resonance but the effects of these ionic currents can be replaced by

other currents with similar biophysical properties. The inward rectifying potassium currents

can also act as amplifying currents; however, these currents are typically active in ranges of

voltage below values where subthreshold resonance is observed and we do not examine their

effect.

An increase in the maximal conductance of Ip generates strong nonlinearities in the Ih + Ip

and IKs + Ip models as seen in the nullclines (Fig. 7). In the absence of Ip the nullclines are

only weakly nonlinear; i.e., the linearized nullclines around the fixed-point V̅ (the

intersection between nullclines) provide a good approximation to the nonlinear nullclines.

This is true in both models for a large range of values of V̅. An increase in the amount of Ip

generates a strong nonlinearity (of parabolic type) in both models (Figs. 7A2 and 7B2). If

the fixed-point V̅ is near the “knee” of the V -nullcline, the linearized nullclines do not

provide a good approximation to the nonlinear ones, and cannot be expected to capture the

dynamics of the nonlinear system. For values of Gh and Gq for which V̅ lies further away

from the knee, however, along the left branch of the corresponding parabolic-like V -

nullclines, the nullclines are only weakly nonlinear (not shown). Qualitatively, the phase

plane diagrams for the two models are almost mirror images of each other (Fig. 7A vs. 7B).
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Although an increase in Gh causes V̅ to increase while an increase in Gq causes V̅ to

decrease, both phase planes respond in a similar way to changes in Gp.

Nonlinear effects generated by increases in the maximal conductance of Ip
are captured by the impedance profiles—Changes in the biophysical ionic

conductances (Gh, Gq, and Gp) cause changes in the effective conductances gL and g1

through Eqs. (7) and (8), and generate trajectories in γL − γ1 parameter space (Figs. 8A and

9A). The shapes of the trajectories in γL − γ1 parameter space depend not only on the

biophysical conductances but also on the value of the fixed-point V̅ which, in turn, depends

on the shape of the V -nullclines. Note that, for linear systems, the location of the fixed-point

has no effect on the resonance and zero-phase-frequency properties. The nonlinearities of

the V -nullclines are translated to the nonlinear trajectories in γL − γ1 parameter space

through V̅. If changes in Gh, Gp and Gq had no effect on the location of V̅, then an increase

in Gp would still cause a decrease in the effective conductance gL, and an increase in either

Gh or Gq would cause an increase in both effective conductances gL and g1. In this case,

changes in Gh and Gq would have generated oblique linear trajectories in γL − γ1 parameter

space. If the changes in V̅ (as a result of changes in the biophysical conductances) are small,

as it occurs when the nullclines are weakly nonlinear, then one would expect trajectories in

parameter space to be weakly nonlinear as well, as is the case for the solid trajectories for to

Gp = 0 (Figs. 8A and 9A). For larger values of Gp for which the nullclines are strongly

nonlinear, the corresponding trajectories are also strongly nonlinear (dashed trajectories for

Gp = 0.5 in Figs. 8A and 9A).

The effect of changing GL in the biophysical models—Our results in the

dimensionless model indicated that increasing γL (and therefore gL) led to an increase in fres

(Fig. 4D). This raises the question of whether an increase in GL in the biophysical models

would also lead to a similar change in fres. To examine this question, we varied the level of

GL in both the Ih + Ip and IKs + Ip models (Fig. 10). We found that, in both models, an

increase in GL led to a relatively small but noticeable increase in fres (Figs. 10A1 and 10B1).

The effect of GL on fres was not influenced much by the presence of Ip (i.e. 0.5 GP = 0.5;

Figs. 10A2 and 10B2).

Changes in the maximal conductances of the resonant currents Ih and IKs in
the presence of Ip have qualitatively different effects on the resonance and
zero-phase-frequency—Resonant currents, or resonant gating variables, are usually

classified into one single group (Richardson et al. 2003; Hutcheon and Yarom 2000). In the

absence of Ip, changes in Gh and Gq generate weakly linear, almost oblique trajectories with

positive slope in the corresponding γL − γ1 parameter spaces (solid arrowed curves in Figs.

8A and 9A). In this case, changes in Gh and Gq have similar effect on the resonance and

zero-phase-frequency properties of the corresponding models.

In contrast, when Ip is present, changes in Gh and Gq affect the shape of the corresponding

trajectories in almost opposite ways (Figs. 8A and 9A, dashed curves for Gp = 0.5) reflecting

the different biophysical roles these two currents play. In the Ih + Ip model, in particular, the

direction of motion of the trajectories for Gp = 0.5 and Gp = 0 are opposite as Gh increases
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and, for large enough values of τ1, trajectories cross the line γL = 0 leading to a strong

amplification of the voltage response (Fig. 8B2). This is in contrast to the IKs + Ip model

where an increase in Gq leads to a strong de-amplification of the voltage response (Fig.

9B2). The differences between the trajectories in parameter space for the two models

indicates that the dependence of their resonant properties on Gh or Gq are different. In

particular,

i. the voltage response is amplified for the Ih + Ip model and attenuated for the IKs +

Ip model,

ii. the selectivity increases (Λ1/2 decreases) for the Ih + Ip model and decreases (Λ1/2

increases) for the IKs + Ip model, and

iii. ϕmin increases in absolute value for the Ih + Ip model and decreases for the IKs + Ip

model.

An increase in Gh reduces the voltage response for Gp = 0 (Fig. 8B1) but amplifies the

voltage response for Gp = 0.5 (Fig. 8B2). This amplification is much stronger for larger

values of Iapp (not shown). In contrast, an increase in Gq reduces the voltage response for all

values of Gp (Figs. 9B1 and 9B2). The amplification of the voltage response is still larger

for larger values of Iapp but this amplification is stronger for lower values of Gq (not shown).

In the Ih + Ip model both fres and fphase increase with increasing values of Gh but fres

decreases for high values of both Gh and Gp. For Gp = 0, both fres and fphase increase as Gh

increases (Fig. 11A1; also see Figs. 8B1and 8C1), and they do so almost linearly once

resonance has been generated. In contrast, for Gp = 0.5, while fphase increases with

increasing values of Gh, fres first increases and then decreases (Fig. 11A1). These values of

Gh and Gp correspond to a fixed-point located near the knee of the V -nullcline (Fig. 7A2).

The switch in the monotonic behavior of fres can therefore be attributed to a nonlinear effect.

In the IKs + Ip model fres and fphase increase with increasing values of Gq (Fig 10B1; also see

Figs. 9B1 and 9C1). This is similar to the increase of fres and fphase with Gh in the Ih + Ip

model (Fig. 11A1). Note however that, in contrast to the Ih + Ip model, fphase is larger for Gp

= 0.5 than for Gp = 0, and fres is almost insensitive to changes in Gp (Fig. 11B1). For Gp = 0

neither model show intrinsic oscillatory activity,but oscillatory activity can emerge for Gp >

0 and with Gh above a certain threshold (Fig. 11A1) or Gq below a certain threshold (Fig.

11B1; also see Figs. 11A2 and 11B2). Interestingly, as Gh increases, fres decreases and fnat

increases and these frequencies approach the same value (Fig. 11A1). Similarly, the values

of fres and fnat approach the same value but, in contrast to the Ih + Ip model, as Gq decreases

(IKs + Ip model; Fig. 11B1). The fact that the nullclines of the two models are qualitatively

mirror images of each other suggests that for these parameter values both models might have

a common underlying mechanism for the generation of both intrinsic oscillations and

resonance.

Similarly, in the Ih + Ip and IKs + Ip models Zmax and QZ show opposite monotonic

behaviors as Gh and Gq increase for Gp > 0. Even though, in both models, when Gp = 0,

Zmax and QZ are small and almost insensitive to changes in Gh and Gq (Figs. 11A3 and

11B3), when Gp > 0, these models exhibit opposite behaviors as the corresponding resonant
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conductance increases : in the Ih + Ip model resonance is amplified by increasing Gh while

in the IKs + Ip model resonance is attenuated by increasing Gq (Figs. 11A3 and 11B3). Note

that the largest values of both Zmax and QZ occur in the strongly nonlinear regions in

parameter space referred to above. The increase in QZ and decrease in Zmax as Gh and Gq

demonstrate that, in both models, resonance is created by a combined decrease in both Zmax

and Z(0) as explained in the previous section for the reduced models.

We now turn to the effect of Gp in the two models. fres has a similar monotonic behavior as

Gp changes in the two models but fphase has a different monotonic behavior as Gp changes in

the two models. Figs. 11A2 and 11B2 show the behavior of both fres and fphase as Gp

increases. In both models, fres decreases with increasing values of Gp. This change is more

pronounced in the Ih + Ip model than in the IKs + Ip model. The dependence of fphase with Gp

is different in the two models: fphase slightly decreases in the former and increases in the

latter. Interestingly, in spite of the different monotonic behavior between the two models,

the difference between fres and fphase decreases as Gp increases, and both characteristic

frequencies become closer in the nonlinear region in parameter space with a high amplifying

effect (Figs. 11A2 and 11B2). As mentioned above, neither model shows intrinsic

oscillations for low values of Gp but oscillations arise as Gp increases (Figs. 11A2 and

11B2).

The amplification of the voltage response due to increasing values of Gp dramatically

increases in the nonlinear region in parameter space in the two models. This is seen in Figs.

11A4 and 11B4 (see also Figs. 8 and 9) where both Zmax and QZ increase for large values of

Gp as either Gh increases) or Gq decreases. This amplification does not occur for Gp = 0 or

with Gp = 0.5 together with lower values of Gh or larger values of Gq, suggesting that it

results from the strong nonlinearities present in both models for large values of Gp.

fres and fphase decrease with increasing values of the time constant τ1 in the
two models—For the Ih + Ip model (Fig. 12A1), fres and fphase are both decreasing

functions of τ1, and are both larger for Gp = 0 than for Gp > 0. For Gp > 0, the difference

between fres and fphase decreases and they approach identical values. For the IKs + Ip model

(Fig. 12B2), fphase first increases with τ1 for Gp = 0 and then decreases. For Gp = 0.5, both

fres and fphase are decreasing functions of τ1. In contrast to the Ih + Ip model, in the IKs + Ip

model, fres and fphase are larger for Gp > 0 than for Gp = 0, although the difference between

fres for these two values of Gp is very small.

The two models show also similarities and differences in their natural frequencies as a

function of τ1. As mentioned above, neither model shows intrinsic oscillations for Gp = 0.

For Gp > 0, in both models fres is always larger than fnat (Figs. 12A1 and 12B1). For the Ih +

Ip model (Fig. 12A1), fres and fnat are almost identical for all values of τ1 (and Gp > 0),

while the value of fres is significantly different than for Gp = 0. In contrast, for the IKs + Ip

model (Fig. 12B1), intrinsic oscillations (for Gp > 0) disappear as τ1 increases and fres is not

significantly different for different values of Gp.

Resonance is amplified as τ1 increases in the presence of Ip in the two models. In the

absence of Ip (Gp = 0) both Zmax and QZ are insensitive to changes in the time constant τ1
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(Figs. 12A2 and 12B2). However, for Gp = 0.5, both Zmax and QZ increase as τ1 increases.

Their difference remains constant since changes in τ1 have no effect on Z(0). Note that

changes in Zmax and QZ with τ1 are more pronounced for the Ih + Ip model (Fig. 12A2) than

for the IKs + Ip model (Fig. 12B2).

Finally, although for the sake of brevity we do not show these data, fres and fphase are almost

insensitive to changes in Iapp in the two models whereas resonance (Zmax and QZ) is

significantly amplified by increasing values of Iapp in the presence of Ip in both models.

Discussion

A large number of studies in recent years has focused on subthreshold membrane resonance

in neurons, its dependence on ionic currents and its influence on neuronal and network

oscillations (Richardson et al. 2003; Ledoux and N. 2011; Castro-Alamancos et al. 2007;

Tohidi and Nadim 2009; Izhikevich et al. 2003; Engel et al. 2008; Reinker et al. 2004;

Kispersky et al. 2012; Moca et al. 2012; Thevenin et al. 2011). Subthreshold membrane

resonance is primarily described on the basis of a linear RLC circuit where R is equated with

the membrane resistance, C with the membrane capacitance and the inductance L, more

abstractly, with voltage-gated ionic conductance properties (Erchova et al. 2004). Membrane

resonance is defined by a peak in the impedance amplitude plotted as a function of input

frequency (the impedance profile) and can be characterized by a few attributes describing

this impedance profile (Fig. 1B1). The frequency and quality (“peakiness”) of membrane

resonance is captured by these attributes. A number of voltage-gated ionic currents are

known to result in membrane resonance. Yet, even in a simple model neuron that is based on

biophysical currents, the dependence of the attributes of the impedance profile on

biophysical parameters such as the maximal conductances of the leak and voltage-gated

currents is neither well-described nor intuitive.

In the first part of this paper we used a linear 2D model (Richardson et al. 2003) to show

how the attributes of the resonance and phase profiles depend on three model parameters,

the two effective conductances and the time constant. This analysis resulted in graphs that

show how resonance and phase depend on the model parameters (Figs. 2–5). We also

compared the resonance frequency in this model with the frequency of subthreshold

oscillations, when present (Fig. 4). In the second part, we used this description to understand

the emergence and properties of resonance and phase-frequency relationships in two

representative conductance-based biophysical models. We began by exploring how

changing a biophysical parameter affected the linearization (about an equilibrium point) of

the conductance-based model. We then mapped the resulting trajectories (parameterized by

the biophysical parameter) in the effective-conductance parameter space described in part

one. These trajectories provided us with information on the dependence of resonance and

phase attributes on the biophysical parameter. Together, these two parts provide a

framework to study linear impedance and to analyze how changing biophysical parameters

affects linear resonance and phase profiles in nonlinear conductance-based models. We

limited our analysis to 2D models where the linear system is effectively described by two

parameters and could be readily illustrated graphically. The framework we presented can be
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readily generalized to higher-dimensional models by projecting to lower-dimensional

parameter spaces or in the form of look-up tables.

We identified two qualitatively different mechanisms for the generation of resonance in 2D

systems. The first mechanism depends on the effective conductance γ1: as γ1 increases, there

is a decrease in both Zmax and Z(0) but the latter decreases at a higher rate (Fig. 3C) which

results in an increase in QZ. The second mechanism is due to changing τ1. For very small

values of τ1 the 2D system does not exhibit resonance (Fig. 6A). As τ1 increases, the system

first transitions through a region of the parameter space which shows intrinsic (damped)

oscillations with no resonance and for larger values of τ1 resonance emerges (Fig. 6A–B).

Increasing τ1 further can allow the system to resonance without subthreshold oscillations

(Fig 6B1–B2). As such, factors such as temperature that modulate time constants can allow

a neuron to transition to resonance without changing the maximal conductances of expressed

ionic currents.

The phenomenon of subthreshold resonance is often related to the presence of subthreshold

oscillations (Lampl and Yarom 1997) although it is known that these are separate

phenomena even in linear models (Richardson et al. 2003). The analysis of the linear 2D

model shows that in certain parameter ranges these two frequencies can show similar

parameter dependence but that they are also clearly distinct (Fig. 4).

Typically the voltage response of a neuron is studied by focusing on the amplitude of the

impedance profile (Hutcheon and Yarom 2000). Yet, just as the impedance amplitude

describes the scaling of the membrane potential, the impedance phase as a function of

frequency (the phase profile) describes the membrane potential phase shift in response to an

oscillatory current. The zero-phase-frequency fphase—the frequency at which the input

current and the membrane potential are synchronous in phase—provides information

complementary to the resonance frequency fmax (Richardson et al. 2003). Although in an

RLC circuit in series the values of fphase and fmax are equal, in parallel circuits, such as

membrane equivalent circuits, the two values remain distinct (Fig. 1B). Here we examined

the dependence of fphase in a 2D system and found that this frequency remains independent

of the effective leak conductance, although the extent to which negative phase shifts occur

(ϕmin) does change with both effective leak and voltage-gated conductances (Fig. 5).

The zero-phase-frequency fphase has been measured experimentally for the subthreshold

response (Gutfreund et al. 1995) or the spike phase response (Fuhrmann et al. 2002; Smith et

al. 2000; Carandini et al. 1996). In the latter case, fphase was used in network models of

spiking neurons in determining population synchrony (Fuhrmann et al. 2002). Our analysis

provides a description of the dependence of fphase of the subthreshold linear response on

model parameters. As the amplitude of the response approaches threshold, this dependence

can be used as a first-order approximation for the neuron’s spike phase and therefore

provides a mechanistic understanding of how model ionic currents can affect spike phase.

Voltage-gated ionic conductances have been classified into resonant and amplifying

(Hutcheon and Yarom 2000; Richardson et al. 2003) with the underlying implication that all

currents in each group behave similarly with respect to changes in parameters. Here we
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explored two representative conductance-based models with distinct resonant currents, one

hyperpolarization-activated (Ih) and the other depolarization-activated (IKs). We found that,

in the absence of an amplifying current (Ip), the resonant attributes in both models exhibit a

similar dependence on the conductance of the two respective resonant currents. This is most

easily seen by comparing the solid trajectories in Figs. 8A, B1 and C1 with the

corresponding panels of Fig. 9. In contrast, in the presence of the amplifying current Ip,

changing the conductance of the resonant current in the two models has opposite effects on

the attributes of resonance. For instance, whereas increasing Gh can amplify the voltage

response, a similar increase in Gq does the opposite (Figs. 8B2 and 9B2). Similarly,

increasing these two conductances in the respective models can have opposite effects on the

properties of the phase profile (Figs. 8C2 and 9C2). The difference in the effects of Gh and

Gq are again readily observed by examining the corresponding trajectories in the effective-

conductance parameter space (compare dashed curves in Figs. 8A and 9A). Although these

differences are expected, they have been previously overlooked in the analysis of membrane

resonance in neural models.

One of the interesting results of the analysis of the dimensionless model is that an increase

in the effective leak conductance gL leads to an increase in the resonance frequency (Fig.

4D). Recent experimental results have indicated that manipulating the leak conductance

does not change fres significantly (Fernandez et al. 2013; Fernandez and White 2008). For

comparison, we varied the levels of GL in our 2D biophysical models and found that the

changes in fres were much smaller than those seen in Fig. 4D and, in some cases, almost

unnoticeable (Fig. 10). This difference is due to two factors. First, a change in GL in the

biophysical model does not result in a linear (vertical) trajectory in the γL − γ1 parameter

space. Second, the changes in the parameter values using the linear approximation cannot

account for the nonlinear effects of the biological neurons or the biophysical models. A

proper exploration of the effects of the leak conductance requires tracking the nonlinear

properties of the neurons which is beyond the scope of the current study.

It is important to note that the effect of subthreshold preferred frequencies on the spiking

activity of neurons is not straightforward. Although there is experimental evidence of the

correlations between subthreshold resonance and spiking activity and, in some cases, this is

supported by modeling (Richardson et al. 2003), the spike frequency of neurons is shaped by

factors, such as refractoriness, that are nonlinear and are not restricted to the subthreshold

regime (Broicher et al. 2012). In particular, the ability of a neuron or network to produce

spiking or oscillations cannot be simply equated with how the neuron or network responds

to inputs of different frequencies (Fernandez and White 2008; Stark et al. 2013).

In this study we have explored the properties of resonance and phase profiles in a linear

system and used this information to examine similar properties for linearizations of simple

conductance-based models. Interestingly, some effects of the nonlinearities in the models are

captured by the nonlinear trajectories in the effective-conductance parameter space. Yet, it is

important to note that the linearizations do not capture other effects that may arise due to

nonlinearities that are present even in these simplified conductance-based models. Such

effects include, but are not limited to, nonlinear amplifications of the voltage response with
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input current and the emergence of voltage responses that do not match the input frequency.

We will address these issues in future work.
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Appendix A. Two-dimensional linear systems: eigenvalues, natural

frequency and impedance

Consider the following two-dimensional linear system

(17)

a, b, c and d are constant, ω > 0 and Ain ≥ 0.

Intrinsic oscillations and natural frequency

The Jacobian of the corresponding homogeneous system (Ain = 0) is given by

The roots of the characteristic polynomial are given by

(18)

From Eq. (18), the homogeneous system displays stable oscillatory solutions (focus points)

for values of the parameters satisfying

The natural frequency is given by

(19)

Impedance function

The particular solutions to system (17) have the form
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Substituting into system (17) and rearranging terms we obtain

(20)

By solving the algebraic system (20) we obtain

(21)

The impedance Z peaks at the resonant frequency

(22)

The impedance phase is given by

(23)

Appendix B. The 2D Biophysical Models

The voltage-dependent activation/inactivation curves x∞(V) and voltage-dependent time

scales τx(V) used in the kinetic Eq. (3) for the gating variables x are frequently expressed in

terms of

(24)

Below we present the functions and parameters corresponding to the various models we use

in this paper.

Ih + Ip model

This model has been proposed in (Acker et al. 2003). It has a persistent sodium current and a

two-component (fast and slow) h-current given by Ip =Gpp(V−ENa) = Gpp∞(V)(V−ENa) and

Ih = Ghr(V−Eh) = Gh(cfrf + csrs)(V−Eh) respectively with Eh = −20 mV, ENa = 55 mV, cf =

0.65 and cs = 0.35. The voltage-dependent activation/inactivation and time constants are

given by
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IKs + Ip model

This model has been proposed in (Acker et al. 2003). It has a persistent sodium current and a

slow potassium (M-type) current given by Ip = Gpp(V−ENa) = Gpp∞(V)(V−ENa) and IKs =

Gqq(V−EK) with ENa = 55 mV and EK = −90 mV. The voltage-dependent activation/

inactivation and time constants are given by
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Figure 1.
Impedance (Z) and phase (□) profile diagrams. A1. The impedance profile of a low-pass

filter RC cell. A2. The RC cell in A1 only shows a positive response phase. B1. The

impedance profile of a band-pass filter resonant cell. The resonant frequency fres is the

frequency at which the impedance function reaches its maximum Zmax. The parameter QZ is

defined as the difference between Zmax and Z0. The characteristic frequency range Λ1/2

measures the length of the frequency interval for which Z(f) is above ½ of its maximum

value. B2. The phase of the resonant cell shown in B1 includes both a negative and a

positive region. Φmin is the minimum phase and fphase represents the zero-phase-frequency

and is equal to the length of the frequency band for which the voltage response leads the

input signal (negative phase).
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Figure 2.
Stability, oscillatory, and resonant properties for the 2D linear system (6) With C = 1 and τ1

= 1 in the gL − g1 space. (For these parameters values, g1 = γ1 and gL = γL and the 2D linear

(6) and the 2D rescaled system (10) are equivalent.) A1. Superimposed stability and

resonance diagrams. The blue curves separate between regions in parameter space with

different stability properties or fixed point types. Symbols indicate whether the fixed point is

a focus, node or saddle (blue symbols stable; red symbols unstable). The green curve

(resonance curve; obtained from Eq. (22); see Results) separates between regions in
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parameter space where the system exhibits resonance (green) or does not (other). A2. A
magnification of A1 (yellow dotted box). All regions above the grey saddle region are

stable. B. to D. Representative examples of impedance profiles for the rescaled system (10)

with γ1 and γL values denoted in the figure. Black dots and lines denote the resonant points.
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Figure 3.
The attributes of resonance for the 2D linear system (6) (as in Fig. 2). A. The maximum

impedance Zmax. B. The zero-frequency input resistance Z(0) (same scale as A). Dark red

regions in A and B are outside the scale of the graph. Gray region and curves as in Fig. 2A2.

Inset shows QZ (the difference between Zmax and Z(0)) in the same range of γ1 and γL. C.
Representative example of Zmax and Z(0) as a function of γ1 for γL = 0 (vertical dashed black

line in A and B). D. Representative example of Zmax and Z(0) as a function of γL for γ1 = 1

(horizontal dashed black line in A and B). E. Half band-width Λ1/2. F. Representative

example of Λ1/2 as a function of γ1 for γL = 0 (vertical dashed black line in E). G.
Representative example of Λ1/2 as a function of γL for γ1 = 1(horizontal dashed black line in

E).
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Figure 4.
Natural and resonant frequency color bar diagrams for the 2D linear system (6) (as in Fig.

2). A. Natural frequency fnat. B. Resonant frequency fres (same scale as A). Gray region and

curves as in Fig. 2A2. C. Representative example of fres and fnat as a function of γ1 for γL =

1.5 (vertical dashed black lines in A and B). D. Representative example of fres and fnat as a

function of γL for γ1 = 0.5 (horizontal dashed black lines in A and B).
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Figure 5.
Negative-phase-frequency-band for the 2D linear system (6) (as in Fig. 2). A. The length of

the negative-phase-frequency band (or, equivalently, the zero-phase-frequency fphase). B.
Minimum phase (ϕmin) of the voltage response. Gray region and curves as in Fig. 2A2. C.
Representative example of the phase profile as a function of γ1 for γL = 0 (vertical dashed

black line in A and B). D. Representative example of the phase profile as a function of γL for

γ1 = 1 (vertical dashed black line in A and B).
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Figure 6.
The effect of the time constant τ1 on impedance and phase in the linear model. A. The effect

of τ1 on the rescaled conductances γL and γ1. The region shown is as in Fig. 2A2. For fixed

values of the conductances g1 and gL, as τ1 increases, the rescaled effective conductances γ1

and γL increase along lines emanating from the origin. B. Resonant and natural frequencies

of the 2D linear system as a function of τ1 for representative values of g1 and gL. C.
Impedance profiles for representative values of g1 and gL with different values of τ1 (as

shown in C1). D. Phase profiles for representative values of g1 and gL with different values
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of τ1 (as shown in C1). Insets show expansions of the shaded box and demonstrate that

increasing τ1 moves the zero-phase-frequency to smaller values.
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Figure 7.
Nullclines for different 2D biophysical models. A. In the Ih + Ip model with Gp = 0 (A1)

different values of Gh lead to nullclines that are close to linear near the fixed point. In

contrast, when Gp > 0 (A2; Gp = 0.5) the V-nullcline can show quadratic nonlinearities near

the fixed point. B. Similarly in the IM + Ip model with Gp = 0 (B1) the nullclines are close to

linear whereas when Gp > 0 (B2; Gp = 0.5) the V-nullcline shows quadratic nonlinearities.

Note that the individual nullclines are qualitatively mirror images of those of the Ih + Ip

model. In all panels filled circles denote stable fixed points and open circles denote saddle

points.
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Figure 8.
The effect of Gh on resonance and zero-phase-frequency in the Ih + Ip model. A. Trajectories

in γL − γ1 space parameterized by the resonant conductance Gh (arrows indicate increasing

values of Gh). All trajectories start at Gh = 0 and the value Gh = 1.5 is marked by an open

circle. Different trajectories correspond to different representative values of Gp and τ1 (as

indicated). The trajectories are computed until the fixed-point V̅ ceases to exist. Gray region

and curves as in Fig. 2A2. B. Impedance profiles for the linearized Ih + Ip model with Gp = 0
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(B1) and Gp = 0.5 (B2). C. Phase profiles for the linearized Ih + Ip model with Gp = 0 (C1)

and Gp = 0.5 (C2). In B and C Iapp = −2.5.
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Figure 9.
The effect of Gq on resonance frequency in the IKs + Ip model. A. Trajectories in γL − γ1

space parameterized by the resonant conductance Gq (arrows indicate decreasing values of

Gq). Each trajectory starts at the value of Gq at which the two nullclines first intersect and V̅

emerges. The end of each trajectory marks Gq = 3 in all cases and open circles mark Gq = 1.

Different trajectories correspond to different representative values of Gp and τ1 (as

indicated). Gray region and curves as in Fig. 2A2. B. Impedance profiles for the linearized
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IKs + Ip model with Gp = 0 (B1) and Gp = 0.5 (B2). C. Phase profiles for the linearized IKs +

Ip model with Gp = 0 (C1) and Gp = 0.5 (C2). In B and C Iapp = 2.5.
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Figure 10.
The effect of GL on resonance frequency in the Ih + Ip and IKs + Ip models. B. Impedance

profiles for the linearized Ih + Ip model with Gp = 0 (B1) and Gp = 0.5 (B2) and Gh = 1.5. C.
Impedance profiles for the linearized IKs + Ip model with Gp = 0 (C1) and Gp = 0.5 (C2) and

Gq = 1.5. In all panels Iapp = 2.5. Figure legend in A1 applies to all panels.
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Figure 11.
Dependence of resonance and phase properties for the Ih + Ip (column A) and IKs + Ip

(column B) models on the maximal conductances. Panels A1 and B1 show fres, fnat and

fphase as a function of Gh (A1) or Gq (B1) with Gp = 0 or Gp = 0.5. Panels A2 and B2 show

fres, fnat and fphase as a function of Gp. Panels A3 and B3 show Zmax and QZ as a function of

Gh (A3) or Gq (B3). fres and fnat as a function of Gq. Panels A4 and B4 show Zmax and QZ as

a function of Gp. Iapp = −2.5 for the Ih + Ip model and Iapp = 2.5 for the IKs + Ip model. The

time constant τ1 = 80 for both models.
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Figure 12.
Dependence of resonance and phase properties for the Ih + Ip (column A) and IKs + Ip

(column B) models on the time constant τ1. Panels A1 and B1 show fres, fnat and fphase as a

function of τ1. Panels A2 and B2 show Zmax and QZ as a function of τ1. Iapp = −2.5 for the Ih

+ Ip model and Iapp = 2.5 for the IKs + Ip model. The time constant τ1 = 80 for both models.
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