Skip to main content
. 2013 Dec 9;12(Suppl 1):S4. doi: 10.1186/1475-925X-12-S1-S4

Table 2.

Optimal SVM parameters of different datasets containing different number of samples for model construction using different combination of features selected using filter methods (7 features) and wrapper methods (11 features), respectively.

Sample (N) Feature Selection Accuracy (SD) (%) Sensitivity (SD) (%) Specificity (SD) (%) log2C Log2γ
348 Filter 88.33 (0.84) 90.32 (1.46) 85.86 (1.18) 32 16

Wrapper 92.73 (0.79) 95.81 (0.94) 88.97 (1.96) 6.2 3.1

287 Filter 85.19 (1.55) 92.17 (0.87) 73.97 (3.48) 4 64

Wrapper 90.56 (1.37) 95.14 (2.05) 85.00 (2.34) 5.9 3

231 Filter 78.73 (1.57) 91.08 (1.03) 63.77 (3.28) 0.0625 64

Wrapper 85.27 (1.57) 92.34 (2.41) 76.35 (2.63) 4.8 3

188 Filter 77.16 (1.16) 86.55 (1.79) 64.91 (1.72) 0.5 8

Wrapper 79.88 (1.34) 91.42 (1.32) 76.35 (4.13) 6 3.2