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ABSTRACT

Motivation: Elementary flux mode analysis (EFMA) decomposes com-

plex metabolic network models into tractable biochemical pathways,

which have been used for rational design and analysis of metabolic

and regulatory networks. However, application of EFMA has often

been limited to targeted or simplified metabolic network representa-

tions due to computational demands of the method.

Results: Division of biological networks into subnetworks enables the

complete enumeration of elementary flux modes (EFMs) for metabolic

models of a broad range of complexities, including genome-scale.

Here, subnetworks are defined using serial dichotomous suppression

and enforcement of flux through model reactions. Rules for selecting

appropriate reactions to generate subnetworks are proposed and

tested; three test cases, including both prokaryotic and eukaryotic net-

work models, verify the efficacy of these rules and demonstrate com-

pleteness and reproducibility of EFM enumeration. Division of models

into subnetworks is demand-based and automated; computationally

intractable subnetworks are further divided until the entire solution

space is enumerated. To demonstrate the strategy’s scalability, the

splitting algorithm was implemented using an EFMA software package

(EFMTool) and Windows PowerShell on a 50 node Microsoft high per-

formance computing cluster. Enumeration of the EFMs in a genome-

scale metabolic model of a diatom, Phaeodactylum tricornutum, iden-

tified �2 billion EFMs. The output represents an order of magnitude

increase in EFMs computed compared with other published algorithms

and demonstrates a scalable framework for EFMA of most systems.
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1 INTRODUCTION

Extracting biologically meaningful information from the con-

tinuously expanding ‘omics’ databases is often limited by bio-

informatics tools. Stoichiometric modeling is one approach

making advances in the quantification of metabolic phenotypes

reflected by fluxomic data and inferred from metabolomic,

proteomic, transcriptomic and genomic data (Reed and
Palsson, 2003). Stoichiometric modeling assumes that during ap-

propriate time scales, cellular biochemistry can be approximated

as a steady state process with respect to intracellular enzyme and
metabolite concentrations. This assumption simplifies the differ-

ential equations describing cellular mass balances, and when
coupled with reaction directionality and flux magnitude con-

straints, permits the calculation of physiologically reasonable

flux distributions. There are two major stoichiometric modeling
approaches with numerous subvariations (Klamt and Stelling,

2003; Orth et al., 2010; Reed and Palsson, 2003; Trinh et al.,
2009). One stoichiometric modeling approach, elementary

flux mode analysis (EFMA), enumerates all genetically distinct

indecomposable flux distributions in a metabolic network
(Schuster and Hilgetag, 1994). These elementary flux modes

(EFMs) are the minimal set of stoichiometrically balanced flux
distributions representable as unique binary vectors based on par-

ticipation of every model reaction. This set must also represent

every steady state flux distribution in a given network through
non-negative combinations without cancellation (Klamt and

Stelling, 2003; Llaneras and Picó, 2010; Schilling et al., 2000).
Cancellation refers to removal of reaction participation through

combination of fluxes with equal but opposite magnitudes

(i.e. genetic distinction). Another stoichiometric modeling ap-
proach, flux balance analysis (FBA), uses linear programing to

identify optimal flux distributions through a metabolic network.
Various objective functions are possible, including the maximiza-

tion of biomass yield from a substrate (e.g. Varma et al., 1993).

These two stoichiometric modeling methods have been used for
decades to direct metabolic engineering efforts and predict

physiological and ecological behaviors (Carlson, 2009; Carlson
et al., 2002; Feist et al., 2006; Liao et al., 1996; Reed and Palsson,

2003; Taffs et al., 2009; Trinh et al., 2009; Varma and Palsson,

1994).
Both stoichiometric modeling approaches have strengths and

limitations. A major strength of EFMA is enumeration of the

entire solution space in an unbiased manner. FBA generates

only a limited number of distinct solutions using a directed
objective function (Orth et al., 2010; Reed and Palsson, 2003;

Trinh et al., 2009). However, the directed FBA approach reduces
computational costs relative to EFMA, permitting examination of

complex metabolic reconstructions, commonly referred to as

genome-scale models. Complex (e.g. genome scale and microbial
community) metabolic networks have often been intractable using

EFMA (Klamt and Stelling, 2002; Terzer et al., 2009), despite*To whom correspondence should be addressed.
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algorithmic advances (Klamt et al., 2005; Schuster and Hilgetag,
1994; Schuster et al., 2000; Terzer and Stelling, 2008; Urbanczik
and Wagner, 2005a).

Approaches that circumvent the problem of enumerating
all EFMs have been explored. One such approach, convex
basis analysis [i.e. extreme pathway analysis (Schilling et al.,

2000)] identifies a subset of EFMs that still reproduce any feas-
ible steady state flux distribution but lack the biological inter-
pretability of the complete EFM set (Klamt and Stelling, 2003;
Llaneras and Picó, 2010). Efforts have also been made to enu-

merate subsets or patterns of elementary flux vectors that allow
genome-scale investigations. These efforts include generating
the conversion cone (a simpler projection of the solution space

considering external fluxes only) (Urbanczik, 2007; Urbanczik
and Wagner, 2005b), enumerating only EFMs containing the
largest number of zero fluxes (de Figueiredo et al., 2009),

enumerating a set of EFMs that can explain a given flux distri-
bution (Ip et al., 2011), applying regulation to minimize compu-
tation (Jungreuthmayer et al., 2013) and identifying elementary

flux patterns, which are EFMs for subsystems that consider the
constraints imposed by the parent network (Kaleta et al., 2009;
Schuster et al., 2010). Finally, computationally intractable net-

works have been divided into manageable pieces based on bio-
chemical knowledge (Schilling and Palsson, 2000; Verwoerd,
2011), metabolite connectivity (i.e. the number of reactions invol-

ving a particular metabolite) (Schuster et al., 2002; Verwoerd,
2011), path length between reactions (Ma et al., 2004), examin-
ation of the nullspace of the stoichiometric matrix (Poolman

et al., 2007) and random sampling of the solution space to
calculate eigenvectors that can be rotated to produce distinct
reaction sets (Barrett et al., 2009).

For many applications, the ideal approach is an unbiased in-
vestigation of the entire solution space, although this scenario
was previously out of computational reach for complex networks

(Klamt and Stelling, 2002; Llaneras and Picó, 2010). It has been
proposed that otherwise infeasible EFM enumerations can be
performed through the dissection of metabolic networks into

simpler subnetworks via suppression or enforcement of reaction
fluxes, a technique referred to as splitting (Klamt et al., 2005).
Suppression of a reaction defines a subnetwork that does not

contain the reaction, whereas enforcement of a reaction defines
a subnetwork that excludes EFMs that do not use the reaction,
both of which reduce the computational burden (e.g. Fig. 1).

Complete coverage of a metabolic network’s solution space with-
out overlap is ensured at each split by paired suppression and
enforcement of a single reaction. An additional example of sup-

pressing and enforcing can be found in Jevremović et al. (2011b),
which used the EFMA algorithm, Elmo-Comp. Unfortunately,
Elmo-Comp lacked enumeration completeness, as shown

through a disagreement between the presented and published
EFM counts (Jevremović and Boley, 2012; Jevremović et al.,
2011a). The primary objective of the current study is to success-

fully implement a scalable demand-based splitting technique for
complete enumeration of all network EFMs. The objective is
achieved through (i) the development of rational rules for effect-

ively splitting networks, (ii) the successful use of a network split-
ting algorithm that continuously divides networks until they are
computationally tractable and (iii) the use of a workstation-

based computational cluster to distribute EFM enumeration of

genome-scale models. The presented work demonstrates efficacy
across network models containing EFM counts spanning four

orders of magnitude. This algorithm is the first successful imple-
mentation of the splitting technique and establishes a scalable

framework for EFMA of most metabolic models.

2 METHODS

2.1 Experimental and computational systems

Development and analysis of the presented splitting techniques was per-

formed using three previously published metabolic models described in

Table 1 with additional detail available in Supplementary Table S1. The

testmodels, chosen todemonstrate efficacyover a rangeofmodel complex-

ity, included a prokaryotic (ECOLI), a simplified eukaryotic (YEAST1)

and a multicompartment eukaryotic model (YEAST2) (Supplementary

Material). These test models were calculated as both unsplit and split net-

works to validate the compiled subnetwork results. Unsplit networks were

computed using the software package EFMTool on aWindows 7 machine

with a maximum configuration of 120 GB of RAM and 2 Intel Xeon pro-

cessors (X5690). Implementation of EFMTool (Terzer and Stelling, 2008)

version 4.7.1 (www.csb.ethz.ch/tools/efmtool) used documented options

described in Supplementary Table S2. The basic splitting and iterative

splitting algorithms were written in Windows PowerShell v2.0 for imple-

mentation with Microsoft high performance computing (HPC), clustering

software which supports workstation-based clusters. The computational

cluster included 50 workstation nodes, which ranged from 4–120 GB of

RAM per node. Result compilations and analyses were performed using

MATLAB on machines with 32 GB of RAM.

2.2 EFM concatenation and comparison

Subnetwork results produced by the splitting algorithm were screened

for consistency with subnetwork definitions and concatenated into a

single output set (as in Fig. 2). EFMTool identifies futile cycles based

on the number of non-zero fluxes in a flux vector, removes them from

processing and adds them back at the end of processing regardless of

subnetwork definition. This necessitated screening all EFMs to verify that

they did not violate the definition of their subnetwork. The screening

process required minimal computational effort. For example, the

CONCATENATOR script checked and compiled 2 billion EFMs in

�1 day; most of the elapsed time involved reading, decompressing, com-

pressing and writing the results, which occupy�1 TB of hard drive space.

Network results were compared across different algorithms and split-

ting configurations by converting all EFMs to a binary representation

based on reaction participation and identifying EFMs not shared by both

result sets being compared. This comparison was done using standard

MATLAB functions. Binary representation removed rounding effects

associated with normalization and allowed for comparison of all test

models presented.

2.3 Optimizing EFMTool performance

EFMTool’s use of RAM was inspected and optimized using the manage-

ment application, Jconsole, and Java options. Briefly, Java 1.6.� uses a

generational memory construct that assigns new objects to one memory

space while moving older objects to a separate predefined memory space.

This is usually an efficient use of RAM, as most Java applications do not

produce many old objects, and memory management is easier when

newer objects are kept together. However, EFMTool stores each EFM

as an object that stays in RAM for the duration of the calculation, even-

tually becoming an old object. EFMTool filled the memory allocated for

older objects that resulted in ‘out of RAM’ errors, despite having only

used 25–33% of the RAM assigned to Java. Thus, the default Java op-

tions limit EFMTool execution to smaller networks. This practice was
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Fig. 1. Overview of EFM enumeration using EFMTool and the splitting approach. Step 1) The model is compressed removing dead-end reactions (R6),

separating reversible reactions into forward and reverse reactions (R5 becomes R5 and R5R), and combining reaction sets that always occur together into

a single reaction (R7 and R8 combined into R7,8, removing metabolite G). Step 2–3) The compressed network, represented by a stoichiometric matrix

with reactions in columns and metabolites in rows, is solved for the nullspace basis vectors (i.e. the nullspace kernel). External metabolites are not

constrained by conservation relationships and are therefore not considered in the stoichiometric matrix. Step 4) The kernel rows are reordered to

minimize memory usage and computational runtime. Steps 5–6) The EFMTool algorithm then applies directionality constraints to each reaction

sequentially; vectors containing negative fluxes in the reaction being constrained are replaced by all non-negative linear combinations resulting in a

zero flux through the reaction. The negative flux in reaction R1,3 at N2 is replaced by N3,2 (N3þN2) and N4,2 (N4 þ N2), whereas the negative flux in

reaction R1,2 at N3 is replaced by N1,3 (N1þN3), N4,3 (N4þN3) and N4,2,3 (N4,2þN3). EFMTool bit-masks each row of values after the directionality

constraint is applied, improving memory usage (not shown). Step 7) N3,2 is removed during recompilation of reversible reactions, and N4,2,3 is removed

because at least q-m-1 zeros per flux vector are required by the degrees of freedom constraint, where q andm are the number of reactions and metabolites,

respectively (Gagneur and Klamt, 2004). Step 8) The remaining vectors are EFMs and decompressed. This procedure can be modified to enforce (Steps

9–12) or suppress (Steps 13–17) reactions as needed. Enforced reactions are moved to the end of the algorithm and directionality constraints are applied

as described earlier; however, when the enforced reaction is reached, all positive flux vectors have already been enumerated (Step 9), therefore flux vectors

that violate the directionality constraint or do not use the reaction are discarded (Step 10). Suppressed reactions result in a new stoichiometric matrix that

is then processed as described earlier. The highlighted examples of a combined reaction in the backslash patterned box , reversible reaction in the

forward slash patterned box and dead-end reaction in the gray box are to be avoided for use in splitting
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corrected and performance optimized using command line switches

described in Supplementary Table S2.

2.4 k-1 EFM correction

During early attempts at EFM enumeration using the EFMTool func-

tionality to enforce reactions, EFMs were absent from the resulting

solution set. The missing EFMs contained k-1 enforced reactions,

where k is the number of non-zero fluxes in the EFM. This issue was

corrected through a modification in EFMTool code to consider enforced

reactions during the subroutine that removes futile cycles (Supplementary

Material).

3 RESULTS

3.1 Selecting reactions for defining subnetworks

Appropriate reaction selection for subnetwork definition is

essential for effective splitting. Selected reactions must permit

complete enumeration of EFMs while distributing calculations

over subnetworks. Initially, random reactions for splitting were

screened using a brute force method to confirm functionality for

splitting; analysis of the results identified four major categories of

reactions to avoid. First, reactions for splitting should not pro-

duce or consume metabolites that are not consumed or produced

by other reactions (i.e. dead-end reactions, R6 in Fig. 1). Dead-

end reactions result in empty subnetworks when enforced and do

not reduce computations when suppressed.

Second, reactions for splitting should not include reversible

reactions. EFMTool divides reversible reactions into two separ-

ate irreversible reactions, a forward and reverse reaction, during

EFM enumeration and then recombines the fluxes before report-

ing the final EFMs (R5 in Fig. 1). If used for splitting, the

forward and reverse reactions are enforced or suppressed con-

currently; EFMs with flux in only one of these reactions would

be lost. This property makes reversible reactions unacceptable

for splitting.
Network compression improves memory efficiency by

combining reactions, which must operate together into a single

compressed reaction (e.g. R1 and R2 are combined into R1,2 in

Fig. 1; Gagneur and Klamt, 2004); however, compression can

cause problems during splitting, resulting in a third category of

reactions to avoid for splitting. Two adverse scenarios can result

from compression. In a branching series, a single reaction can be

combined separately with multiple reactions to form multiple

compressed reactions. Using that single reaction as a reaction

for splitting prevents certain subnetwork permutations be-

cause multiple independent compressed reactions are enforced

or suppressed simultaneously (e.g. R1 in Figs. 1 and 3 and

Supplementary Fig. S1). In a linear series, a set of reactions

that must occur together combine to form a single compressed

reaction (e.g. R7 and R8 in Fig. 1 and Supplementary Fig. S1).

Using multiple reactions that define a compressed linear series is

ineffective for the same reason as enforcing dead-end reactions

(R7 and R8 in Fig. 1 and Supplementary Fig. S1). However, one

reaction from a linear series or the branch reactions in a

branched series may be effective for splitting (e.g. R2, R3 and

Fig. 2. Work flow of reaction identification and iterative splitting

approaches. Initially, the list of identified preliminary reactions for split-

ting is empty but increases by one reaction per loop through preliminary

reaction identification. The final quantity of reactions for splitting was

adjusted at the gray box by choosing route A if a predefined R was

achieved or route B if more reactions for splitting were required.

Depicted processes describe the pseudo-code or MATLAB functions

listed in parentheses. See the Symbols Section for additional variable

definitions

Table 1. Metabolic models used in the presented study

Organism Model Reactions/

Metabolites

EFMs

Saccharomyces cerevisiae YEAST1a 78/62 1515 315d

S. cerevisiae YEAST2a 83/63 68 868 602d

Escherichia coli ECOLIb 95/94 226 269020d

P. tricornutum DIATOMc 318/335 1934 729551e

aJevremović and Boley, 2012.
bJungreuthmayer et al., 2013.
cThis work.
dEFMs validated by comparing split and unsplit network results.
eFourteen reactions used for iterative splitting. Some subnetworks were recalculated

varying the number of reactions for splitting to validate results.
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R7 or R8 in Figs 1 and 3 and Supplementary Fig. S1). Although

more reactions may be available for subnetwork definition when

compression is not used, compression greatly reduces computa-

tional burden during the enumeration process, vastly outweigh-

ing the benefit of additional potential reactions for splitting (data

not shown; Klamt et al., 2005).
A fourth type of reaction to avoid has poorly scaled coeffi-

cients that can lead to numerical instability. This often occurs

with biomass synthesis associated reactions. For instance,

accounting for the synthesis of a low abundance vitamin

(e.g. B12) and a common amino acid (e.g. glycine) can lead to

a4103-fold difference between the reaction’s largest and smallest

coefficients. Such a model could not be analyzed with EFMTool

due to numerical instabilities in the stoichiometric matrix. This

issue can be exacerbated during the network splitting process

when potential EFMs with small, but nonzero, fluxes in enforced

reactions are removed based on the software’s computational

definition of zero. The removed EFMs are not present when

the reaction is suppressed by definition and are therefore

missed in the results. One method explored to circumvent this

problem used the higher accuracy arithmetic of fixed-point

notation instead of the default floating-point notation (double

to fractional arithmetic in EFMTool nomenclature). The use of

fixed-point notation permitted complete enumeration of EFMs

for some test networks but introduced a substantial computa-

tional cost with a minimal increase in the number of usable re-

actions for splitting (data not shown). Increasing the precision of

the zero definition for floating-point notation was also examined

but not found to consistently improve EFM enumeration.

Although there are multiple methods to circumvent this problem,

this study avoided using reactions containing poorly scaled co-

efficients for splitting, defined as coefficients with a difference

410 within a single reaction. This approach was sufficient for

the three test models.
A list of effective reactions for splitting was identified through

application of the rules summarized in Table 2 and confirmed

through additional checks (i.e. REACTIONTESTER and

SCANNER, respectively, in Fig. 2). The rules were applied

iteratively as follows: (i) reactions were identified that did not

violate the rules in Table 2, given the current network compres-

sion, (ii) one such reaction was selected randomly and added to a

list with R0 preliminary reactions for splitting and (iii) the sub-

network was defined by suppressing all R0 preliminary reactions

for splitting, providing the basis for the next iteration of reaction

selection. This was repeated until all remaining reactions violated

the rules. Repeatedly adjusting the compression basis was

necessary because as reactions are suppressed, they change the

model compression through production of dead-ends and new

sets of combined reactions. Then, to ensure effective splitting,

all 2R
0

subnetwork permutations defined using enforce/suppress

combinations of the preliminary reactions for splitting were com-

pressed and examined for rule violations. Any reactions that

violated the rules under any enforce/suppress permutation were

removed, resulting in a final list of R usable reactions for split-

ting. Reaction validation for all subnetworks also allowed for

screening of reactions that create incompatibility issues with

EFMTool. These processes for preliminary reaction identifica-

tion and subnetwork permutation checking, depicted in Figure 2,

are described in the pseudo-code found in the Supplementary

Material (REACTIONTESTER function and SCANNER sub-

routine, respectively).

3.2 Efficacy of splitting

The number and choice of reactions used to define subnetworks

are important control points for splitting. To quantify splitting

effectiveness based on these considerations, subnetworks were

defined using a set of R reactions, EFMs for all subnetworks

were enumerated and the largest number of EFMs in any sub-

network was used as a basis to assess splitting efficacy. A single

set of reactions for splitting was identified for each of the ECOLI

and YEAST2 models, whereas four distinct sets were identified

for the YEAST1 model using the procedure detailed in the

preceding section (pseudo-code presented in Supplementary

Material). The four distinct sets of reactions for splitting exist

due to the sequential random identification of reactions for split-

ting (e.g. most reactions could work in isolation, but only some

sets of reactions work together). R was varied within each set of

reactions for splitting by removing reactions without replacement

to form smaller sets. The linear trend on a semi-log plot (Fig. 4)

suggests an exponential decay of maximum EFMs per subnet-

work with increasing R. There were no deviations in the number

or identity of the EFMs enumerated between the 77 splitting-

based enumerations and the respective unsplit enumerations.

This analysis also demonstrates that the reaction selection rules

are functional over a broad range of R.

Table 2. Criteria for removal of reactions from enforce/suppress sets

Rule Reaction type Issue

1 Dead-end Subnetworks cannot evenly distribute

EFMs

2 Reversible Misses EFMs containing flux in either but

not both directions

3 Combineda May not allow for all reaction

combinations

4 Poorly scaled

coefficients

Poorly conditioned matrix and zero

definition may miss EFMs (threshold

difference of 10)

Note: All reaction combinations must be tested to confirm that an EFM is not

represented in the enforce/suppress set and that the subnetwork definition and

compression does not rearrange reactions causing violation of the stated rules.
aSee Section 3.1 for detailed description of combined reactions to avoid.

Fig. 3. Network compression effect on reactions. Network compression

results in two reactions: R1,2 is R1þR2 and R1,3 is R1þR3. Enforcing

(solid lines)/suppressing (dotted lines) reaction R1 generates only two (A

and B) of the four reaction combinations needed to fully describe possible

reaction participation (A, B, C and D)
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3.3 Iterative splitting

Identifying the optimal number of reactions for splitting a model

is a major theoretical and practical challenge. There are two

competing effects with increasing magnitude of R that are (i)

the rate of new subnetwork definition and (ii) the rate of reduc-

tion in subnetwork complexity. Splitting shifts the computational

burden from memory limitation to CPU limitation (Fig. 5A and

B). The number of subnetworks grows with 2R when using basic

splitting, resulting in a prohibitive number of files for larger

values of R. Figure 5A demonstrates a case of basic splitting in

gray where R is 4.
A demand-based network splitting algorithm can be imple-

mented, which minimizes the total number of analyzed subnet-

works without sacrificing complete coverage of the solution. This

strategy is referred to as iterative splitting (Fig. 5B). The proced-

ure initially uses a set of r reactions to define subnetworks, where

r is less than the total number of reactions needed to complete

the network (Rmin). EFMs of calculable subnetworks are enum-

erated and subnetworks that are assessed to be intractable

(e.g. EFM enumeration fails due to memory limitation or ter-

minates via the algorithm discussed in Section 3.5) form branches

that are further divided using an additional set of r reactions. The

process continues until each branch completes or the list of re-

actions for splitting is exhausted. Computational savings are

realized when branches complete at intermediate iterations in-

stead of the final iteration. Figure 5B illustrates a case where r

is 1, Rmin is 4 and the total number of iterations, itot, is 4. In this

example, one branch completes per iteration resulting in a 2-fold

decrease in total subnetworks attempted compared with basic

splitting (Fig. 5A and B). The YEAST2 model in Table 1 demon-

strated a 76-fold decrease in number of subnetworks calculated

using iterative splitting (r¼ 2, Rmin¼ 14 and itot¼ 7) as compared

with basic splitting with the same 14 reactions (reactions for

splitting: R4, R5, R9, R12, R14, R21, R27, R33, R37, R40,

R46, R53, R58 and R61). Rmin is a function of computational

resources and was increased by decreasing available memory for

computation (e.g. 6718 MB heap size for the YEAST2 example).

3.4 Optimizing the number of reactions for splitting

per iteration (r)

Iterative splitting has substantial computational benefits when

branches complete before the final iteration; however, the com-

putational costs of intractable subnetworks may overwhelm this

benefit. This tradeoff provides a basis for optimization, the

number of reactions for splitting (r) applied per iteration, i.

Increasing r defines a larger number of more constrained subnet-

works per iteration, which have an increased likelihood of com-

pletion compared with subnetworks defined using smaller r. This

approach decreases failed enumeration attempts but increases

the number of attempted subnetworks per iteration. Two scen-

arios bound the total possible number of subnetworks analyzed

Fig. 5. Comparison of two network splitting approaches. The basic split-

ting approach (A) uses combinations of enforced/suppressed reactions to

create calculable subnetworks where the number of subnetworks in-

creases exponentially with the number of reactions for splitting (Klamt

et al., 2005). The iterative splitting approach (B) only generates subnet-

works when the previous ones are intractable (white) until all EFMs for

all subnetworks in the branch can be enumerated (gray) (Klamt et al.,

2005). Both approaches shift the burden of computation from a RAM-

limited problem to a CPU-limited problem as the subnetworks become

smaller but greater in number. The example uses R¼ 4 reactions for

splitting with each iteration considering one additional reaction (i.e.

r¼ 1) for a total of i¼ 4 iterations. Superscripts refer to the enforced

(E) or suppressed (S) reactions in the labeled subnetworks

Fig. 4. Subnetwork EFM count reduction with increasing number of re-

actions for splitting (R). The test models YEAST1 (squares), YEAST2

(diamonds) and ECOLI (circles) were analyzed in 77 separate configur-

ations; every configuration resulted in complete enumeration of the

solution space
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during iterative splitting. The upper limit occurs when all sub-
networks are intractable until the last iteration at which point

they all complete (Fig. 5A, r¼ 1). This scenario represents basic

splitting when r equals R. The lower limit occurs when each step

of iterative splitting produces only one intractable subnetwork

until R reactions are used, at which point all subnetworks com-

plete and the entire solution space for the whole network is

covered (Fig. 5B, r¼ 1).
Optimization based on limiting the number of intractable sub-

networks enables prediction of a generalized ideal r without a

priori network-specific information. The equation for the total

number of subnetworks (N) is:

N ¼ 2r fþ 1ð Þ ð1Þ

where f is the number of intractable subnetworks. Equation (1)

does not include the original unsplit network. As r!Rmin, f!0,
therefore, basic splitting with at least the number of reactions

required (Rmin) eliminates time spent on intractable subnetworks.

However, this neglects the benefit of early branch completion,

reducing the total number of attempted subnetworks and there-

fore the total CPU time (Fig. 5A and B).
Assigning a theoretical relative CPU time for tractable and

intractable subnetworks permits evaluation of effective values

of r with respect to CPU time. For this analysis, a theoretical

model is considered that requires one hour of CPU time to enu-

merate the EFMs from the unsplit network, tunsplit. An approxi-

mate relation between tunsplit and the average CPU time to

enumerate the EFMs of a subnetwork of the same network

was determined empirically using the test models in Table 1.

For the subnetwork defined by r*i reactions, the CPU time for

EFM enumeration (tr,i) follows the relationship:

tr, i ¼
tunsplit
r � i

ð2Þ

(data not shown). For analysis purposes, the CPU time for sub-

networks with failed EFM enumeration attempts, tfail, was

bracketed between 10-fold longer and 10-fold shorter than tunsplit.

A 10-fold longer run time was used as an upper limit because

Java garbage collection will run until it uses 90% of the total
CPU time before crashing, inflating the run time �10-fold. A 10-

fold shorter run time was used for the lower limit because net-

works with an explosion in the number of potential EFMs may

quickly fill available memory with objects that cannot be cleared

(data not shown). Combining Equation (2) and the bounds for

tfail with the number of subnetworks defined by Equation (1),

total CPU time boundaries were estimated as a function of r and

normalized by tunsplit (Fig. 6). Simulations considered three the-

oretical models with Rmin¼ 10, 20 and 30 and all combinations

of itot and r producing a respective Rmin. Increasing r reduces the

maximum potential CPU time investment independent of R;
however, the time minimum increases significantly with r after

�5 reactions (Fig. 6). The minimum time increases due to the

large number of subnetworks and the associated redundant cal-

culations during reaction enforcement. Considering both the

minimum relative CPU time for the lower tfail limit scenario

and the exponential decrease in relative CPU time for the

upper tfail limit scenario, an r in the range of 4–8 reactions ap-

pears optimal without a priori knowledge (Fig. 6). The analysis

considers total relative CPU time; implementation on

computational clusters would reduce real-world time because
of parallel computations.

3.5 Minimizing intractable subnetwork runtime

Intractable subnetworks can have a high CPU time cost; there-

fore, large run time savings can be obtained by minimizing CPU
time spent on intractable subnetworks. An empirical detection

strategy was applied to identify EFM enumeration attempts that
were not likely to complete; those attempts were then terminated
before failure and the subnetwork was further divided. Applying

the intractable subnetwork detection strategy resulted in substan-
tial time savings for the models in this study (data not shown).

Details of the prediction algorithm and used time thresholds can
be found in the Supplementary Material.

3.6 Application of the iterative splitting algorithm to a

genome-scale diatom model

EFMA of a genome-scale metabolic model for the diatom

Phaeodactylum tricornutum Pt1 was conducted to demonstrate
the iterative splitting algorithm. This model was reconstructed
using the extensive knowledge base for P. tricornutum Pt1,

including a finished genome (Markowitz et al., 2012) and litera-
ture-based manual analyses (e.g. Fabris et al., 2012; Kroth et al.,

2008). The DIATOM model considers 680 genes that were
manually compressed into 318 reactions with 335 metabolites.
Reactions and metabolites were partitioned into five distinct

physical compartments based on analysis of organelle signal
peptides (Emanuelsson et al., 2007) and biochemical studies
(e.g. Tachibana et al., 2011). The metabolic model with genomic

information, stoichiometries, biomass requirements and a graph-
ical representation can be found in the Supplementary Material.

The workflow for successful application of the iterative split-
ting algorithm (i.e. Fig. 2) to the DIATOM model can be
described as follows: a set of 14 reactions for splitting (R¼ 14)

was identified by calling the REACTIONTESTER function
(Supplementary Material). The reactions were divided into two
sets of seven reactions (r¼ 7 and itot¼ 2) based on the theoretical

optimal values of r (Fig. 6) and the complete use of the set of
reactions for splitting. The INDEXER function submitted EFM

enumeration jobs to the HPC cluster and on completion of the
first iteration, scanned the results for intractable subnetworks to
further divide with the next seven reactions in the second iter-

ation. The PowerShell script used is available in
the Supplementary Material. EFMA of the DIATOM model

resulted in 1 934729 551 EFMs; this count was validated by rea-
nalyzing random model subnetworks using different sets of
reactions for splitting. The output exceeds the largest reported

for EFMA to date by �1 order of magnitude (Jungreuthmayer
et al., 2013).

4 DISCUSSION

The complete and reproducible EFMA of metabolic networks
that were previously computationally intractable was demon-

strated here through the definition of subnetworks based on
serial enforcement and suppression of reaction fluxes. This is in
contrast to other recent attempts to parallelize EFM enumer-

ation by splitting, which were found to be incomplete at times
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(Jevremović and Boley, 2012; Jevremović et al., 2011a). The pre-

sented basic and iterative splitting algorithms are expected to be

fully compatible with that group’s recent efforts to implement

distributed EFMA computing with shared memory (Jevremović

et al., 2011b), offering additional computing power for recalci-
trant subnetworks.
When using EFMTool, the reactions for splitting cannot con-

tain a subset representing all non-zero flux reactions in an EFM;
enforcing such a subset causes an error. The ability to identify
the error by examining all subnetworks at the level of compres-

sion indicates the error is caused during preprocessing.
Additionally, manual application of the nullspace algorithm
did not yield an explanation for the error. The error was repro-
ducibly avoided by identifying the subnetworks with the error

and eliminating at least one of the reactions in the EFM from the
set of reactions for splitting. This solution is algorithmically in-
convenient, as one of these reactions must be removed from the

set of reactions for splitting and the new combination of reac-
tions reanalyzed (Fig. 2). However, subnetworks enforcing an
EFM cannot contain more than the defined EFM, as an EFM

cannot be represented within another EFM (due to the decom-
posability constraint). The EFM in an enforced reaction set can
be identified through EFMA of the problematic reaction set, a

negligible computational investment. By confirming enforcement
of an EFM to be the problem, rechecking of reactions and empty
subnetworks may be avoidable through early completion of the

branch enforcing a complete EFM and addition of the identified
EFM to the solution set.
Selection criteria were established for identifying effective re-

actions for splitting (Table 2). Some of these criteria could be
incorporated into a new EFMA algorithm. Examples include (i)
changing the representation of reversible reactions and (ii) chan-

ging when the algorithm networks are compressed. Recording
reversible reactions in the original network model as separate
forward and reverse reactions would allow the algorithm to

define enforce/suppress combinations involving currently unus-
able reactions thereby eliminating the need for the reversibility
rule. Compressing networks before applying the enforce/suppress

subroutine would prevent the network from reconfiguring with
subnetwork definition, removing the need for subnetwork verifi-
cation. However, this operational order may reduce effectiveness

of subnetwork definition, as some suppressed reactions result
in additional combinable reactions, as shown by the creation
of a dead-end reaction when suppressing R8 in Figure 1 and

Supplementary Figure S1 (Klamt et al., 2005). Although the
likelihood of reaction rearrangement as a function of network
complexity should be examined, the costs of accounting for net-

work compression effects were not prohibitive to the analysis for
presented models.
The presented splitting approaches are subject to the availabil-

ity of reactions for splitting. For instance, a hypothetical model
composed exclusively of reversible reactions or a model where
every reaction had poorly scaled coefficients could not be ana-

lyzed with the presented approach. Fortunately, such models are
not typically biologically relevant. Although all chemical reac-
tions are theoretically reversible, many are effectively irreversible

under physiologically relevant concentrations and temperatures.
Additionally, the scaling of reaction coefficients for a metabolic
model is dictated by product/substrate stoichiometries of the en-

zymes, which are often in a range that do not cause numerical
instability. A more practical limit would be a model that does
not have enough reactions satisfying the rules in Table 2 to

sufficiently divide the network into tractable subnetworks.

Fig. 6. Optimization of reactions for splitting applied per iteration (r).

Relative CPU time for theoretical networks requiring 10 (A), 20 (B) and

30 (C) total reactions for splitting to complete, assuming that one sub-

network is intractable per iteration (open circles) or all subnetworks are

intractable until the last iteration (closed squares). Time for intractable

subnetworks was varied between 10-fold increase (solid lines) and 10-fold

decrease (dashed lines) relative to an unsplit model. Relative CPU time is

the summation of time to complete all subnetworks normalized by time to

complete the whole unsplit network. Vertical dotted lines designate the

optimal working range based on the minimum (open circles with solid

lines) and the exponential decrease (closed squares), given no prior know-

ledge of network splitting behavior
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Although such a model is theoretically possible, it is hypothe-

sized that with computational resource improvements, most

models will be tractable.
The basic splitting and iterative splitting algorithms allow for

distributed computation of models through division into subnet-

works. Microsoft HPC software permitted enumeration of the

nearly 2 billion EFMs in the DIATOMmodel in51 month using

academic computer laboratories during idle hours. Although the

total CPU time is unavoidable, the real time required to run large

models can be reduced substantially based on the number and

computational power of nodes. For instance, the most complex

subnetwork in the DIATOM model took �2 days of run time;

therefore, given appropriate resources, the EFMA could have

been completed in 2 days if the other subnetworks were concur-

rently run on additional nodes. This highlights the lower limits of

computational time for EFMA of genome-scale models, given

current computer capabilities. Using the splitting algorithm and

sufficient computational resources, the presented study substan-

tially expands the applicability of EFMA.

SYMBOLS

f Number of intractable subnetworks

i Iteration in the iterative splitting process

itot Number of iterations in the iterative splitting process

k Number of reactions with non-zero coefficients within an EFM

m Number of metabolites in the compressed model

N Number of subnetworks attempted

q Number of reactions in the compressed model

R Number of reactions used for subnetwork definition during the

splitting process

Rmin Minimum number of reactions needed for complete subnetwork

enumeration during the splitting process

R0 Number of preliminary reactions for splitting (reactions that have

not been verified at the subnetwork level)

R# Reaction #, where # identifies a specific reaction from Figures 1

or 3

r Number of reactions used for subnetwork definition at each

iteration

tfail Average CPU time spent on intractable subnetworks

tr,i Average completion time for subnetwork defined by r*i reactions

tunsplit Time for unsplit network to complete
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