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ABSTRACT

Motivation: Gene set analysis is a popular method for large-scale

genomic studies. Because genes that have common biological fea-

tures are analyzed jointly, gene set analysis often achieves better

power and generates more biologically informative results. With the

advancement of technologies, genomic studies with multi-platform

data have become increasingly common. Several strategies have

been proposed that integrate genomic data from multiple platforms

to perform gene set analysis. To evaluate the performances of existing

integrative gene set methods under various scenarios, we conduct a

comparative simulation analysis based on The Cancer Genome Atlas

breast cancer dataset.

Results: We find that existing methods for gene set analysis are less

effective when sample heterogeneity exists. To address this issue, we

develop three methods for multi-platform genomic data with hetero-

geneity: two non-parametric methods, multi-platform Mann–Whitney

statistics and multi-platform outlier robust T-statistics, and a paramet-

ric method, multi-platform likelihood ratio statistics. Using simulations,

we show that the proposed multi-platform Mann–Whitney statistics

method has higher power for heterogeneous samples and comparable

performance for homogeneous samples when compared with the

existing methods. Our real data applications to two datasets of The

Cancer Genome Atlas also suggest that the proposed methods are

able to identify novel pathways that are missed by other strategies.
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1 INTRODUCTION

High-throughput genome-wide assays, such as microarray and

next-generation sequencing, have become more reliable and af-
fordable. With the ever-increasing throughput and the scale of
omics studies, more and more projects choose to measure mul-

tiple genomic features (e.g. gene expression, methylation, gene
mutation, copy number, promoter binding and protein expres-
sion) on the same samples. Evaluating multiple genome features

can lead to a better examination of functional responses and

provide a comprehensive understanding of the underlying biolo-

gical mechanisms. In recent years, well-known large-scale pro-

jects, such as The Cancer Genome Atlas (TCGA) (2012), the

Cancer Cell Line Encyclopedia and the Encyclopedia of DNA

Elements, have generated genomic profiles across multiple plat-

forms. In addition, more and more recent projects in the Gene

Expression Omnibus contain multi-platform data. With diverse

data types from different platforms, it becomes challenging to

properly integrate, analyze and interpret the results to obtain

biological insights. Gene set analysis is a powerful strategy de-

veloped to analyze large-scale profiling data. Instead of studying

one gene at a time, gene set analysis focuses on a set of related

genes, such as genes in one Kyoto Encyclopedia of Genes and

Genomes pathway (Kanehisa and Goto, 2000) or those related

to the same Gene Ontology (Ashburner et al., 2000) term. Joint

analysis of genes in a set often improves power, especially when

the signals of individual genes are moderate. Because the set itself

often has biological meanings, gene set analysis also facilitates

the interpretation of experiment results and helps to identify im-

portant biological findings (Ramanan et al., 2012). Many meth-

ods have been developed to perform gene set analysis in a single

platform, for example, Gene Set Enrichment Analysis (GSEA)

(Subramanian et al., 2005), GSA (Efron and Tibshirani, 2007)

and Globaltest (Goeman et al., 2004). Several review articles

have been published that discuss the performances of different

gene set methods (Ackermann and Strimmer, 2009; Goeman and

Buhlmann, 2007; Hung et al., 2012; Maciejewski, 2013).
Gene set analysis on multi-platform genomic data is gaining

momentum. Approaches can be roughly classified into three dif-

ferent categories, characterized by how the multi-platform infor-

mation is integrated. The first type performs a gene set analysis on

each platform and then combines the single platform information,

such asP-values (e.g. Jia et al., 2012). Such a strategy is commonly

used when the multi-platform data are from similar, but not iden-

tical, samples. The second strategy, such as that used in the SumZ

approach of Xiong et al. (2012), first sums the gene-specific asso-

ciation score of each platform to compute a multi-platform score

for each gene and then uses the gene scores to perform gene set

analysis. The third strategy is similar to the second except that it

directly derives the multi-platform gene scores using data from all

platforms simultaneously. One representative approach is the in-

tegrative (INT) approach proposed by Tyekucheva et al. (2011),*To whom correspondence should be addressed.
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which uses a logistic regression with all multi-platform values of a

gene as predictors and takes the model deviances as the gene

scores for downstream gene set analysis (Tyekucheva et al.,

2011). Bayesian methods have also been developed to analyze

multi-platform genomic data, e.g. iBAG (Wang et al., 2013) and

PARADIGM (Vaske et al., 2010). Compared with traditional

gene set methods, Bayesian methods often use extensive know-

ledge of the biological relationships among different data plat-

forms and/or the interactions between studied genes.

Sample heterogeneity refers to molecular and cellular differ-

ences among biological samples. Such differences are commonly

encountered in complex diseases like cancer, where cases with

different genotypes, genomic copy numbers or expression pat-

terns often lead to different disease progressions and treatment

strategies (Fisher et al., 2013; Russnes et al., 2011). Several meth-

ods have been developed to address sample heterogeneity, e.g.

cancer outlier profile analysis (MacDonald and Ghosh, 2006),

outlier sum (Tibshirani and Hastie, 2007), outlier robust t-statis-

tics (ORT) (Wu, 2007), cancer likelihood ratio statistics (LRS)

(Hu, 2008) and non-parametric change-point statistics (Wang

et al., 2011). Although the superiority of these methods over

ordinary analysis has been demonstrated with heterogeneous

data in a single platform, to the best of our knowledge, there

are no corresponding gene set approaches for multi-platform

heterogeneous data. The impact of sample heterogeneity on

multi-platform analyses can be more substantial than on single

platform analyses. First, the level of heterogeneity can be differ-

ent from platform to platform, e.g. platforms such as somatic

mutations and DNA methylation have much higher diversity

(heterogeneity) among individuals and samples than DNA

copy number (Aryee et al., 2013; Chin et al., 2011). In addition,

the heterogeneous subsets can be different from one platform to

another, e.g. some samples might have changes on platform A

but no changes on platform B, whereas different subsets of sam-

ples have changes on platform B but not on platform A. Such a

scenario may lead to power loss due to the attenuation of signals

when the association is evaluated across platforms. In contrast, a

multi-platform method that can tackle platform-specific hetero-

geneous data would be able to identify the signals when integrat-

ing information across platforms.
In this study, we perform simulation studies to systematically

evaluate different integrative methods under a range of scenarios.

We observe that the true-positive rates (TPR) and the true-

negative rates of existing multi-platform gene set methods decrease

dramatically when heterogeneity exists. These results motivated us

to construct three methods to account for sample heterogeneity in

multi-platform gene set analysis: multi-platform Mann–Whitney

statistics (MPMWS), multi-platform outlier robust T-statistics

(MPORT) and multi-platform likelihood ratio statistics

(MPLRS). We use simulations and real data analyses to demon-

strate the utility of these methods under various conditions.

2 METHODS

2.1 TCGA datasets

We downloaded the TCGA breast cancer data from the National Cancer

Institute ftp site in January 2013. We focused on the level 3 gene summary

data from RNA sequencing (RNA-Seq), methylation and copy number

variation (CNV) and extracted 530 common samples (480 case samples

and 50 control samples) and 10371 common genes shared among the

threeplatforms.ForRNA-Seqdata, the log2 readsperkilobase permillion

were used as gene expression values. Before the log2 transformation, a

minimal value (0.0001) was added to prevent infinite values. For methyla-

tion, the mean beta values of all of the probes mapped to a gene were first

computed and then converted into an M value for each gene (Du et al.,

2010). The CNV values were provided in log2 format. Within each plat-

form, the data were standardized to havemean 0 and standard deviation 1.

The TCGAbreast cancer data were used to perform simulations and a real

data analysis. We also performed a data analysis on the TCGA Kidney

RenalClearCellCarcinoma(KIRC)dataset, forwhichweapplied the same

procedures of data processing andobtained 486 common samples (463 case

samples and 23 control samples) and 11 182 common genes shared among

the three platforms of methylation, CNV and RNA-Seq data.

2.2 Simulations design

We generated simulated data based on the TCGA breast cancer dataset,

which contains 480 cancer samples and 50 control samples (i.e. the case

proportion �¼ 91%). First, we created 207 non-overlapping gene sets by

randomly drawing genes from the 10371 genes without replacement. The

sizes of the 207 gene sets were randomly determined based on the size

distribution of the MSigDB canonical pathways (Subramanian et al.,

2005). The genomic data for cases and controls were simulated using

the scheme described in the Tyekucheva study (Tyekucheva et al.,

2011). In short, we first shuffled the case–control labels to remove any

association that may exist in the original data. Then, we randomly se-

lected 10 gene sets as causal gene sets and ‘spiked in’ signals into the

causal gene sets as detailed below. We performed 300 replicates for each

simulation scenario.

(A) Simulation with homogenous samples. Given a causal gene set, we

randomly selected �% (25, 50 or 75%) of the genes as causal genes. For

each causal gene, one platform was randomly selected as causal and �k

was added to the genomic values of the causal platform for cases. The

value of �k was derived such that the two-sample t-test between cases

and controls had power � (0.2, 0.4, 0.6, 0.8 or 0.9).

(B) Simulation with heterogeneous samples. We considered two scen-

arios (referred to as Scenarios B1 and B2) to simulate datasets with

sample heterogeneity. In Scenario B1, we followed the simulation

scheme for Scenario A, except we randomly selected �% (20, 40, 60,

80, 90 or 100%) of the case samples as ‘true’ cases for each causal

gene. In other words, we only ‘spiked in’ �k signals into the (randomly

selected) causal platform of the causal gene for the ‘true’ cases. Because

the causal platform of a causal gene was randomly selected, the causal

genes in a platform are different from each other (although there may be

some overlaps).

In Scenario B1, there is only a single causal platform for each causal

gene for the ‘true’ cases. In real biological situations, we often see genes

that have changes in multiple platforms. To account for these scenarios,

we considered Scenario B2, in which each causal gene is allowed to have

changes in more than one platform. Specifically, let w be the number of

causal platforms of a casual gene; then, the probability of w ¼ ð1, 2, 3Þ is

(4=8, 3=8, 1=8), respectively. That is, we first determined the number of

causal platforms from binomial (3, ½) and then converted w ¼ 0 to

w ¼ 1. We then added �k values to the genomic data of the causal

platform(s) of a causal gene for the ‘true’ cases.

2.3 Multi-platform methods for gene set analysis without

sample heterogeneity

The general steps of integrative gene set analysis start with computing gene-

specific association scores (gene scores in short) of multi-platform data and

then using these scores to perform gene set analysis. For the gene set ana-

lysis, we conducted the gene set tests using R function ‘geneSetTest’
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from the R/Bioconductor package ‘limma’ (Smyth, 2005) and obtained

P-values for each gene set. The ranks of the gene scores were used instead

of the actual scores (Michaud et al., 2008). We selected different thresholds

of P-value cutoff and computed the TPR, i.e. the percentage of the causal

gene sets truly identified, and the false-positive rate, i.e. the percentage of

non-causal gene sets falsely identified as causal gene sets. We plotted the

receiver operating characteristic (ROC) curves to compare the perform-

ances of the different methods using R. Below; we describe how different

methods obtain the multi-platform gene scores considered in the simulation

study.

� Integrative (INT) analysis (Tyekucheva et al., 2011):

For each gene, regress the disease status on the genomic variables

from all platforms using a logistic regression model. The multi-plat-

form gene scores are computed by taking the differences of the de-

viances between the null models (excluding genomic predictors) and

the full models (including all genomic predictors).

� Hotelling’s T2 (HT2):

For each gene, perform the Hotelling’s T2 test to conduct a case–

control comparison using the genomic variables from all platforms

(Xiong et al., 2002). The multi-platform gene scores are the

Hotelling’s T2 statistics.

� SumZ (Xiong et al., 2012):

For each gene at each platform, calculate the association score (t-

statistics). Next, use permutations to obtain the null distribution of

the t-statistics within each platform. Then, standardize the t-statistics

of each gene based on the null distributions. Finally, for each gene,

obtain the gene scores by taking the sum of the standardized values

across different platforms.

� Deviance summarization:

For each gene at each platform, fit the logistic regression under the

null model (i.e. excluding the genomic variable) and under the full

model (i.e. including the genomic variable). Next, obtain the devi-

ance difference between the two models. Finally, for each gene, take

the average of the deviance difference across platforms as the multi-

platform gene scores (referred to as AveD). The method of MaxD is

obtained in the same manner except that the maximum is used rather

than the average.

� Single platform method (benchmark):

For each gene at each platform, perform the same analysis as

described in ‘deviance summarization’. Then, obtain the single-plat-

form gene scores by taking the deviance difference between the null

model and the full model. We applied this strategy on methylation,

CNV and RNA-Seq expression platforms and referred to the corres-

ponding methods as Methy, CNV and Exp, respectively.

2.4 Multi-platform methods for gene set analysis

accounting for sample heterogeneity

We constructed three multi-platform methods to address sample hetero-

geneity. Specifically, we extended two current methods designed for single

platform analysis to the multi-platform setting, i.e. MPORT [based on

ORT of Wu (2007)] and MPLRS [based on LRS of Hu (2008)]. We also

developed a non-parametric method, MPMWS, which obtains the gene

scores based on the Mann–Whitney statistics and does not assume sym-

metric distributions for the genomic variables.

The general procedure of multi-platform heterogeneous methods is as

follows. Assume that there are M genes and L platforms measured from

n0 control samples and n1 case samples (i.e. in total, n ¼ n0 þ n1 samples).

Let xim‘ be the observed value of the genomic variable for gene m and

platform ‘ of sample i. For each gene, use the single platform method to

compute association statistic Tm‘ for platform ‘. Next, similar to the

SumZ method, use permutations to obtain a null distribution of the

statistics for platform ‘. Finally, calculate the standardized gene statistics

within platform ‘, denoted by T 0m‘, using the mean and standard devi-

ation (denoted by T�‘ and S�‘, respectively) obtained from the permuted

null distribution, i.e.

T 0m‘ ¼ ðTm‘ � T�‘Þ=S�‘:þ cl ð1Þ

As is done in the SumZ implementation, these scores are made positive by

adding a constant, cl, that is the absolute value of the most negative score

across the platform. This translation makes all of the T0m‘ values positive

but does not change the shape of their distribution. Then, the sum of the

standardized gene statistics from each platform defines the multi-platform

gene scores:

Gm ¼
XL
‘¼1

T 0m‘: ð2Þ

The MPORT, MPLRS and MPMWS methods differ only in how Tml is

obtained. We show the formula for computing Tm‘ when detecting

‘upregulated’ genes. (Here, the term ‘upregulated’ indicates the increase

of numerical values rather than the biological ‘turning on’ of the gene.)

The approaches can be extended to detecting downregulated genes by

reversing the signs of the observed values.

� MPORT: Tm‘ is computed using the ORT method (Wu, 2007). For

each gene at each platform, calculate the mean absolute deviance

(MAD) by MAD ¼ 1:4286�median zim‘ð Þ, where

zim‘ ¼
xim‘ �mediancontrolj jðif i is a control sampleÞ
xim‘ �mediancasej jðif i is a case sampleÞ

�
ð3Þ

For upregulated genes, Tm‘ is computed from the case samples using

the ORT method:

Tm‘ ¼ TORT ¼

P
½ xim‘ �mediancaseð Þ � I xim‘4q75case þ IQRcase

� �
�

MAD
, ð4Þ

where IðAÞ is an indicator function of event A, q75case is the 75th

percentile of xim‘ for the case samples and IQRcase is the interquartile

range of the case samples.

� MPLRS: Tm‘ is computed using the LRS method (Hu, 2008). For

upregulated genes, the genomic data are sorted from the smallest to

the largest under the constraint that all controls are ranked lower

than cases.

Sk,m‘ ¼
Xk
i¼1

xim‘, where n0 þ 1 � k5n and ð5Þ

Tm‘ ¼ TLRS ¼ max
k

kSn,m‘

n � Sk,m‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1� k

n

� �q
0
B@

1
CA ð6Þ

� MPMWS: Tm‘ is computed using the non-parametric Mann–

Whitney change point detection method implemented in R package

CPM (Ross, 2013; Ross et al., 2011). The genomic data are sorted

from the smallest to the largest under the constraint that all controls

are ranked lower than cases; the Mann–Whitney U statistic, Uk,m‘,

for each case sample is computed; and Tm‘ is selected as the largest

Uk,m‘.

Tm‘ ¼ TMWS ¼ max
k

Uk,m‘

� �
, where n0 þ 1 � k5n: ð7Þ

2.5 Real data analysis

We performed real data analysis using the methods that have the best

performances in the simulation studies (i.e. MPMWS and INT). The 1452

pathways in MSigDB were tested using both the breast cancer and the
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KIRC datasets, which comprised genomic data from methylation, CNV

and RNA-Seq platforms.

3 RESULTS

3.1 Multi-platform methods for gene set analysis with

homogenous samples (scenario A)

We evaluated the abilities of AveD, MaxD, INT, SumZ and

Hotelling’s T2 (HT2) to correctly identify causal gene sets

under various parameter settings. Single platform methods

Methy, CNV and Exp were used to benchmark the performances

of the multi-platform methods. Figure 1 shows the ROC plots

under different proportions of causal genes in a causal set, i.e.

� ¼ 75, 50, and 25% for Figure 1A–C, respectively, while fixing

� (power) at 0.8 and � (percentage of case samples) at 0.91. The

corresponding areas under the curves (AUCs) are summarized in

Supplementary Table S1A. From Figure 1A, it is clear that

multi-platform methods outperformed single platform methods.

Among the multi-platformmethods, Hotelling’s T2 and INT had

similar performances, and these methods had the best

performances among all methods. AveD and MaxD had slightly

lower TPRs than INT, and SumZ followed closely. In Figure 1B

and C, the relative performance among different methods stayed

the same as in Figure 1A, except that the TPRs decreased when �
decreased. The same patterns were observed for �¼ 0.6

(Supplementary Fig. S1; Supplementary Table S1A).
Figure 2 shows the ROC plots under different � levels, i.e.

� ¼ ð0:9, 0:8, 0:6, 0:4, and 0:2Þ when �¼ 75% and �¼ 0.91.

(The AUC values are shown in Supplementary Table S1A).

The patterns for the relative performances of different methods

were observed to be similar to those of Figure 1. As expected, all

methods performed better when the difference between case and

control became larger (i.e. larger �).
The case proportion, �, is known to affect the power of

statistical methods (Evans and Purcell, 2012). We repeated

the studies for �¼ 0.5 (Supplementary Fig. S2) and 0.1

(Supplementary Fig. S3); similar results were observed under

these scenarios.

3.2 Multi-platform methods for gene set analysis with

heterogeneous samples (Scenarios B1 and B2)

To evaluate the performance under sample heterogeneity, we

simulated datasets by randomly selecting �% of case samples

to be ‘true’ cases. We focused our comparisons on the two rep-

resented approaches from Section 3.1 (i.e. INT and SumZ) and

the three proposed methods for sample heterogeneity, i.e.

MPLRS, MPORT and MPMWS. The results of Scenario B1

are shown in Figure 3, where �¼ 75%, �¼ 0.8 and �¼ 0.91,

A

B

C

Fig. 1. ROC plots for gene set methods at different � levels [(A) �¼ 75%;

(B) �¼ 50%; and (C): �¼ 25%]. The simulated data were generated with

�¼ 0.8 and �¼ 0.91

A B

C

E

D

Fig. 2. ROC plots for gene set methods at different � levels [(A) �¼ 0.9;

(B) �¼ 0.8; (C) �¼ 0.6; (D) �¼ 0.4; and (E) �¼ 0.2]. The simulated data

were generated with �¼ 75% and �¼ 0.91
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and the percentage of ‘true’ cases among all cases varies, i.e.

�¼ (100, 90, 80, 60, 40 and 20%). The corresponding AUC

values are presented in Supplementary Table S1B. We see that

INT and SumZ, which are designed for multi-platform homoge-

neous data, quickly lost power as � decreased. In contrast,

MPLRS and MPMWS retained good power when � decreased.

However, the relative performance between MPLRS and

MPMWS depended on �. When � was low (e.g. �40%),

MPLRS performed the best; when � was 60%, MPLRS and

MPMWS had similar power. However, when � was high (e.g.

� 80%Þ, MPLRS had less TPRs than MPMWS, sometimes even

less than INT. MPORT performed inferior to MPLRS and

MPMWS, and its power advantages over INT and SumZ did

not show until � became small, i.e. 	20–40%. Because � is un-

known in practice, MPMWS appears to be the most robust

choice; it yielded the highest or the second highest TPRs regard-

less of the � values. Although the method is designed to account

for sample heterogeneity, it had similar power to INT when

samples were homogeneous (�¼ 100%). This behavior is likely

attributable to the fact that the genomic variables of certain plat-

forms tended to deviate away from normal distributions, e.g.

methylation values, and the non-parametric MPMWS is robust

against non-normality. Finally, the improved TPR obtained

using MPLRS and MPMWS with heterogeneous samples was

observed when we repeated the analysis for �¼ 50% and �¼ 0.5

(Supplementary Fig. S4) and 0.1 (Supplementary Fig. S5).

By design, INT is good at identifying pathways with system-

atic changes, whereas MPMWS has robust power to detect path-

ways involving sample heterogeneity. In Table 1, we show the

number of significant pathways and the number of true-positive

(TP) pathways identified by INT andMPMWS. We observe that

both methods identified many common significant/TP pathways.

In addition, there was a high percentage of TPs among the

common significant pathways, especially when the heterogeneity

level was not extremely high. The results also show that each

method identified some unique significant/TP pathways that

were missed by the other method. For INT, the proportion of

TPs among the unique pathways became smaller as the hetero-

geneity increased. For MPMWS, the corresponding TP propor-

tion stayed roughly constant until severe heterogeneity (e.g.

� ¼ 20%).

The analyses above were performed under Scenario B1, where

each causal gene only had one causal platform. We repeated the

same analyses under Scenario B2, where each causal gene had at

least 1 causal platform. We obtained similar results as observed

in Scenario B1 (Supplementary Fig. S6).

3.3 Real data application

We first considered the TCGA breast cancer dataset containing

methylation, CNV and RNA-Seq measurements. We performed

multi-platform gene set analyses on the 1452 MSigDB pathways

using MPMWS and INT (i.e. the top two methods from

Scenarios B1 and B2). Unlike the simulated gene sets, pathways

in MSigDB often share common genes and can have significant

overlaps. Figure 4 shows the number of pathways identified by

each method and their overlaps at false discovery rate (FDR)

0.05 using the Benjamini and Hochberg’s FDR procedure

A B C

D E F

Fig. 3. ROC plots for gene set methods at different sample heterogeneity levels [(A) �¼ 100%; (B) � ¼ 90%; (C) �¼ 80%; (D) �¼ 60%; (E) �¼ 40%;

and (F) �¼ 20%)]. The simulated data were generated with �¼ 75%, �¼ 0.8 and �¼ 0.91
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(Benjamini and Hochberg, 1995). The numbers of significant

pathways identified by INT and MPMWS were 116 and 78, re-

spectively. Comparing the significant findings from MPMWS

and INT, we found that a majority (58 and 74%) of the path-

ways were shared between the two methods (Supplementary

Table S2). This includes many well-known pathways related to

breast cancer, e.g. PKL1 (King et al., 2012; Wierer et al., 2013)

and the cell cycle pathway (Caldon et al., 2006). As was observed

in the simulation study, there were quite a few overlaps between

MPMWS and INT. However, some significant pathways that

were identified by one method had large P-values in the other

method. For example, the pathways of DNA replication and

DNA strand elongation are important for breast cancer

(Lomonosov et al., 2003; Thomassen et al., 2009); they were

identified by INT but missed by MPMWS (Supplementary

Table S3A). In contrast, the BRG1-associated factor complex

(Hargreaves and Crabtree, 2011; Kadoch et al., 2013), the well-

known tumor suppressors and the G1 pathway (Thomassen

et al., 2008), a known breast cancer-related pathway, were

found to be significant by MPMWS but not by INT

(Supplementary Table S3B). These results agree with the obser-

vations in the simulation study: INT and MPMWS appear to

identify different types of signals and can be used together in real

practice.

We applied multi-platform gene set analyses on a second

TCGA dataset, i.e. the KIRC dataset. We observed similar

results as for the breast cancer data and reported the detailed

results in Supplementary Table S4.

4 DISCUSSION

In the presented work, we compared different multi-platform

methods for gene set analysis using extensive simulated studies.

First, when there is no sample heterogeneity, we found that INT

and Hotelling’s T2 method had the best performances compared

with other methods. INT might have wider applicability com-

pared with Hotelling’s T2 because it can accommodate covari-

ates. Second, to account for sample heterogeneity, we proposed

and tested three different strategies, MPMWS, MPORT and

MPLRS, for multi-platform gene set analysis. We found that

the non-parametric MPMWS method had satisfactory TPRs

and robust performance regardless of the degree of heterogen-

eity. Finally, based on the results of the simulations and the real

data applications, we recommend using bothMPMWS and INT:

the significant gene sets identified by both methods are more

likely to be true positives, while each approach is able to identify

orthogonal, yet relevant, biological gene sets. It might be worth

following up with these orthogonal findings combining with add-

itional biological information so to minimize the false positives.
We performed the tests assuming that genes are uncorrelated

within and across platforms. This assumption may not be valid

in real practice, especially for genes within the same gene sets.

Inter-gene correlation is known to inflate the FDR of single-

platform gene set analysis, and several methods have been pro-

posed to address this issue (Gatti et al., 2010; Wu and Smyth,

2012). In addition, the genomic variables of a gene from different

platforms can also be highly correlated with each other. For

example, copy number change can lead to a change of transcript

level, and a high methylation level of the gene promoter region

often leads to downregulation of transcription. It is worth future

studies to evaluate how inter-gene and inter-platform correl-

ations will affect multi-platform gene set analysis.

In our analysis, we ignored the issues of missing values by

focusing on genes with complete observations in all platforms.

In reality, missing data are commonly observed in large-scale

studies because of the experimental conditions, individual

sample differences or platform constraints. When a considerable

amount of data are missing, removing all the samples or genes

with missing data could lead to substantial loss of information.

Table 1. The average number of significant gene sets identified by INT and MPMWS at different heterogeneity levels

Significant gene set Both INT and MPMWS INT only MPMWS only

� values (%) Positive TP TP (%) Positive TP TP (%) Positive TP TP (%)

100 7.33 6.92 94.41 8.52 1.08 12.68 9.04 1.37 15.15

90 6.59 6.17 93.63 8.75 1.13 12.91 9.51 1.72 18.09

80 5.79 5.36 92.57 9.09 1.24 13.64 9.94 2.05 20.62

60 3.61 3.14 86.98 9.54 1.28 13.42 11.06 2.86 25.86

40 1.7 1.17 68.82 9.78 1.04 10.63 11.5 2.96 25.74

20 0.76 0.19 25.00 9.72 0.63 6.48 10.66 1.77 16.60

Ten of 207 gene sets were selected as causal, and the results were averaged over 300 repeats.

Shared (58) MPMWS(78)INT (116)

Fig. 4. Significant pathways identified by MPMWS and INT. The num-

bers of significant pathways are listed in parentheses
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To address this issue, imputing can be used to fill in the missing
values. Performing self-contained gene set analysis tests is an-
other strategy (Tyekucheva et al., 2011). Further research is
needed to characterize the patterns of missing data on different

platforms, understand their impact on the gene set analysis and
develop the proper statistical methods for missing data.
The R code for all of the methods and test datasets are avail-

able on the Web site: http://www4.stat.ncsu.edu/*jytzeng/
Software/Multiplatform_gene_set_analysis/
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