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ABSTRACT

Motivation: The declining cost of generating DNA sequence is

promoting an increase in whole genome sequencing, especially as

applied to the human genome. Whole genome analysis requires the

alignment and comparison of raw sequence data, and results in a

computational bottleneck because of limited ability to analyze multiple

genomes simultaneously.

Results: We now adapted a Cray XE6 supercomputer to achieve the

parallelization required for concurrent multiple genome analysis. This

approach not only markedly speeds computational time but also re-

sults in increased usable sequence per genome. Relying on publically

available software, the Cray XE6 has the capacity to align and call

variants on 240 whole genomes in �50 h. Multisample variant calling

is also accelerated.

Availability and implementation: The MegaSeq workflow is designed

to harness the size and memory of the Cray XE6, housed at Argonne

National Laboratory, for whole genome analysis in a platform designed

to better match current and emerging sequencing volume.
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1 INTRODUCTION

With the advent ofmassively parallel DNA sequencing, the rate at
which human genome variation can be determined is limited less

by sequence generation but instead by the computational tools
required to analyze these data. With current sequencing technol-
ogy using short sequence reads of�100bp, whole genome analysis

(WGA) requires the cleaning, aligning and interpreting of a billion
sequence reads per single genome. With focus on scalability, we
sought to improve the timeline required to process whole genome

sequencing (WGS) by optimizing extraction, alignment, process-
ing and variant calling. We reasoned that supercomputing cap-

acity was better suited to parallelizeWGA and allow for the rapid
simultaneous analysis of multiple genomes.
Beagle is a Cray XE6 supercomputer housed at Argonne

National Laboratory and administered by the Computation

Institute at the University of Chicago. Beagle has �726 compute

nodes each with 32GB of memory. Each node has 24 cores,

2.1GHz cores on two AMD ‘‘Magny-Cours’’ processors. The

XE6 can work in both Extreme Scalability Mode for scalable

applications and Cluster Compatibility Mode for use with pro-

grams that are designed for smaller machines or clusters, such as

the freely available genomics tools that are now routinely imple-

mented for WGA (Li and Durbin, 2009; McKenna et al., 2010).

While parallelization is possible on smaller systems, both

memory and computational core number limit the capacity for

simultaneous computation. Beagle uses a parallel computation

environment and a parallel file system (Lustre) based on shared

storage. Having both a parallel computation environment and

external disk storage based on a parallel file system ensures that

each node (and core) is able to access all data at any time without

waiting for transfer of data across nodes. In this system, nodes

have no local storage, and therefore no disk-to-disk transfer is

required. On clusters without a shared file system, data transfer

across nodes during analysis can be a time-intensive process.

Here, we describe a workflow referred to as MegaSeq that uses

the MapReduce (Dean and Ghemawat, 2008) approach to take

advantage of supercomputing size and memory.

2 MATERIALS AND METHODS/RESULTS

2.1 Workflow-alignment

A summary of the MegaSeq workflow is shown in Figure 1. We adapted

Beagle for WGA using a test dataset of 61 genomes that had been deter-

mined by Illumina Inc. Illumina provided WGS from 100bp paired end

reads as bam files for data transfer. FASTQ files were extracted from

bam files using the Picard tool, SamToFastq (http://picard.sourceforge.

net), and extraction was performed by readgroup (Table 1). The read-

group tag provides information on sample identity, library of origin

and sequencing machine lane (see SAM Format Specification, samtools.-

sourceforge.net/SAM1.pdf). The extraction step is unnecessary if FASTQ

sequence data are directly available. In the present cohort, each genome

was represented by �3–4 readgroups, creating a natural division of the

reads. Alignment was performed with the Burrows–Wheeler Aligner

(BWA) on 2n nodes, with n equal to the number of readgroups

(Li and Durbin, 2009). Each readgroup alignment was concurrent on

24 cores (Table 1). Alignment displayed a linear speedup and therefore*To whom correspondence should be addressed.
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scaled with the number of cores used. Scaling is limited to the number of

cores per node available because it is based on shared-memory threads.

After reads were aligned, alignment files were converted from sai to sam

files using the bwa samse (for single-end reads) or sampe (for paired-end

reads). To improve performance, we used the bwa 0.5.9-tpx.patch (ftp.

conveysupport.com/outgoing/bwa). The tpx patch creates a threaded par-

allel bwa samse/pe, allowing for the use of multiple cores on a node. The

speedup of this step was considerably less efficient than alignment, result-

ing in imperfect scaling, but is still considerably faster than standard bwa

samse/pe.

SAM files were then compressed to bam files and sorted using sam-

tools (Li et al., 2009). Readgroups were merged and each genome was

split by chromosome to better use Beagle’s size and memory.

2.2 Workflow-clean-up

The alignments were then ‘‘cleaned’’ to improve reliability of variant

calling. Potential PCR artifacts were marked with the Picard

MarkDuplicates tool (http://picard.sourceforge.net). Notably, alignment

of genomic information to the referent genome is often imperfect, espe-

cially in areas around small base pair insertions and deletions (indels).

Therefore, indels within an individual genome may misalign. Because

alignments to the referent genome are performed using each short se-

quence read individually, multiple alignment information is not avail-

able to help identify mismatches. Two tools available from the Broad

Institute’s Genome Analysis Tool Kit (GATK), RealignerTargetCreator

and IndelRealigner, were applied to help facilitate the identification of

Indels. When used together, these tools use the full alignment context to

determine whether an Indel exists (DePristo et al., 2011). Finally, quality

scores for sequence reads were recalibrated using BaseRecalibrator and

PrintReads from GATK to more closely match the actual probability of

mismatching the referent genome and to correct for any variation in

quality between machine cycle and sequence context (DePristo et al.,

2011). At this stage, the data are still split by chromosome. The efficiency

of BaseRecalibrator is proportional to the number of base pairs provided.

Because smaller datasets may have poor recalibration, splitting should be

avoided with smaller datasets. On smaller datasets, the CRAY XE6 has

the capability to perform recalibration across the genome in a reasonable

time frame. Regardless of dataset size, recalibration results should always

be reviewed by the end-user.

Table 1 details the programs and flags used for each operation. Each

step was performed on 25 cores concurrently, with approximately six

nodes dedicated to each genome (Table 1). On Beagle, running multiple

genomes simultaneously is more efficient than running a single genome

because of the structure of both Beagle and the genome. For the cleaning

steps, each genome was run on 25 cores (24 chromosomes plus the mito-

chondrial genome). Four chromosomes were analyzed on each node, and

therefore each genome needed six nodes, plus one core. During testing of

the pipeline, we noted that node failure occurred as a result of java errors,

often associated with memory allocation. To improve memory usage and

avoid node failure, we hard coded the chromosomes into groups that are

always sent out together. This scheme allows us to send the largest and

most memory intensive chromosomes with smaller, less taxing ones re-

sulting in fewer memory issues. For java run programs we used 28GB

memory/number of jobs per node. We also found that for java programs,

using two threads for garbage collection better managed memory issues

allowing us to pack more jobs per node. For each clean-up step, thread-

ing was used, where available (Table 1).

2.3 Workflow – variant calling

Variants were called using the HaplotypeCaller from GATK.

HaplotypeCaller calls both single nucleotide polymorphisms and indels

using de novo assembly of haplotypes in the active region. Haplotypes are

evaluated using an affine gap penalty pair hidden Markov model

(DePristo et al., 2011). Table 1 provides flags used for each step.

MegaSeq identifies both single nucleotide variants (SNVs) and Indels

simultaneously on �6 nodes with 25� concurrency per genome. After

variants were called and exported in variant call format (VCF), we used

the GATK tool VariantFiltration to filter variants (DePristo et al., 2011).

Variants were removed from the analysis using these criteria: biallelic

balance40.75; quality score530; depth of coverage4360; strand bias

more than �0.01 and mapping quality zero reads �10. Variants were

then annotated using the default parameters of snpEff. snpEff is a fast

variant annotation and effect prediction tool that is integrated with

GATK (Cingolani et al., 2012).

2.4 Testing the workflow

The above workflow was tested using data from 61 human genomes. The

starting FASTQ file size of each genome was �300GB, requiring�18TB

of space to process all individuals simultaneously. Reads were aligned to

NCBI reference genome 37.1 (hg19). We compared alignment output of

MegaSeq with that produced by Illumina using the proprietary align-

ment/variant calling software Eland/Casava because this software is

designed to efficiently perform WGA (Cox, 2007). MegaSeq alignment

using BWA resulted in greater coverage with a mean coverage of 40.0�

compared with 37.2� for ELAND/Casava’s alignment across all 61 gen-

omes (paired t-test, P50.0004, Fig. 2a). The mean percent of the non-N

reference genome covered was also greater with MegaSeq compared with

Eland/Casava (98.7 versus 98.0) using MegaSeq versus Illumina (paired

t-test, P50.0001, Fig. 2b). In total, 285 896445 variants were called by

MegaSeq across the 61 genomes identifying �4.5 million variants per

individual. To compare variants between MegaSeq and Illumina’s soft-

ware, only variants with a quality score �30 were included. The mean

number of SNVs called per genome differed between MegaSeq and

ELAND/Casava data (3.670� 106 versus 3.736� 106, MegaSeq and

ELAND/Casava respectively, paired t-test, P50.0001, Fig. 2c).

ELAND/Casava also called more indels (536 853 versus 618 779,

MegaSeq and ELAND/Casava, respectively, paired t-test, P50.0001)

(Fig. 2d). There was 88% concordance between MegaSeq and

ELAND/Casava SNV calls and only 64.7% concordance for indels

(Fig. 3a).

Fig. 1. Schematic of MegaSeq workflow. Each step and the number of

files produced per readgroup (RG) or genome (G) are listed. To improve

speed, a MapReduce approach was used with sequences being split into

smaller groups. Sequences were initially split by readgroup, which

roughly represents each lane of sequence. After alignment, readgroups

were merged and the aligned genome was split by chromosome. After

variants were called per chromosome, VCF files were merged, creating

one file per individual human genome
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To estimate validity of the calls, we examined the normalized density of

quality scores. Concordant SNVs, called by both MegaSeq and ELAND/

Casava, had higher quality scores compared with non-concordant SNVs

(Fig. 3b, MegaSeq, light purple; ELAND/CASAVA, dark purple). Non-

concordant SNVs had lower quality scores, especially in the ELAND/

Casava call set (Fig. 3b, MegaSeq, red; ELAND/Casava, blue). This

same pattern was evident for indels (Fig. 3c). Non-concordant SNVs

identified by MegaSeq have quality scores more closely resembling the

concordant calls. These data indicate that the ELAND/Casava call set

contained more low quality variants than the MegaSeq call set. We next

compared depth of sequence reads called by MegaSeq or ELAND/

Casava. Depth is a by-product of alignment, with higher depth indicating

a more reliable variant call. Concordant SNVs called by both MegaSeq

and ELAND/Casava have similar normalized depths, with the highest

density of calls occurring between 35–40�. The non-concordant SNVs

have markedly different depth distributions (Fig. 3d). SNVs identified

solely by ELAND/Casava had the highest density of calls at �20�

depth. In contrast, those SNVs identified solely by MegaSeq had a

depth density that more closely matched the concordant SNV distribution,

with the majority of calls occurring between 30–35� depth. These data

Table 1. Computational approach to genome analysis using the massively parallel Cray XE6 supercomputer

Step Program Module/Call Input Parameters Output Number per

genome

Number of

active cores/

node

Number

nodes

Concurrency

Extract fastq Picard 1.98 SamToFastq bam default fastq 2(#RGs) 1 1 1

Alignment BWA 0.5.9 bwa aln fastq -qtrim 15 sai file 2(#RGs) 24 2(#RGs) 24(#RGs)

Convert sai to sam BWA tpx 0.5.9 bwa sampe sai -T –X –P (BWA) sam 2(#RGs) �24 #RGs 24(#RGs)

Compression samtools 0.1.18 view sam -bo (samtools) bam 2(#RGs) 3 #RGs 1(#RGs)

Split samtools 0.1.18 view/merge bam -h (preserve readgroup) bam 25 24 1 25

Sort Picard 1.98 SortSam bam -coordinate bam 25 4þGC �6 25

Mark duplicates Picard 1.98 Mark bam -REMOVE_DUPLICATES bam 25 4þGC �6 25 (each with 3

threads)Duplicates false

Reorder Picard 1.98 ReorderSam bam default bam 25 4þGC �6 25 (GCa)

Identify indel re-

alignment targets

GATK 2.7-1 GATK bam -T RealignerTargetCreator intervals 25 4þGC �6 25 (GC)

-L5chromosome ID4
Realign targeted

intervals

GATK 2.7-1 GATK bam -T IndelRealigner bam 25 4þGC �6 25 (GC)

-targetIntervals5intervals4
-LOD 5

-L5chromosome ID4
Base recalibrator GATK 2.7-1 GATK bam -T BaseRecalibrator csv 25 4þGC �6 25 (GC)

-cov ReadGroupCovariate

-cov QualityScoreCovariate

-cov CycleCovariate

-cov ContextCovariate

-knownSites dbSNP_135

Print reads GATK 2.7-1 GATK bam -T PrintReads bam 25 4þGC �6 25 (GC)

-baq RECALCULATE

-baqGOP 30

-BQSR5csv file4
Call variants GATK 2.7-1 GATK bam -T Haplotype Caller vcf 25

-L5chromosome ID4
-D dbSNP_135.hg19.vcf

-A AlleleBalance

-A Coverage

-A HomopolymerRun

-A FisherStrand

-A HaplotypeScore

-A HardyWeinberg

-A ReadPosRankSumTest

-A QualByDepth

-A MappingQualityRankSumTest

-A VariantType

-A MappingQualityZero

-minPruning 10

-stand_call_conv 30.0

-stand_emit_conv 10.0

Filter variants GATK 2.7-1 GATK bam -T VariantFiltration vcf 25 4þGC �6 25 (GC)

-L5chromosome ID4
--clusterWindowSize 10

--filterExpression ‘‘(AB?: 0)40.75

jj -QUAL530.0 jj DP4360 jj

SB4�0.1 jj MQ0� 10’’

Annotate variants snpEff 2.0.5 snpEff vcf default vcf 25 4 �6

Note: RG¼ readgroup. aGC¼ 2 threads used for java Garbage Collection.
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indicate that MegaSeq calls a greater number of high confidence SNVs,

based on both quality score and depth.

2.5 Speed of analysis

Computational time is a major bottleneck in WGA. We calculated the

central processing unit (CPU) time that would be required on a single

2.1GHz processor as 1701h (0.20 years) for a single genome. This time

can vary based on clock speed, memory speed and disk speed. These

calculations are bound by disk and memory much more than by CPU

clock speed. The SamToFastq step requires �48 CPU h, but is only

necessary when genomes are delivered as the compressed pre-aligned

bam format and, as such, will not be a consideration for many users.

Alignment scales perfectly and therefore cannot be easily accelerated. We

suggest that these single genome times may reflect the maximum speed for

the Beagle supercomputer.

To highlight the power of a parallel system, we calculated hypothetical

run times on a single core, a 3 (24-core) node cluster and compared them

with the CRAY XE6 run times. Using CRAY XE6 execution time as a

reference, we predicted total CPU time required for WGA of 240 gen-

omes on a single core to be �47 years. A total of �11.8 years of CPU

time is required to complete the workflow for 61 genomes. A biological

computing cluster with 3 nodes can accelerate this time to �7.2 months.

Using the MegaSeq workflow on Beagle, 61 genomes were analyzed in

50.3 real time hours (Fig. 4a). Based on the size and number of nodes

available, Beagle has the capacity to perform WGA on 240 genomes in

the same time frame (50.3h) by using additional nodes. Additional

genomes would need to be run consecutively as the number of nodes in

use is exhausted.

Multisample variant calling can also be performed using the MegaSeq

workflow. Multisample calling reduces the false discovery rate, but is

computationally intensive. We performed multisample calling on 61 gen-

omes using HaplotypeCaller from GATK with the flags noted in Table 1.

To take advantage of the size of Beagle, we split the genomes by chromo-

some, then further split chromosomes into overlapping subunits that

varied based on total chromosome size resulting in 2400 total subunits.

For 61 genomes,�600 nodes were used with four jobs per node, requiring

�40 000 CPU hours. Calls were completed in �16h, real time. A biolo-

gical computing cluster with three nodes would require �4.4 months real

time to perform multisample calling on 61 genomes using

HaplotypeCaller. We estimate that �154224 CPU h (�17.8 years)

would be required to complete 240 genomes. We estimate that a 3

node cluster would take �1.3 years to complete multisample calling on

240 genomes. In real time using 600 nodes with four jobs per node, we

estimate Beagle can complete multisample calling using HaplotypeCaller

on 240 genomes in �2.5 days, making Beagle an excellent resource for

multisample calling. After calling the resulting 2400 vcf files were merged

and overlapping calls were removed.

2.6 Space management

Space constraints are another major hurdle in large volume WGA. We

estimate that approximately 1TB of space per genome was needed to com-

plete the MegaSeq analysis (Fig. 4b). Although it is possible to discard

Fig. 3. Concordance between MegaSeq and Illumina. We compared the

output from MegaSeq with that provided by Illumina, which uses

ELAND/CASAVA because these algorithms are optimized for speed.

(a) A total of 88.0% of SNVs were identified by both MegaSeq and

ELAND/Casava. Over 12 million and 16 million SNVs were only identi-

fied by MegaSeq (red) and ELAND/Casava (blue), respectively. In all,

64.7% of Indels were concordant between MegaSeq (red) and ELAND/

Casava (blue). (b) The non-concordant variants found by MegaSeq have

higher quality scores than the non-concordant variants scored by

ELAND/Casava. Normalized quality score densities are similar for con-

cordant SNVs identified by both MegaSeq (light purple triangles) and

ELAND/Casava (dark purple squares). Non-concordant SNVs found

only by MegaSeq (red triangles) had higher quality scores than non-

concordant SNVs identified only by ELAND/Casava (blue squares).

(c) Similarly, non-concordant indels found only by Megaseq had higher

quality scores than those found only by ELAND/Casava. (d) MegaSeq

non-concordant SNVs have higher depth than ELAND/Casava non-

concordant SNVs

Fig. 2. MegaSeq identifies more usable sequence and fewer SNVs and

Indels per genome. WGA from 61 individual genomes was compared

between MegaSeq using BWA/GATK on the Cray XE6 and ELAND/

CASAVA from Illumina because ELAND/CASAVA is aimed at effi-

ciency (Cox, 2007). (a) The mean coverage for each genome was higher

with MegaSeq (light gray triangles) compared with ELAND/Casava

(black squares) (40.0 � for MegaSeq and 37.2� for ELAND/Casava

[paired t-test, P50.0004)]. (b) The percentage of non-N genome covered

by MegaSeq (light gray triangles) was greater than ELAND/Casava

(black squares) for each genome (98.7 and 98.0, MegaSeq and

ELAND/Casava, respectively [paired t-test, P50.0001)]. (c) The total

number of SNVs identified per genome with MegaSeq (light gray tri-

angles) was less than with ELAND/Casava (black squares) [3.670� 106

and 3.736� 106 for MegaSeq and ELAND/Casava, respectively, paired

t-test, P50.0001)]. (d) MegaSeq (light gray triangles) identified fewer

indels compared with ELAND/Casava (black squares) in each genome

[mean number of indels 536853 and 618 779 for MegaSeq and ELAND/

Casava, respectively, paired t-test, P50.0001)]
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output at each successive step, there is still a large volume of data that were

active at any single step. For instance, at the SamToFastq step, 18TB was

required for the FASTQ files. During the cleanup steps, each genome

required �85GB of space; �5TB of space was needed to process each

step for 61 genomes. Because each step requires computational time, dis-

carding data from earlier steps can be costly if there is an analysis failure.

These space requirements are generally not met by small computing clusters

or by larger clusters with many users. The final merged VCF file for each

individual genome required �1GB of space.

3 CONCLUSION

The development of next-generation sequencing technology has

transformed the genetic analysis paradigm, from examination of

the coding region of a handful of genes, to the current methods

of interrogation of the entire coding region of the genome and,

finally, to analysis of the entire 3 billion base pair genome. While

cost and time are no longer major barriers to whole genome

sequencing, data analysis and storage are major bottlenecks in

using whole genome data (Metzker, 2010). Currently, whole

genome sequencing using the Illumina HiSeq 2000 platform at

moderate coverage (30–50�) yields4100GB of data. This can be

an overwhelming amount of data to process and store, and there-

fore many have turned to exome sequencing. Exome sequencing

focuses on evaluating variation in the coding portion of the

genome (�1–2%), and therefore provides smaller and less com-

plex data to manage than whole genome sequencing. Exome

sequencing is useful, as �85% of recognized disease-causing mu-

tations are located in protein coding regions of the genome

(Majewski et al., 2011). However, this finding reflects a bias in

our ability to evaluate non-coding variation.

Recently, great strides have been made to decipher the other

98% of genome sequence. The ENCODE project (Encyclopedia

of DNA Elements) has assigned biochemical functions to 80% of

the genome (Bernstein et al., 2012). These annotations will prove

valuable tools in evaluating non-coding variation. Only whole

genome sequencing can be used to interrogate non-coding vari-

ation, although the complexity of WGA has limited this possi-

bility. Whole genome sequencing may also be better suited than

exome sequencing to assess structural variation in genomes.

Structural variants are emerging as important factors in human

disease, making them an important factor in weighing the bene-

fits of whole genome sequencing in relation to the challenges of

computation (Snyder et al., 2010; Spielmann and Mundlos,

2013). Thus, whole genome sequencing may be the method of

choice for many researchers if not for the tremendous computa-

tional bottleneck.

The deluge of genetic data is appropriate for high-performance

computing and large-scale storage options (Koboldt et al., 2010).

Sequence analysis includes read alignment to a reference genome,

alignment clean-up and variant calling. A number of resources

are freely available for analysis of genome sequencing, including

BWA, GATK and snpEff. These tools can be used to align and

call variants from a single genome by most laboratories, even

those with limited computational experience and resources.

However, high-throughput analysis of many genomes is signifi-

cantly accelerated by parallelization and better meets the needs

of the genetics community.
A common approach for analysis has relied on computing

clusters, and more recently, cloud-based computing. By transi-

tioning WGS to a supercomputing environment, we achieved

high reliability with accelerated speed. One of the more cumber-

some problems with clusters and cloud-based computing in-

volves long wait times for data transfer between nodes (Zhao

et al., 2013). The Cray XE6 supercomputing environment

described here eliminates these wait times by using a parallel

file system (Lustre) without creating a resource conflict bottle-

neck. A parallel file system, like Lustre, removes the need for

tracking of data location, leaving only the issues of cache, RAM

and disk hierarchy (Eijkhout, 2013). The demonstration that

whole genome sequences can be aligned, cleaned and interpreted

in parallel was achieved by using BWA/GATK, robust, publicly

available software packages, in the Cray XE6 environment.

Notably, this method uses the same software packages com-

monly used in computing clusters, but takes advantage of the

Cray platform to parallelize the analysis. The ability to apply

multisample variant calling significantly improves reliability

and begins to extend analysis to beyond what is possible in a

cluster environment. The application of the Cray XE6 has

the capacity to analyze, in parallel, as many as 240 genomes in

�50h. This is a platform-dependent workflow that serves as

proof of principle that genome analysis is greatly accelerated

when performed on a supercomputer. More importantly, this

work demonstrates that the publically available software cur-

rently in use for genome analysis is amenable to the supercom-

puting environment and can be installed as is on a CRAY XE6

and likely other systems, although we have not tested those sys-

tems. Currently, MegaSeq is available on the Beagle supercom-

puter at the University of Chicago.

Fig. 4. Time and space constraints. (a) Graph illustrating amount of both

CPU time and real time needed to analyze genomes. CPU time (blue

squares) scales linearly with the number of genomes analyzed. We calcu-

lated the real time needed by a hypothetical 3-node cluster (black tri-

angles) and estimated that 240 genomes would take �2.4 years to

analyze. The total real time required on a 740 node Cray XE6 massively

parallel supercomputer (red circles) is �2 days for 240 genomes.

(b) Schematic illustrating space requirements for WGA. Each genome

requires �1TB of space. The final vcf file for each genome is �1GB
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The MegaSeq workflow backbone is based on bash shell in-
struction, and the submission subscripts are based on Portable
Batch System (PBS) commands and are adaptable to other batch
systems including Sun grid engine or SLURM, because the par-

allel logical structure of the workflow is compatible. Disk,
memory and CPU usage will likely require optimization because
of differences in machine design, which may affect bottlenecks

and stability. The workflow should port directly with only min-
imal modifications to any Cray XE6, CRAY XC30 and related
systems. The Beagle supercomputer is an NIH supported re-

source and provides an opportunity for large-scale genome pro-
jects. This computing application provides a format where
human WGS can be rapidly analyzed relieving major constraint

for better defining the range and utility of human genome
variation.
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