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ABSTRACT

Summary: Collecting data from large studies on high-throughput plat-

forms, such as microarray or next-generation sequencing, typically

requires processing samples in batches. There are often systematic

but unpredictable biases from batch-to-batch, so proper randomiza-

tion of biologically relevant traits across batches is crucial for distin-

guishing true biological differences from experimental artifacts. When

a large number of traits are biologically relevant, as is common for

clinical studies of patients with varying sex, age, genotype and med-

ical background, proper randomization can be extremely difficult to

prepare by hand, especially because traits may affect biological infer-

ences, such as differential expression, in a combinatorial manner.

Here we present ARTS (automated randomization of multiple traits

for study design), which aids researchers in study design by automat-

ically optimizing batch assignment for any number of samples, any

number of traits and any batch size.

Availability and implementation: ARTS is implemented in Perl and

is available at github.com/mmaiensc/ARTS. ARTS is also available

in the Galaxy Tool Shed, and can be used at the Galaxy installa-

tion hosted by the UIC Center for Research Informatics (CRI) at

galaxy.cri.uic.edu.

Contact: mmaiensc@uic.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Data collected on high-throughput biological platforms, such as

microarray and next-generation sequencing (NGS), can often be

processed in parallel in batches, greatly lowering the cost and

time for collection. However, details in the personnel, protocol

or instrument setting/calibration often vary slightly from batch-

to-batch. When large studies with hundreds or thousands of sam-

ples are conducted, these variations may result in statistically

significant, but biologically irrelevant, anomalies between

batches (Leek et al., 2010), confounding efforts to determine

true biological differences between sample conditions.
Such batch effects can be mitigated by proper randomization

of samples across batches (Hu et al., 2005): sample traits, such as

diseased or control, should be evenly distributed across batches.

A number of methods exist that attempt to remove batch effects

after data are already collected (Johnson et al., 2007; Leek and

Storey, 2007; Scherer, 2009). However, these approaches should

be considered a last resort to salvage data collected after poorly

randomized studies, as they must make assertions about the type

of bias introduced by batches, for example using linear models to

quantify distortions (Leek et al., 2010). Also, these methods

cannot correct for batch effect in completely unrandomized stu-

dies, for instance if all diseased samples are put into the same

batch.
When one or two traits are pertinent for a large study, ran-

domization can be done manually with moderate effort.

However, patients in large clinical studies often have many rele-

vant traits, such as sex, age, genotype, medical background and

multiple measures of disease state. In such cases, proper random-

ization cannot reasonably be prepared by hand, and will be con-

founded by the likely combinatorial interaction between traits

(e.g. the combined effect of age and gender may be different

than the sum of age and gender effects independently).

Here, we present the ARTS (automated randomization of

multiple traits for study design) tool for automated study ran-

domization. ARTS uses a genetic algorithm to optimize an ob-

jective function based on a rigorous statistic from information

theory, the mutual information. We validate ARTS using several

objective functions to illustrate the versatility of the one chosen,

and by showing that the genetic algorithm we use for optimiza-

tion obtains a good balance between computational speed and

optimization quality.

2 METHODS AND RESULTS

2.1 Objective function

We start with a motivation of our objective function. In a properly

randomized study, the distribution of traits in each batch will equal the

distribution of traits across all samples. As we show in Supplementary

Section S1, this definition directly motivates the use of mutual informa-

tion (MI) between sample traits and batch. The MI quantifies the

extent to which the batch assignment can predict the traits of a sample.

If the MI is large, then the distribution of the traits depends strongly on

the batch, and the study is not randomized; the MI of an ideally rando-

mized study is 0.

As we discuss in more detail in Supplementary Section S2, we should

quantify the MI between both combinations of traits and the batch*To whom correspondence should be addressed.
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assignment, and individual traits and the batch assignment.

Combinations are important when the affect of traits on biological out-

comes cannot be considered independent; this is usually the case.

However, in studies with a large number of traits and a smaller

number of samples, particular combinations of traits may occur only a

few times in the sample set; randomization of the combined traits be-

comes a trivial but useless exercise, but individual traits should still be

randomized. Thus, we introduce the mixed mutual information (MMI),

an average of the combined and individual MIs; the definition of the

MMI is given in Supplementary Equation (7). The MMI allows greater

flexibility to accommodate studies of any size and with any number of

traits, as it appropriately distributes both individual traits (e.g. age) and

combined traits (e.g. ageþ sex) over all batches. For comparison, we also

define the combined mutual information (CMI) [Supplementary

Equation (4)] and individual mutual information (IMI) [Supplementary

Equation (8)].

To illustrate the versatility of MMI optimization, we compare it to

consideration of the combinations of traits only (the CMI), and of indi-

vidual traits only (the IMI). We optimized randomizations for each ob-

jective function on a simulated set of 100 samples with six binary traits

and batches of size 25. We then re-scored each randomization using each

of the three objective functions. The results are shown in Figure 1A: each

panel gives the score for all three randomizations under a particular ob-

jective function.

Importantly, optimizing the MMI randomizes combined traits about

as well as the CMI, and individual traits about as well as the IMI (i.e. left-

hand bars are always low). However, optimizing the CMI sacrifices indi-

vidual traits’ randomization (IMI score), and vice-versa. Thus, MMI

optimization appropriately randomizes both individual and combined

traits, making it appropriate for any situation regardless of the number

of samples and traits. We refer the reader to Supplementary Sections S2

and S3 for further discussion about the motivation and testing of the

MMI. In particular, Supplementary Figure S1 extends the results in

Figure 1A over a range of batch sizes and different numbers of traits.

2.2 Optimization algorithm

ARTS optimizes the MMI using a genetic algorithm (GA), which itera-

tively refines a population of candidate batch assignments through im-

migration, mutation and crossover, and selects the most optimal (lowest

MMI) batch assignments for subsequent generations; it is described in

more detail in Supplementary Section S4. We compare the GA to three

other optimization methods, briefly described below.

First, a simple Monte Carlo (MC) procedure generates batch assign-

ments randomly and independently, testing each and saving the best; it

continues until 1000 assignments have been tested without an improve-

ment. Second, a random assignment procedure simply generates a single

random batching. Third, a brute force procedure exhaustively enumerates

all possible batch assignments and chooses the global minimum. We com-

pare each method in Figure 1B, giving MMI scores for randomizing a

varying number of samples into two equal-sized batches in the top panel,

and the computational time on a 2.4-GHz processor in the bottom panel.

The random assignment and brute force methods are unfavorable, for

different reasons: scores from random assignment are highly variable, as

indicated by the larger error bars in the top panel of Figure 1B, and brute

force because compute time grows exponentially and quickly becomes

intractable �25–30 samples (it would be intractable earlier for more

than two batches). For small sample sizes the MC and GA algorithms

obtain equally optimal results to brute force, except for two sample sizes

(24 and 30 samples, indicated by asterisk in Fig. 1B) where MC was sub-

optimal. However, as sample size increases the score from MC is consist-

ently worse and more variable than the GA, highlighted in the inset plot.

The small increase in compute time, still less than a minute for the GA

with the largest sample set, is a minor trade-off for consistently better,

highly reproducible optimizations.
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Fig. 1. Comparing objective functions and optimization algorithms. (A) The MMI, CMI and the IMI objective functions were optimized on the same

sample set (all using the genetic algorithm; recall that the ideal randomization score is 0). We then re-scored each randomization using each objective

function; the top panel was scored using the MMI, the middle panel using the CMI and the bottom panel using the IMI. Note that y-axis ranges are

different for each panel. (B) Comparison of optimized randomization score (for the MMI) and computing time using: (i) the genetic algorithm, (ii) a

simple Monte Carlo procedure, (iii) random assignment and (iv) a brute force enumeration approach, using two evenly sized batches for each sample size.

Times are essentially zero for the random assignment, and so are not given. In the top panel, asterisk symbols represent sample sets where the MC

algorithm did not achieve the same optimized score as brute force. For (A) and (B), error bars are standard deviations over repeated randomizations. No

error bars are plotted for brute force (which is deterministic), and for randomization scores with zero standard deviation (in (B),596 samples for GA,

524 for MC)
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2.3 Using ARTS

Users have several options for downloading and using ARTS, including

command-line and graphical user interfaces. More details are given in

Supplementary Section S5. Additionally, Supplementary Section S6 pre-

sents two case studies describing randomization of clinical sample sets by

ARTS.
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