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Abstract

Quantitative high throughput screening (qHTS) experiments can simultaneously produce

concentration-response profiles for thousands of chemicals. In a typical qHTS study, a large

chemical library is subjected to a primary screen in order to identify candidate hits for secondary

screening, validation studies or prediction modeling. Different algorithms, usually based on the

Hill equation logistic model, have been used to classify compounds as active or inactive (or

inconclusive). However, observed concentration-response activity relationships may not

adequately fit a sigmoidal curve. Furthermore, it is unclear how to prioritize chemicals for follow-

up studies given the large uncertainties that often accompany parameter estimates from nonlinear

models. Weighted Shannon entropy can address these concerns by ranking compounds according

to profile-specific statistics derived from estimates of the probability mass distribution of response

at the tested concentration levels. This strategy can be used to rank all tested chemicals in the

absence of a pre-specified model structure or the approach can complement existing activity call

algorithms by ranking the returned candidate hits. The weighted entropy approach was evaluated

here using data simulated from the Hill equation model. The procedure was then applied to a

chemical genomics profiling data set interrogating compounds for androgen receptor agonist

activity.
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Introduction

High-throughput screening (HTS) experiments have been used extensively in drug discovery

initiatives, but they also have been applied to explore alternative targets and diseases with

less commercial interest.1 Remarkably, recent advances in robotics and miniaturization of

biological assays have led to an increased volume and quality of HTS data. For example, the
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multi-agency Tox21 partnership between the U.S. Environmental Protection Agency (EPA),

the U.S. Food and Drug Administration (FDA), the National Center for Advancing

Translational Sciences (NCATS) and the National Toxicology Program (NTP) now employs

quantitative high throughput screening (qHTS) to predict the toxicities of drugs, pesticides,

suspected carcinogens and other environmental chemicals.2 In phase I of Tox21, more than

2,800 substances were tested in over 50 assays, including those related to nuclear receptor

transactivation and stress response. Data will soon be available for phase II of Tox21, which

will test more than 10,000 compounds in a more targeted set of assays. Nevertheless,

advancements in data analysis methods are needed to accommodate the technological

progress in data generation and fulfill the potential of HTS in compound discovery and

testing efforts.

At present it is not clear how to rank candidate hits from qHTS experiments for secondary

screening, confirmation studies or prediction modeling. Classification of chemical activity

has been based on heuristics3 and clustering by pattern dissimilarity,4 but neither strategy

relies on statistical parameter estimation or produces a single quantifiable ranking metric.

Other approaches to identify candidate hits have been based on the four parameter logistic

Hill equation model.5-8 However, activity calls resulting from such procedures consist of

descriptive categorizations (e.g., active, inactive, inconclusive) instead of ranking statistics.

In addition, parameter estimates from nonlinear regression models tend to be unreliable due

to large standard errors,9 making them unsuitable ranking measures. To complicate things

further, the Hill equation10 is not appropriate for fitting non-sigmoidal patterns, such as bell

shaped curves or more complex profiles, which may nevertheless reflect true concentration-

response profiles.

The strategic implementation of a concept from information theory is proposed here to meet

these challenges. The average uncertainty in a random variable can be described

mathematically using a statistical quantity termed Shannon entropy.11 Shannon entropy has

been used to investigate the complexity of biological sequence data,12 find differentially

methylated regions in the genome13 and identify non-uniform gene expression patterns in

microarray data.14-16 This same measure can also be used to determine and compare

molecular descriptors for different compound classes17. Shannon entropy treats all

observations as equally reliable, but responses below an empirically derived assay detection

limit are not as meaningful as observations lying above this threshold. Equal weighting of all

observations in the calculation thus obscures the interpretation of entropy in the qHTS

context. We propose a weighted entropy score18 to characterize chemical profiles, where

entropy is calculated as a function of the observed response vector and weights derived from

the reliability of each response measurement. Weighted entropy scores (WES) can be used to

quantify the average activity level of each chemical in a tested library. Chemicals can be

ranked according to WES as a data driven approach without regard to any pre-specified

model structure, or WES can be used to rank order hits identified with an existing activity

call algorithm.

Here, we describe the concept of entropy and explain the utility of WES as a ranking

measure for qHTS studies. The usefulness of WES is explored within the context of

sigmoidal profiles based on the Hill equation logistic model and compared with Shannon

Shockley Page 2

J Biomol Screen. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



entropy. The performance of the WES based ranking procedure is evaluated using a

previously simulated data set.7 Finally, the approach is applied to an experimental qHTS

data set generated from phase I of Tox21 that assayed for androgen receptor agonist

activity.6

Materials and Methods

In this section the application of classical Shannon entropy and a weighted version of

Shannon entropy will be described for qHTS experiments. Data sets simulated previously

according to the Hill equation7 will be used to evaluate the performance of these entropy

scores across a range of parameter space typical of qHTS experiments. Compounds will be

ranked from largest to smallest average activity based on entropy and receiver operating

characteristic (ROC) curves19 will be generated based on these rankings. The area under the

curve of ROC curves (AUROC) will evaluate the performance of each approach. To

conclude, the weighted entropy approach will be applied to an experimental chemical

genomics data set generated within phase I of Tox21.6

Description of simulated data

Concentration-response data sets were previously simulated using the Hill equation model,

(1)

for fourteen point concentration-response profiles.7 Ri is expressed as the percentage activity

compared to positive control values and represents the normalized response at Ci (test

concentration i, expressed in log2 units). The error term is residual error of the model. As

shown in Figure 1 for an activator chemical, RMAX is the maximal response defining the

upper asymptote of the sigmoidal curve, R0 is the minimal response defining the lower

asymptote, AC50 is the concentration yielding 50% of the maximal response and SLOPE

affects the shape of the curve. The detection limit was set to 25% of the positive control

activity. The concentrations (Ci) in μM units were based on nuclear receptor activity assay

data6 and consequently set to (4.90 × 10−4, 2.45 × 10−3, 1.23 × 10−2, 2.74 × 10−2, 6.13 ×

10−2, 1.38 × 10−1, 3.07 × 10−1, 6.85 × 10−1, 1.53, 3.43, 7.66, 17.13, 38.31, 76.63 μM) before

log2 transformation. The values of RMAX and AC50 were set to (25, 50, 100) and (10−3,

10−1, 10 μM), respectively, which span the range of concentrations (μM) and responses (%

positive control) generally observed in qHTS data within Tox21. The R0 parameter was set

to “0” and SLOPE was set to “1”. Residual errors were modeled as error ~ N(0,σ2) for σ =

25%, where σ is expressed as percent of positive control activity.

There were a total of 10,000 simulated substances in each data set, including 2,000

simulated “actives” (RMAX = 25%, 50%, or 100% of positive control activity) and 8,000

simulated “inactives” (RMAX = 0%). These simulated data sets were used to evaluate the

performance of the entropy measures (see “Shannon entropy” and “Weighted entropy”

sections below). First, for a given ranked list size, simulated profiles were ranked by entropy

score (from highest entropy to lowest entropy). Then, the fraction of the simulated actives
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that were correctly identified was compared to the fraction of simulated actives that were

falsely classified. Ranked list sizes ranged from 1 to 10,000 (the total number of simulated

profiles in a simulated data set).

Description of nuclear receptor agonist data sets

Normalized chemical genomics data for NTP compounds evaluated using androgen receptor

(Ar) and estrogen receptor (Esr1) agonist assays were obtained from a previously published

study.6 As described more extensively in the Results section, the Esr1 assay data was used

to adjust Ar entropy scores for Esr1 activity. A total of 1,408 compounds were assayed in 14

concentrations ranging from 4.90 × 10−4 μM to 76.63 μM for each experimental assay. Raw

plate reads for each concentration were normalized using the positive and negative control

wells (positive values for activation and negative values for inhibition). This data was then

corrected for row, column, and plate effects by a pattern correction algorithm based on

linear interpolation.3 The final normalized response measures Ri for test concentration Ci

can be regarded as expressing the percentage activity relative to the change generated by the

positive control compared to negative controls. Activity calls and Hill equation parameter

estimates were obtained for each compound as described previously.7

Shannon entropy

Each chemical substance will produce a set of outcomes described by a response vector R =

(R1, R2, …, RN) for N concentrations, where Ri corresponds to the observed response at the

ith concentration, Ci. The relative response at Ci can be defined as

(2)

where , and |Ri| stands for the absolute value of response Ri. A similar

expression has been used for DNA microarray data to calculate the relative expression of a

gene from a vector of expression levels.15 Relative response values p = (p1, .., pN) represent

a probability mass distribution based on the extent of observed responses across the N tested

concentrations where the sign of each Ri may be positive or negative for activation or

inhibition, respectively. Because pi ≥ 0 for all i, Eq. (2) describes the extent of response at

each concentration but does not necessarily describe the complexity of the concentration-

response pattern as determined by the sign of Ri values in R.

Entropy is a concept from information theory that can be used to quantify the average

amount of information (or uncertainty) in R with probabilities p1, …, pN.11 The entropy of

Ri, or surprisal of the ith event, is defined as

(3)

where the base of the logarithm determines the units of information. A base of 2 is used

here, so that the units are in bits. The function h(Ri) increases when pi moves toward zero

and goes toward zero when pi approaches one. The average Shannon entropy over the

measured concentration range is denoted by H and given by the expression,
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(4)

where the convention of 0log20=0 is used, since . H ranges from zero for

chemicals with |Ri| > 0 at only one concentration level to log2(N) for chemicals responding

equally at all concentrations (|R1| = |R2| = … = |RN|). Smaller values of H indicate that a

greater mass of the probability distribution is limited to fewer concentrations, while larger

values of H values imply that the response distribution is more uniform across

concentrations levels.

Weighted entropy

Eq. (4) does not take into account uncertainties in response measurements. As a result,

Shannon entropy scores can be large for profiles in which all of the observed response

values fall below the assay detection limit (see Table 1 as explained in the Results section).

However, observed responses below the detection limit are less reliable than observations

exceeding the threshold of detection. Weighted entropy measures can be formulated to take

into account the extent of Ri relative to the detection limit of the assay. We use a weighting

scheme that reduces the associated component of entropy in direct proportion to the

reliability of the observed response. Here, the weighted entropy score (WES) of a substance

across N concentration levels is given by the expression

(5)

where WES is always greater than or equal to zero and 0log20=0 as described earlier for Eq.

(4). The weights wi will be defined as

(6)

where DetLim represents the assay detection limit. Detection limits equal to about 25% of

the positive control activity are typical within Tox21 efforts and provide reasonable

estimates of the true assay detection limit in most studies. Smaller values of WES indicate a

greater response density of detectable response observations at fewer concentrations or more

uniform (but unreliable) response measurements. Larger values of WES indicate that the

response distribution is comprised of a greater proportion of detectable responses across

concentrations levels. Based on the weighted scheme shown in (6) above, WES will always

be less than or equal to H for any given profile.

Results

Calculating entropy for illustrative profiles

Shannon entropy quantifies the average surprisal (or comparative likelihood of a response)

across tested concentration levels, regardless of whether the concentration intervals with the
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largest responses are contiguous (see Eq. (4)). The weighted entropy procedure used here

also describes the average probability mass of observed responses, but WES scores adjust

each entropy component according to the reliability of the underlying response

measurements (compare Eq. (4) and Eq. (5)). In both cases, chemicals with larger entropy

scores will be ranked higher in an ordered list of tested chemicals. However, larger Shannon

entropy implies increased variation in response across concentrations, while larger weighted

entropy implies greater average activity across concentrations. Differences between these

two ranking measures are described below in greater detail by considering the six example

profiles in Table 1.

Each of the illustrative profiles in Table 1 consists of observed responses at four

concentration levels (N=4) from a hypothetical assay with a detection limit of 25%.

Chemical-1 exhibits 75% of the positive control response at each tested concentration so that

R1=R2=R3=R4=75. In this case, the relative response pi does not change across

concentration levels (i.e., p1=p2=p3=p4) and the surprisal hi remains the same for all tested

concentrations (i.e., h1=h2=h3=h4). Because Ri is always greater than the assay detection

limit, the Shannon entropy and WES scores for this profile are both equivalent to the

maximal entropy (H1 = WES1 = log2N = 2.00). Chemical-2 also displays equal responses

across the four concentrations, but in this case Ri is always below the assay detection limit.

The Shannon entropy for Chemical-2 is identical to the Shannon entropy for Chemical-1,

because Shannon entropy does not consider the detection limit. In contrast, the weighted

entropy score for Chemical-2 (WES2 = 0.27) is considerably lower than the calculated

Shannon entropy (H2 = 2.00).

Chemical-3 and Chemical-4 have the same relative response levels at each concentration,

which exceed the limit of detection. However, while Chemical-3 is an activator, with

increasing response for increasing concentration, the profile produces the same entropy as

the oscillatory response profile represented by Chemical-4 (H3 = H4 = WES3 = WES4 =

1.81). This comparison illustrates that entropy is not linked to the complexity (or sign) of the

Ri values comprising the response profile, since the concentration-response pattern of

Chemical-4 is more complex (exhibiting sign changes) than the response pattern of

Chemical-3 (no sign changes). Chemical-5 has a single response in the detectable region (R4

= 85%), such that most of the probability mass is concentrated at the last concentration. The

weighted entropy of this profile (WES5 = 0.25) is lower than the Shannon entropy of the

profile (H5 = 0.85), and both quantities are considerably smaller than the maximal entropy

of log2N for Chemical-1. Finally, Chemical-6 is a condition of minimal entropy, in which

only one response (R4 = 100%) is detected. By definition, H6 = 0 and WES6 = 0, since every

surprisal hi will be zero in this case according to Eq. (2).

Variance across response measurements can also be used to characterize profiles.14 Here,

variance represents a distance between response values, whereas entropy is a measure of

probability mass across a response profile. Variances are greatest when |RMAX| is relatively

large and AC50 lies between the highest and lowest tested concentrations. In contrast,

entropy scores are greatest when |RMAX| is large and AC50 values are small (see

Supplemental Figure S1). In Table 1, Chemical-1 and Chemical-2, with uniform response
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distributions, have zero variance (i.e., ) compared to maximal Shannon entropy

(H1 = H2 = 2.00) and disparate WES scores (WES1 = 2.00, WES2 = 0.27). The oscillating

response pattern of Chemical-4 leads to much greater variance across 

than the strictly increasing response pattern of Chemical-3 ( ) even though H

and WES are equivalent for these profiles. While Chemical-5 has a smaller unweighted

variance than weighted variance in this case ( ), the profile has

higher Shannon entropy than produced by the WES value (H5 > WES5). Chemical-6 only

responds at the last tested concentration, but is ranked 2 out of 6 based on unweighted

variance compared to 6 out of 6 based on Shannon entropy. While the weighted variance

cannot be calculated (see Table 1), Chemical-6 also ranks last (6 out of 6) based on weighted

entropy.

Evaluating entropy scores based on simulated Hill model data

To explore entropy across typical AC50 and |RMAX| parameter space, we generated fourteen

point concentration-response curve data from Eq. (1) using the statistical software R.20 The

values of AC50 ranged from 10−5 to 102 μM and were incremented by 0.1 units on the log2

transformed scale, while |RMAX| was varied from 0% to 150% and incremented by 1%

units. The detection limit (DetLim) was set to 25%. H and WES values were calculated for

each simulated profile according to Eq. (4) and Eq. (5), respectively. The results are

displayed as response surface diagrams for H (Figure 2A) and WES (Figure 2B). Visual

inspection of these plots illustrates that H is constant across |RMAX| for a fixed AC50 while |

RMAX| > 0. In contrast, WES is very small, but greater than zero, when 0 < |RMAX| ≤

DetLim for all AC50 and increases as a function of |RMAX| for a fixed AC50 when |RMAX| >

DetLim.

The performance of H and WES entropy scores as ranking statistics was evaluated using

previously simulated data.7 Briefly, simulated profiles were produced according to the Hill

equation model with R0=0, SLOPE=1 and residual errors modeled as ε ~ N(μ=0, σi
2=25%)

for an assay detection limit of 25%. Nine Hill equation parameter configurations were used

to span the scope of observations in typical qHTS studies, where AC50 was set to (10−3, 10−1

and 10 μM) and |RMAX| was set to (25%, 50% and 100%). These profiles were ranked by

the Hill Equation estimate for AC50, H or WES and the fraction of simulated actives that

were correctly identified was compared to the fraction of simulated actives that were falsely

classified for different ranked list sizes (see Materials and Methods). The performance of

AC50 estimates, H and WES scores to predict true activity was assessed using the area under

the ROC curve (AUROC) for different numbers of profile sample sizes (N) (Table 2).

AUROC ranges from 0 to 1, where values of 0.5, 0.75 and 0.9 correspond to random, good

and excellent performance, respectively. WES outperforms H and estimated AC50 in every

case examined here. AC50 performed poorly for every tested scenario. The ability of H to

discriminate between active and inactive substances was poor when |RMAX| = 25% (at the

assay detection limit) or when AC50 = 10 μM (activity only at high tested concentrations). In

contrast, WES starts to become problematic only as |RMAX| approaches the assay detection

limit (25%). More tested concentrations generally produced greater AUROC values for both

entropy measures. AUROC for WES was good or excellent in most cases, but performance
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was reduced when AC50 = 10 μM and |RMAX| = 25%. Conversely, AUROC for Shannon

entropy was always low when |RMAX| = 25% or when AC50 = 10 μM.

Ranking profiles from androgen receptor agonist assay data

The Ar is a steroid hormone receptor and member of the nuclear receptor superfamily of

transcription factors.21 We examined Ar agonist data expressed as the ratio of 460- to 530-

nm emission fluorescence intensities from GeneBLAzer® β-lactamase HEK 293T cell lines

(Carlsbad, CA) as described by Huang et al.6 Weighted entropy scores were computed for

this data and compounds were ranked by their WES score. These rankings are based strictly

on the data, apart from any pre-specified concentration response model form, including

directionality of response. Many of the highest ranking Ar chemicals were activators

(increasing response with increasing concentration), but some compounds exhibited

decreasing activity with increasing concentration, possibly due to cell toxicity (see

Supplemental Figure S2).

The top 25 most informative substances based on WES (WES ≥ 2 bits) are shown in Table 3.

Progesterone was duplicated in the compound library and appears twice in Table 3, but most

substances were present only once in the experiment. A total of 20 of these 25 compounds

show an “activator” response, while three compounds were classified as “inhibitors”

(decreasing activity with increasing concentration) and two compounds were classified as

“potent inhibitors” (activity at the lowest tested concentration). The activators include the

steroids Progesterone (represented twice in the assay), Fluoxymestrone, Prednisone,

corticosterone, medroxyprogesteroneacetate, androstenedione, 4-androstenedione,

dexamethasone, beta testosterone, methyl testosterone and 17beta-estradiol. Progesterone

and corticosterone are known Ar agonists in this compound set, as described previously.6

The activators also include benzo(k)fluoranthene and Croton oil, which has been found to

cause ligand independent activation of the androgen receptor through the action of the

phorbol ester component.22 The compound DDD (6-hydroxyl-2-naphthyl disulfide) exhibits

inhibitory activity at lowest concentrations but shows agonist activity at the two highest

concentrations. Conversely, daunomycin HCL and adriamycin hydrochloride exhibit

activator responses before inhibition at higher concentrations (see Supplemental Figure S2).

Substances evaluated in qHTS experiments are sometimes ranked by AC50 as a measure of

potency. However, the standard error of the log2AC50 estimates from Eq. (1) was large in

most cases (data not shown). As shown in Table 3, substances ranked in the top 25 (out of

all 1408 tested substances) based on WES were ranked from 6 to 1394 based on AC50.

Supplemental Figure S3 shows diverse response profiles from the Ar data set; some

substances are ranked highly based on WES and AC50 estimates while other substances show

very different rankings based on these two measures. Only 9 compounds were ranked in the

top 250 compounds by WES and AC50 (data not shown) and there was no correlation

between ranks when comparing all 1408 compounds ranked by WES and AC50 (Spearman

rho = 0.0046, p ~ 0.86).

Compounds eliciting an agonistic Ar response may also stimulate Esr1.23-25 A marginally

significant correlation was discovered when comparing the ranks based on WESAr to ranks

based on WESEsr1 (Spearman rho = 0.045, p~0.09). To find informative Ar profiles with

Shockley Page 8

J Biomol Screen. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



limited activity in the Esr1 assay, a test statistic was constructed based on the difference in

weighted entropy (ΔWES = WESAr - WESEsr1). Substances producing greater activity in the

Ar assay compared to the Esr1 assay will have larger ΔWES scores. Figure 3 presents the

response profiles for the top 8 most informative substances based on ΔWES. Compounds not

represented in Figure 3 with large ΔWES scores (ΔWES ≥ 2 bits) include

medroxylprogesteroneacetate, androstenedione, 4-androsteinedione and DDD (6-hydroxy-2-

naphthyl disulfide) with ΔWES scores of 2.46, 2.33, 2.30 and 2.04 bits, respectively. The top

ten compounds with strong negative ΔWES scores indicating specificity for Esr1 include

ethinyl estradiol, diethylstilbetrol, zearalanol, 1-bromopropane, ethylenediamine, Alachlor,

zearalenone (represented twice), bisphenol A and 17beta-estradiol (data not shown).

Discussion

The concept of Shannon entropy is foundational to information theory, a field which

intersects bioinformatics, electrical engineering, computer science, statistical physics,

mathematics and economics.26, 27 There is a known relationship between Shannon entropy

and thermodynamic entropy in statistical mechanics, such that entropy can be used as a

measure of the molecular disorder of a system.28 Applications of entropy in communication

theory provide a way to quantify the amount of information associated with a received

message.11 The amount of information gained by the receiver depends on the probability

that a message (or event) will occur. The surprise associated with the ith event is a function

of the underlying probability of the event; more information is received for transmitted

messages that are less probable. Thus, Shannon entropy describes the uncertainty associated

with an ensemble of events × = {x1, x2, …, xi}.

A weighted form of Shannon entropy is proposed here as a computational technique to guide

the interpretation of the large volume of data generated in qHTS experiments. Weighted

entropy characterizes a series of events by their probabilities of occurrence and associated

weights.18 Like Shannon entropy, weighted entropy provides a quantitative description of a

response profile based on the probability mass function estimated from the responses

observed across the tested concentrations. However, the weighted entropy measure

described here, termed the Weighted Entropy Score (WES), differs from classical Shannon

entropy by its ability to take into account the reliability of the underlying response

measurements. The combination of these properties allows WES to rank profiles in order of

importance from those with maximal entropy (full response at the lowest tested

concentration) to less prominent patterns (a change in response across concentrations levels)

to minimal entropy profiles (no observed activity at any tested concentration).

Conventional HTS assays for hit discovery are typically run at a compound concentration of

10 μM or less.29 As shown in Table 2, classical Shannon entropy scores had a good ability

to rank simulated curves based on the Hill equation when |RMAX| ≥ 50%. However,

Shannon entropy performed poorly when AC50 was 10 μM or when |RMAX| was 25% (when

maximal response measurements are near the assay detection limit). Table 2 demonstrates

that the WES approach outperformed Shannon entropy under every scenario considered here

and was even useful when AC50 was 10 μM. Accordingly, chemicals with larger WES scores

have more response measurements above the detection limit across the range of tested
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concentrations, while chemicals with lower WES scores have reliably detectable responses at

fewer concentrations.

As shown in Table 2, overall performance of the entropy scores generally improves with the

number of tested concentrations for both Shannon entropy and WES. The weighted entropy

metric performed well (AUROC ≥ 0.75) in most scenarios and outperformed Shannon

entropy in every instance examined here, across all numbers of concentrations tested, N, and

Hill function parameter configurations (Table 2). However, ranking substances based on

AC50 estimates derived from fits to the Hill Equation was always resulted in poor

performance. Other studies have demonstrated that the Hill Equation model parameters can

be unreliable estimates due to large variations in observed responses at higher doses,

irregular dose spacing or data collected over an incomplete dose range5,8,31. In contrast to

AC50, WES is based strictly on the observed responses and never relies on estimates of the

behavior of a nonlinear function outside of the tested concentration range. The performance

of weighted entropy as a ranking statistic is greater for substances with smaller AC50 values

and larger |RMAX| values. Concentration response profiles with an AC50 of 10 μM have

only one clearly defined asymptote and produce less reliable model fits than profiles with

lower AC50 values.7 Although performance was better than random classification, it is not

surprising that WES scores had the most difficulty discriminating true actives from false

positives when AC50 was 10 μM and |RMAX| was 25%. Such “marginally active” substances

have relatively small entropy scores compared to substances with much smaller AC50 values

and greater |RMAX| values (see Figure 2).

Ranking substances by WES scores can be used as a data driven approach to find the most

prominent response patterns in a tested set without imposing a pre-determined heuristic

scheme or model structure. This strategy will identify profiles that reliably fit a Hill model

framework (e.g., Figure 1) as well as non-sigmoidal patterns that may reflect real, but

complex, response patterns that do not fit a pre-specified model structure. Complex response

patterns may be indicators of complex biological or chemical processes30 or, alternatively,

“false positives” in the presence of uncontrolled factors such as contamination, signal flare

and carryover effects. Entropy based scores do not distinguish the directions of response

(i.e., do not discriminate between activators versus inhibitors) and the complexity of some

high entropy nonmonotonic response patterns could be difficult to interpret. Therefore, in

practice it may be advantageous to apply the ranking procedure to a list of hits identified

with an existing model-based activity call algorithm.

Entropy scores hold other useful properties for characterizing profiles generated from qHTS

experiments. Missing data is easily accommodated into the ranking framework described

here, since missing data will simply reduce the maximal possible entropy determined by

log2N. Profile ranks based on entropy may differ substantially from profile ranks based on

variance across the response observations. Entropy is computed as a function of the

probability mass at each concentration level rather than distances between response levels

such as variance (see Table 1). Entropy and variance therefore capture different aspects of

the profile signal (Figure S1). However, entropy is preferred to variance for compound

ranking since only entropy scores will provide equivalent measures for profiles with the

same response distributions irrespective of curve complexity. Entropy can also discriminate
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between uniform profiles corresponding to detectable response and uniform profiles below

the assay detection limit (see Table 1). Finally, WES scores provide a convenient metric that

can be readily extended to compare outcomes from different experiments, as demonstrated

by the ability of WES to identify chemicals with selective activity in Ar compared to Esr1

(see Figure 3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A depiction of a Hill model curve for an activator. The assay detection limits are shown as

horizontal lines. The model terms are described in the Materials and Methods section.
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Figure 2.
Entropy of the four-parameter Hill Equation model. (A) Shannon entropy and (B) weighted

entropy response surfaces for the Hill equation across a range of AC50 and |RMAX| with R0

=0 and SLOPE = 1. Shannon entropy increases with decreasing AC50, independent of |

RMAX| while the weighted entropy increases as a function of decreasing AC50 and

increasing |RMAX|.
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Figure 3.
Example response profiles corresponding to the top 8 chemicals from Table 2 ranked by

ΔWES=WESAr-WESEsr1. The data for Ar and Esr1 profiles are shown in red and green,

respectively. WES scores are calculated independently for each profile. The ranking of each

WES score out of all 1408 tested compounds is given in parentheses. The concentration-

response data is used with permission from Environmental Health Perspectives.
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