
ISSN 2062-509X / $ 20.00 © 2014 Akadémiai Kiadó, Budapest 

European Journal of Microbiology and Immunology 4 (2014) 2, pp. 138–143
DOI: 10.1556/EuJMI.4.2014.2.7

* Corresponding author: Hayk Minasyan; 38 Mamikonyanz str., apt. 38, Yerevan, 0014, Armenia;
Phone/Fax: (+374) 77255295; E-mail: haykminasyan@rambler.ru

Original article

ERYTHROCYTE AND BLOOD ANTIBACTERIAL DEFENSE

Hayk Minasyan*

Yerevan, Armenia

Received: March 16, 2014; Accepted: April 10, 2014

It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main 
function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function.
  Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria 
entrapping and killing by erythrocytes was shot by means of video camera.
  Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and 
kill bacteria of different species and size.
  Erythrocytes are extremely important integral part of human blood cellular immunity.
  Compared with phagocytic leukocytes, the erythrocytes: a) are more numerous; b) are able to entrap and kill microorganisms 
repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life 
span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, 
mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers.
  Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised.
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Introduction

After discovery of phagocytosis [1], it is axiomatic that blood 
cellular immunity is provided by leukocytes. As to erythro-
cytes, it is a general view that erythrocytes have no role in 
immune response and their main function is respiration.

Sixty years ago, Nelson [2] supposed erythrocytes as 
directly participating in the immune complex reaction 
(bacteria, complement, and antibody). This interaction of 
erythrocytes with the immune complex has been repeat-
edly shown [3].

When erythrocytes are lysed by bacteria, their he-
moglobin releases free radicals which break down the 
pathogen’s cell wall and membrane, killing it [4]. Human 
erythrocytes also may play a role in modulating T cell 
proliferation and survival by enhancing cytokine secre-
tion and induction of the interleukin 2 receptors (IL2R), 
thus, modulating CD4+/8+ ratios [5–7].

Erythrocyte functional responses include amongst 
others glycophorin A-mediated pathogen binding [8], 

 endothelial nitric oxide synthase (eNOS)-like protein 
activity [9], specifi c human immunodefi ciency virus 
type 1 (HIV-1) binding [10], interferon-α mRNA in-
duction [11], hormone binding [12], and complement 
receptor (CR1)-dependent immune complex clearance 
[3].

Erythrocytes form rosettes to facilitate the clearance 
of pathogens by macrophages [13] and could produce 
cytokines or specifi c signaling molecules in response to 
binding [14]. A relationship was hypothesized between 
erythrocytes, hemoglobin, and the immune system [15]. 
Hemoglobin is a source of bioactive peptides that par-
ticipate in the innate immune response [16]. The antimi-
crobial activity of the respiratory globins is likely one of 
the most ancient antimicrobial mechanisms [17]. These 
respiratory protein-derived peptides exhibit antimicro-
bial activity against Gram-positive and Gram-negative 
bacteria, and yeast [18, 19]. Thus, it would appear that 
diverse ranges of nonrespiratory biological processes in 
erythrocytes are observed [20].
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Materials and methods

One of the most frequent kinds of bacteremia in humans 
is oral cavity multibacterial contamination of peripheral 
blood [21], so blood samples were taken from patients 
with acute and chronic dental problems during tooth ex-
traction and other invasive dental procedures (gingivec-
tomy, deep gum pocket curettage, etc.). Eight samples 
of blood (15 ml each) were taken from the cubital vein 
of two patients with severe periodontitis after 5, 15, 30, 
and 60 min of tooth extraction (four samples from a pa-
tient). Blood samples (15 ml each) were also taken from 
two patients suffering from: 1) low grade fever after gin-
givectomy, gum pocket curettage, and plaque removal; 
2) gum abscess with low grade fever. 1.8 mg K2EDTA 
per milliliter of blood was used as anticoagulant. Every 

blood sample was distributed to three test tubes, 5 ml of 
blood each (the fi rst, second, and third test tube).

After gentle centrifugation of the first test tube and 
sedimentation of the blood cells, the plasma was incu-
bated for 24 h (37 °C) while the blood cells were kept 
in refrigerator for 24 h (4 °C); then (after 24 h in the 
 incubator), 1 ml of plasma was taken for centrifuga-
tion of bacteria, and the pellet vital phase-contrast and 
Gram stain preparation microscopy were performed; 
the rest of the plasma was remixed with the blood cells 
and put into incubator (37 °C), and after 30 min, an 
hour, 6 h, and 12 h phase-contrast microscopy was per-
formed.

The second test tube was kept in incubator (37 °C) for 
24 h, and phase-contrast microscopy was performed after 
30 min, 1, 6, 12, and 24 h.

Fig. 1. A small bacterium is 
entrapped inside the erythro-
cyte. Phase-contrast micros-
copy, magnification 900×

Fig. 2. A medium size bacte-
rium is entrapped inside the 
erythrocyte. Phase-contrast 
microscopy, magnification 
900×

Fig. 3. A big bacterium is en-
trapped inside the erythro-
cyte. Phase-contrast micros-
copy, magnification 900×

Fig. 4. An amphitrichous bac-
terium is entrapped inside the 
erythrocyte. Phase-contrast 
microscopy, magnification 
1350×

Fig. 5. A bacterium is en-
trapped in erythrocyte with 
injured membrane (hemo-
globin is pouring out with 
erythrocyte ghost formation). 
Phase-contrast microscopy, 
magnification 1350×

Fig. 6. Bacterium is squeezed 
by erythrocyte ghost mem-
brane. Phase-contrast micros-
copy, magnification 1350×

Fig. 7. The release of the dead 
bacterium to the blood 
plasma. Phase-contrast mi-
croscopy, magnification 
1350×

Fig. 8. Dead bacterium is 
drifting in the blood plasma. 
Phase-contrast microscopy, 
magnification 1350×
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The third test-tube blood was used for mixing with the 
suspension (in 0.9% NaCL) of subgingival dental plaque 
taken from the patients. 2.5 ml of blood from the third test 
tube was mixed with 0.25 ml of dental plaque suspension 
and placed into incubator (37 °C), and after 30 min, 1 h, 6 h, 
and 12 h phase-contrast microscopy was performed. The 
plasma of the remaining 2.5 ml blood (after centrifugation 
and separation from blood cells) was mixed with 0.2 ml 
of the dental plaque suspension and placed into incubator 
(37 °C) for 24 h and then remixed with the blood cells kept 
after centrifugation in refrigerator (4 °C). The mixture was 
placed to incubator (37 °C), and after 15 min, 30 min, 1 h, 
6 h, and 12 h phase-contrast microscopy was performed.

Phase-contrast microscopy was performed by means 
of phase-contrast condenser and objective 90 × 1.25 Ph 
Carl Zeiss; video was shot by means of digital camera, 
Nikon with 10.34 megapixel, image size 640 × 480, and 
30 frames per second.

Results

Phase-contrast microscopy of blood samples taken from 
patients with transitory bacteremia for detection (after ap-
propriate processing) of viable bacteria in the bloodstream 
has revealed that the microorganisms are cleared from the 
blood predominantly by erythrocytes.

Erythrocytes directly entrap and kill bacteria, prolifer-
ated in plasma (Figs 1–4, Videos 1–8).

Bacteria entrapping does not make a hole in erythro-
cyte membrane, and erythrocyte’s inner contents do not 
pour out: bacteria remain entrapped in uninjured erythro-
cyte. Entrapped bacteria try to penetrate erythrocyte mem-
brane from inside for escaping (Videos 1–6). Тhe bacteria 
cannot penetrate the membrane of even ghost erythrocytes 
(Figs 5–8). Entrapped bacteria fi nally exhaust (Videos 7 
and 8) and die (Videos 9 and 11). Erythrocyte ghost mem-
brane and cytoskeleton components tightly grip bacteria 
and hold them immobile for a while (Fig 6, Video 10). Af-
ter erythrocyte ghost membrane destruction, killed bacteria 
are released and slowly drift in blood plasma (Video 12).

The activity of bacteria after entrapping increases, and 
bacteria try to penetrate erythrocyte membrane and es-
cape. These efforts usually are futile, and the motility of 
bacteria gradually decreases and fi nally stops. The parallel 
process of erythrocyte color darkening occurs, which indi-
cates hemoglobin deoxygenation and oxygen binding with 
bacterial structures (Videos 5 and 9).

Bacteria move in erythrocyte ghost longer than in nor-
mal erythrocytes. High motility of bacterium inside eryth-
rocyte decreases erythrocyte’s cytoplasm density: bacte-
rium acts as a mixer and makes the cytoplasm more liquid. 
Big membrane hole and more liquid cytoplasm both may 
cause cytoplasm pouring out and ghost formation (hap-
pens in 10% of especially big and active bacteria engulf-
ing). Erythrocyte repeatedly entraps, kills, and releases 
small and average size bacteria without loss of cytoplasm 
and ghost formation.

Discussion

Video materials demonstrate that erythrocyte has active 
bactericidal function in blood. Before entrapping, a bac-
terium is attached to erythrocyte membrane. Video 13 
demonstrates a bacterium gliding on the surface of the 
erythrocyte and nothing locally “glues” the bacterium to 
the erythrocyte, so electric charge is probably the main at-
tracting force. Electrochemical zeta potential [ζ]) on the 
surface of erythrocyte membrane is –15.7 millivolts (mV) 
[22]. Erythrocyte discriminates dead and alive microbes 
by means of its electric charge that automatically attracts 
and keeps living (charged) microbes.

Very few species of bacteria can enter and survive in 
the erythrocyte, and so, the diseases (caused by bacteria 
able to survive in erythrocyte) are very rare. Regarding ad-
aptation and survival inside erythrocyte, only some kinds 
of protozoa should be mentioned: malaria [23], babesiosis 
[24], and theileriosis [25]. As to microbes that penetrate 
erythrocyte and continue their life cycle inside them, only 
the genus Bartonella is partially able to do that [26].

Erythrocyte is the cell with maximal amount of oxy-
gen inside. Oxygen is fatal for microorganisms. Oxygen 
is used for bacteria killing also by leukocytes [27]. Leuko-
cytes are vulnerable regarding the attacks of bacteria, vi-
ruses, and other microorganisms. Incomplete (imperfect) 
phagocytosis is often, and for some microorganisms (My-
cobacterium tuberculosis, Neisseria meningitidis, Neisse-
ria gonorrhoeae), phagocytosis is indispensable for their 
life cycle, proliferation, and dissemination [28–30]. Pre-
vention of phagolysosome formation after phagocytosis is 
an effective way to evade the attack of hydrolytic enzymes. 
It is characteristic for Legionella pneumophila [31], Chla-
mydia psittaci [32], Toxoplasma gondii [33], and M. tu-
berculosis [32]. Viruses can inhibit phagolysosome forma-
tion and provide survival of microbes in phagosome [34]. 
Toxoplasma gondii being engulfed by phagocyte does not 
cause “respiratory burst” in phagosome and so remains 
uninjured [35]. Coxiella burnetii resides in phagolyso-
some because of its own acidophilic biochemistry [36]. 
Nocardia asteroides produces high levels of superoxide 
dismutase and catalase that protect them from the effects 
of O2

− and H2O2 [37]. L. pneumophila [38], M. tuberculosis 
[39], and Leishmania [40] cover themselves with C3 frag-
ments and then enter the macrophage via C1 receptors.

Producing some toxins, microorganisms kill the 
phagocytic cells. Streptolysins O and S are responsible for 
cytolytic activity of Streptococcus pyogenes [41]. Staphy-
lococcal leukocidin, anthrax toxin, and exotoxin A from 
Pseudomonas aeruginosa are toxic for phagocytes [42]. 
Listeria monocytogenes produce hemolysin that degrades 
phagolysosomial membrane; the microorganism enters to 
cytoplasm for proliferation there and kills the phagocyte 
[43]. Yersinia pestis survives and produces F1 and V anti-
gens while it is residing within monocytes [44]. Ehrlichi-
osis infects either the neutrophil and the monocyte [45]. 
Francisella tularensis virulence is related to its ability to 
invade and replicate itself within phagocytes [46]. Thus, 
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bacteria grow more readily and replicate more in leuko-
cytes than in erythrocytes.

Many viruses replicate in leukocytes. HIV infects help-
er T cells (specifi cally CD4+ T cells), macrophages, and 
dendritic cells [47]; primary target of human T-cell lym-
photropic virus (HTLV) (all types) is also CD4+ T cells 
[48]; Epstein–Barr virus infects B cells [49]; hepatitis C 
virus (HCV) may replicate in peripheral blood mononu-
clear cells and can infect B lymphocytes [50]; cytomega-
lovirus attacks lymphocytes and monocytes [51]; and en-
teroviruses (polio-, coxsackie-, echo-, and others) replicate 
in human mononuclear cells [52]. On the contrary, eryth-
rocytes do not support viral replication [53]. Erythrocytes 
lack the nuclei and organelles required to replicate nucleic 
acids and elaborate proteins. Because viruses depend on 
the use of the host cell machinery to replicate, erythrocytes 
are invulnerable to viral infection. Leukocytes engulf not 
only germs but also have scavenger function and phago-
cytes may be overloaded by engulfed cell fragments and 
particles [54].

In humans, there are 1000 times more erythrocytes than 
leucocytes. Adult humans have 2–3 × 1013 (20–30 trillion) 
erythrocytes (approximately a quarter of the cells in the 
human body) while there are only 20–30 million leuco-
cytes in peripheral blood [55]. Approximately 2.4 million 
new erythrocytes are produced per second [56]. For 10 s, 
24 million new erythrocytes are produced (the same num-
ber of leucocytes are in all peripheral blood circulation). 
Neutrophils and monocytes are the most phagocytic of the 
white blood cells, so no more than 68% (60% neutrophils 
and 8% monocytes) of peripheral blood leucocytes are 
“professional” phagocytic cells. Neutrophils are not able 
to renew their lysosomes (used in digesting microbes) and 
die after having phagocytosed a few pathogens [57]. The 
life span of a circulating human neutrophil is about 5.4 
days [58]. Erythrocytes circulate for 100–120 days, and 
so, they live 18–22 times longer than neutrophils [59]. Ac-
cording to our data, erythrocytes are able to trap and kill 
bacteria again and again without being injured. Erythro-
cyte membrane consists of three basic components: a lipid 
bilayer, transmembrane (integral) proteins, and a cytoskel-
etal network [60]. Thickness, tensile strength, elasticity, 
and fi rmness provide the ability of erythrocyte to entrap 
and hold even big bacteria long enough for killing the lat-
ter by means of oxidation and bacterial energy exhaustion.

Erythrocyte volume is about 90 fl  with a surface of 
about 136 μm2, and it can swell up to a sphere shape con-
taining 150 fl  without membrane distension [61]. The vol-
ume of an average bacteria is 2 fl  or 2 × 10−15 l [62], and so, 
the erythrocyte has enough inner volume for entrapping 
numerous bacteria.

There is huge number of bacteria in little amount of 
fl uid in local infl ammation regions (abscesses, phlegmo-
nas, purulent wounds, etc.), infected organs, and cavities 
(pneumonia, cholangitis, haimoritis, frontitis, osteomy-
elitis, etc.). Even body’s ordinary liquids contain lots of 
germs: 1 ml of saliva may contain 750 million bacteria, 
and 1 gram of subgingival plaque may contain 200 billion 

bacteria [63]. Trauma to oral mucosal surfaces releases 
these microbial species transiently into the bloodstream 
[64]. The frequency of bacteremia after tooth extraction 
is 39–100% [21]. It is transient since the microorganisms 
are cleared from the bloodstream within a few minutes – 
1 hour after the procedure [65]. Transient bacteremia oc-
curs also during eating, chewing gum, brushing the teeth, 
or using toothpicks [66]. Rates for bacteremia in adults 
range from 23% to 57% for toothbrushing, and billions of 
bacteria enter the bloodstream [66, 67]. Comparing such 
amount of bacteria with peripheral blood “leukocyte army” 
(20–30 million cells with 60–70% of active phagocytes), it 
becomes clear that leukocytes are unable to withstand the 
attack of massive infection.

Thus, the erythrocytes are indispensable integrative 
part of human blood cellular bactericidal immunity. Tak-
ing into account all the data above, erythrocytes compared 
with phagocytic leukocytes are: a) more numerous; b) en-
trap and kill microorganisms repeatedly without being in-
jured; and c) resistant to infection and better withstand the 
attacks of pathogens. Erythrocytes have longer life span 
and are produced faster, and their inner space is an inaus-
picious media for survival and proliferation of germs and 
does not support replication of smaller intracellular para-
sitic organisms (chlamidiae, mycoplasmas, rickettsiae, 
 viruses, etc.); erythrocytes are more effective and uncon-
ditional, bacterial killers.

Bactericidal effect of erythrocytes is especially criti-
cal in the cases of: 1) blood massive microbial infection; 
2) impossibility to recruit immediately enough amount 
of phagocytes; 3) fast proliferation and dissemination 
of microorganisms; and 4) functional ineffectiveness of 
fagocytes and/or incomplete phagocytosis. In such cases, 
erythrocytes become the fi rst line of blood cellular bac-
tericidal defense and the phagocytes become an auxiliary 
force.

Presented video materials should become an impetus 
for revision of both cellular immunity theory and tradi-
tional view regarding the function of erythrocytes in hu-
man blood and its cellular immunity.

The supplemental material contains the following 
videos:

Video 1. A bacterium entrapped inside the erythrocyte is 
trying to escape.

Video 2. A bacterium entrapped inside the erythrocyte is 
desperately trying to escape.

Video 3. An amphitrichous bacterium inside the erythro-
cyte.

Video 4. Two bacteria inside the erythrocytes.
Video 5. A bacterium inside the erythrocyte. The erythro-

cyte has become darker because of oxygen consump-
tion for the bacterium oxidation.

Video 6. The entrapped bacterium is gradually losing 
energy and stamina.

Video 7. Last efforts of exhausted bacterium to escape 
from the erythrocyte.

Video 8. The bacterium is exhausted and is dying.
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Video 9. Dead (killed by means of oxidation) bacterium 
inside the erythrocyte.

Video 10. The bacterium inside the erythrocyte is killing 
by squeezing and immobilization.

Video 11. The bacterium inside the erythrocyte is in 
agony.

Video 12. The bacterium after killing is released by ery-
throcyte to plasma and is drifting with the fl ow.

Video 13. The bacterium is gliding on the surface of 
erythrocyte and then escapes.
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