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Abstract

Objective—We investigated the viability of psychometrically robust executive function

measures as markers for premanifest Huntington’s disease (HD).
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Methods—Fifteen premanifest HD subjects and 42 controls were compared on the NIH

EXAMINER executive function battery. This battery yields an overall Executive Composite score,

plus Working Memory, Cognitive Control, and Fluency Scores that are measured on

psychometrically matched scales. The scores were correlated with two disease markers, disease

burden and striatal volumes, in the premanifest HD subjects.

Results—The premanifest HD subjects scored significantly lower on the Working Memory

Score. The Executive Composite positively correlated with striatal volumes, and Working

Memory Score negatively correlated with disease burden. The Cognitive Control and Fluency

Scores did not differ between the groups or correlate significantly with the disease markers.

Conclusions—The NIH EXAMINER Executive Composite and Working Memory Score are

sensitive markers of cognitive dysfunction, striatal volume, and disease burden in premanifest HD.
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Introduction

Huntington disease (HD) is an autosomal dominant neurodegenerative disease characterized

by progressive motor, cognitive, and psychiatric symptoms. It is caused by the expansion of

the trinucleotide cytosine-adenine-guanine (CAG).[1] Clinical diagnosis typically depends

on motor abnormalities; however, an insidious decline in cognition can be evident 15 years

prior to motor symptom onset.[2,3]

Although premanifest HD (pmHD) individuals perform lower than neurologically healthy

controls (NC) on a range of cognitive skills,[4-9] targeting executive functions is compelling

given their association with functional decline including difficulties with employment,

financial management and driving.[10-12] Also, individuals with HD often lack awareness

of their executive dysfunction,[13] which may lead to unreliable judgments regarding

themselves and their healthcare needs.[14] Furthermore, executive functions are vulnerable

to early brain changes in pmHD,[13,15] including striatal atrophy,[8,16] a reliable disease

marker.[17] Deficits in working memory, a key component of executive function, are

common.[18-20]

Given that cognitive dysfunction often precedes motor symptoms, sensitive cognitive

markers are needed to guide when to initiate early interventions and measure treatment

efficacy. There is no consensus, however, on what the best cognitive markers might be.

Single measure scores can cause biases in estimated rates of change over time due to

curvilinear scaling.[21] Composite scores encompassing several measures increase

measurement precision over individual test scores,[22,23] but this approach may not make

full use of the available information. Application of item response theory can improve

sensitivity and increase statistical power, two important considerations for clinical trials.

Item response theory takes item difficulty into account, resulting in linear scaling properties

that measure with similar precision differences across the ability spectrum.[23,24] The

scores are on the same scale and can be meaningfully contrasted.
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We investigated the viability of the NIH EXAMINER as a disease marker in pmHD. The

NIH EXAMINER battery produces four scores using item response theory: overall

Executive Composite, Working Memory Score, Cognitive Control Score, and Fluency

Score. We predicted that the Executive Composite and Working Memory Score would be

lower in pmHD than NC, and would decline with increasing disease burden and striatal

atrophy.

Methods

Subjects

This study was approved by the UCSF Committee on Human Research. Written informed

consent was obtained from each subject. The NIH EXAMINER battery was administered to

all 15 pmHD subjects, recruited through clinic or participation in other research studies, who

completed a 3T MRI at the UCSF Memory and Aging Center between August 2011 and

August 2013. The 42 NC were selected from the NIH EXAMINER validation study at

UCSF to match the pmHD subjects on age and gender.

The pmHD individuals tested positive for the HD mutation with at least 40 CAG repeats and

did not meet criteria for manifest motor HD according to previous methods.[3] Motor

symptoms were evaluated by a neurologist using the Unified Huntington’s Disease Rating

Scale (UHDRS) Motor subscale, M=8.0(6.9). Global cognition was evaluated using the

Montreal Cognitive Assessment (MoCA), M=27.2(2.1). Disease burden was calculated

using the CAG-Age Product Scaled (CAPS), formulated by the PREDICT-HD study.[25]

The CAPS is classified into Low (>0 and ≤.67), Medium (>.67 and ≤.85), and High groups

(>.85), denoting cumulative disease burden, with a higher score indicating closer proximity

to diagnosis. The pmHD cohort sample included three Low, three Medium, and nine High

burden individuals, with a mean CAPS of .9(.2) and CAG repeats of 42.5(2.2). NC status

was determined based on neurological history and examination. The groups were closely

matched in age and gender, but the NC had higher education, p=0.04.

Executive Function Assessment

Participants were administered 11 tests from the NIH EXAMINER battery (see

Supplementary Table) using a 15.4” Dell Latitude D830 laptop. Derivation of the executive

scores and their reliability is detailed in Kramer et al.[26] and http://examiner.ucsf.edu.

Neuroimaging Data Acquisition and Image Processing

High-resolution 3D T1-weighted imaging (IR-SPGR) was performed on a 3T MR scanner

(GE Healthcare, Milwaukee, WI) on the 15 subjects with pmHD using an 8-channel head

coil. Images were acquired in the sagittal plane using the following parameters: TE/

TE=7.0/2.0 ms, 15° flip angle, 23 cm FOV, NEX=1, 1 mm slice thickness, 6:18 min

duration. Each individual’s imaging data was assessed for problems of movement artifact

and adequacy of scan coverage. Segmentation and volumetric measurements of the total

intracranial volume, caudate and putamen were obtained using FreeSurfer version 5.1.0

(http://surfer.nmr.mgh.harvard.edu/). Right and left caudate and putamen volumes were

summed to generate total striatal volumes.

You et al. Page 3

Mov Disord. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://examiner.ucsf.edu
http://surfer.nmr.mgh.harvard.edu/


Data Analysis

Group differences in NIH EXAMINER scores were evaluated using analysis of covariance,

controlling for education. In the pmHD sample we correlated the scores with striatal

volumes, controlling for intracranial volume, and with CAPS (disease burden). P-values < .

05 were considered significant, whereas p-values <.10 were considered trends for all

analyses. Cohen’s d effect sizes are reported for group differences.

Results

The pmHD subjects scored lower than NC on the Working Memory Score, F(1, 53) = 2.49,

p = .03, d = .66 and there was a trend on the Executive Composite, F(1, 53) = .99, p = .09, d

= .52. The groups did not differ on the Cognitive Control Score, F(1, 53) = .49, p = .31, d = .

34 or the Fluency Score, F(1, 53) = .11, p = .57, d = .17 (Table 1).

Striatal volumes positively correlated with the Executive Composite, p = .04, and trended

with the Working Memory Score, p = .07; both were in the large effect size range (Figure 1).

[27] Disease burden negatively correlated with the Working Memory Score, p = .03. The

Cognitive Control and Fluency Scores did not correlate significantly with either striatal

volumes (p = .20; p = .19, respectively) or disease burden (p = .40; p = .32, respectively),

and the Executive Composite did not correlate significantly with disease burden (p = .11).

Discussion

PmHD subjects scored lower than NC on the NIH EXAMINER Working Memory Score

with a trend on the Executive Composite. Striatal volumes correlated with the Executive

Composite and trended with the Working Memory Score, which correlated with lower

disease burden. Cognitive Control and Fluency Scores did not differ between the groups or

correlate with striatal volumes or disease burden. The lower Executive Composite in pmHD

may be driven in part by the Working Memory Score due to overlapping measures;

however, the Executive Composite was the most robust correlate of striatal volumes.

Our findings suggest that a decline in executive function, particularly working memory,

precedes clinical (motor) diagnosis of HD and dysfunction is associated with early

anatomical changes. Consistent with these findings, striatal volumes have been shown to

predict the onset of HD[17] and correlate with executive dysfunction.[8,16] Additionally,

executive functions, including working memory, have been shown to be impaired in pmHD.

[18-20] In Harrington et al., for example, pmHD patients with medium to high disease

burden were impaired on a factor score composed of verbal working memory and letter

fluency tasks. A recent study by Georgiou-Karistianis et al.[28] did not find significant

differences in working memory between pmHD and controls, however. This discrepancy

may be related to methodological differences. The NIH EXAMINER’s spatial N-back uses

15 locations, whereas their spatial N-back used 4 locations. Our pmHD patients had a higher

disease burden. In addition, our study used IRT generated composite scores, which can be

more precise and sensitive to cognitive decline than individual test or factor scores.[21,22] A

limitation of our study, however, is the small sample size; although the effect sizes were

robust, replication is needed.
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Our study does not support fluency and cognitive control as disease markers for pmHD.

Verbal fluency deficits have been reported in pmHD,[7,19,30] but are inconsistent across

studies and often small in magnitude.[31] Prior studies on cognitive control have also been

inconsistent with impaired set-shifting[7] and 2-choice response time,[19] but intact flanker,

[32] and similar levels of impairment on Stroop Interference relative to Color Naming or

Word Reading.[19]

A critical step in validating a cognitive measure as a disease marker is to document its

sensitivity to longitudinal decline. Future research will address this important issue using a

larger sample size with subjects at different levels of disease burden and manifest HD. The

Executive Composite has been shown to correlate with real world executive behavior in

patients with a variety of neurological disorders,[33] and this question of ecological validity

should be investigated in HD.

Clinical trials for neurodegenerative diseases are extraordinarily expensive, and rely heavily

on clinical measures of efficacy.[34] Clinical measures sensitive to the effects of HD across

animal models and human patients may have predictive value for guiding which therapeutics

to move forward into clinical trials. Rodent behavioral assays requiring working memory

include the radial arm maze[35,36] and complex operant conditioning paradigms including

delayed alternation[37] and touch screen tasks that can use the same types of stimulus

materials used in human subjects.[38,39] Incorporating species-appropriate tests of working

memory into preclinical work could elucidate the extent to which different animal models of

HD recapitulate this behavioral feature, and may help predict the impact of new therapies on

HD-related premotor cognitive decline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scatterplots of Executive Composite and Working Memory Score to Striatal Volumes and

CAPS
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