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Abstract

Jimpy is a murine mutation in myelin proteolipid protein, leading to premature death of

oligodendrocytes and severe central nervous system hypomyelination. Jimpy is a bona fide model

of human Pelizaeus-Merzbacher disease. This paper describes a severe reduction in expression of

κ-opioid receptors (KOP) in oligodendrocytes of jimpy mice. A cell specific reduction of >90% is

apparent by 5 days of age. Expression is not reduced in neurons, and μ-opioid receptor expression

is normal. Mechanism(s) leading to deficient KOP expression in jimpy mice remain unclear. We

speculate that loss of KOP may be related to increased [Ca2+]i and premature death of jimpy

oligodendrocytes.
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Introduction

Jimpy is an X-linked mutation in the proteolipid protein (PLP) gene that causes a

dysmyelinating phenotype in the central nervous system (CNS) [40, 50]. A single nucleotide

change inactivates a splice acceptor site, resulting in excision of exon 5 from PLP mRNA
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[21, 32, 34]. The mutation also causes a frameshift, making the predicted COOH terminus of

jimpy PLP completely abnormal. Jimpy is a bona fide model of dominant-negative forms of

human Pelizaeus-Merzbacher disease, a rare, inherited, leukodystrophy associated with

mutations in, or duplications of, the PLP gene [23, 48]. Jimpy mice produce little CNS

myelin, likely due to premature death of oligodendrocytes (OLs) throughout the CNS

coincident with active myelination [30]. Arborization, myelin membrane formation, and

survival are adversely affected in vivo and in culture. Jimpy mice exhibit tremors by 8–10

days, followed by death at 20–28 days. OLs from jimpy mice show additional abnormalities

that appear unrelated to loss of a myelin protein. These include altered pH, Em, [Ca2+]i,

metabolic function, cAMP signaling, and proliferation/cell cycle [11, 12, 25, 26, 29, 42].

Many defects occur in situ or in culture long before the cells die, suggesting a direct or

indirect contribution to OL death and dysmyelination. We previously showed that jimpy

OLs grown in vitro also fail to express κ-opioid receptors (KOP), although most normal

OLs express KOP throughout development [28]. The present study examined expression of

KOP by jimpy OLs in vivo. Endogenous opioids normally modulate aspects of glial

development [15, 16, 20, 28, 36, 38, 44]. Therefore, KOP loss might contribute to

abnormalities in OL phenotype and function both in jimpy mice and in human diseases

involving PLP mutations.

Methods

Jimpy mice were bred from carrier pairs (B6CBACa Aw-J/A-Plp1jp EdaTa/J) (Jackson

Laboratory, Bar Harbor, ME). 16–18 day mutant mice were identified by characteristic

tremors. Younger mutants were identified by DdeI restriction analysis after PCR

amplification [26]. Mice were anaesthetized by halothane exposure, using procedures to

minimize pain outlined in the NIH Guide for Care and Use of Laboratory Animals, then

perfused transcardially with 4% Zamboni’s fixative. Cerebral hemispheres were postfixed

(18h, 4ºC), infiltrated overnight sequentially in 10% and 30% sucrose, embedded in Tissue

Tek OCT compound (Sacura Finetek, Torrance, CA) and stored at −80ºC.

Sections (7 μm) were immunostained sequentially for opioid receptors and antibodies

specific for either OLs (APC) or neurons (NeuN). Tissue was permeabilized, incubated

overnight at 4ºC in polyclonal antibody to either KOP-1 (Santa Cruz Biotechnology, Santa

Cruz, CA) or μ-opioid receptor (MOP) (Chemicon, Temecula, CA), followed by monoclonal

anti-APC/CC-1 (Oncogene, San Diego, CA) or anti-NeuN (Chemicon). Primary antibodies

were visualized using appropriate fluorescent reagents. Sections were stained with Hoechst

33342 to identify nuclei (Molecular Probes), then mounted in ProLong antifade reagent

(Molecular Probes).

OLs were quantified in the corpus callosum because of their high abundance in that region.

Neurons were quantified in striatum since corpus callosum lacks neuron cell bodies, and a

high percentage of striatal neurons express opioid receptors. 100 random OLs or neurons,

identified by APC or NeuN, were selected per section at 2 ages. Hoechst staining was

assessed, and cells were examined for KOP or MOP staining only if soma were associated

with an intact Hoechst-labeled nucleus. Two sections per mouse were examined at 63X

magnification for each staining regimen (200 total cells), then averaged as a single N for
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statistical purposes, with N=6–9 mice per group. Results were analyzed by ANOVA with

Duncan’s post-hoc test (Statistica; StatSoft, Tulsa, OK).

KOP levels were also examined by Western blot of corpus callosum using standard

procedures [26]. Tissue was homogenized in RIPA buffer with protease inhibitors (Roche,

Indianapolis, IN) and protein concentrations determined by BCA Protein Assay (Pierce

Chemical Co., Rockford, IL). Samples (5 μg) from 4–6 wild-type and jimpy mice were run

on a single 10% Tris-HCl Criterion Precast Gel (Bio-Rad, Hercules, CA), transferred to

PVDF membranes (Hybond-P; Amersham Biosciences, Piscataway, NJ), and stained using

polyclonal anti-KOP (Santa Cruz) and monoclonal β-actin (Chemicon) antibodies. Blots

were visualized with SuperSignal West Femto Substrate (Pierce), scanned and analyzed

(Kodak Image Station 440CF). Integrated band volumes from the same gel, corrected for

actin loading, were compared using a student’s t-test.

Results and Discussion

Tissue from 5–8 day jimpy animals contained a seemingly normal complement of OLs,

consistent with reports that immature stages of the lineage are phenotypically normal, and

that dysmyelination and OL death occur when OLs begin to produce myelin [13, 30]. Even

though cell density and morphology appeared normal, both cell counts (Fig. 1) and

immunostaining (Fig. 2) showed a substantial reduction in the percentage of APC+ OLs

expressing KOP in 5–8 day corpus callosum. While 67.4% of OLs in wild-type tissue

expressed detectable KOP, this was reduced to 4.5% in jimpy. The percent of OLs

expressing KOP normally increased with age (Fig. 1). Instead, the discrepancy in KOP

staining in jimpy at 16–18 days remained highly significant (85.1% in wild-type vs. 8.8% in

jimpy; Fig. 1A), thus ruling out the explanation of a temporal delay in receptor expression.

Later ages were not examined since jimpy mice die prematurely. Although corpus callosum

was the only region where MOP and KOP were both quantified, OLs throughout the brain

were KOP deficient. For example, APC+/KOP+ cells were reduced over 90% at both ages in

striatum.

To test for a general defect in opioid receptors in jimpy OLs, we examined expression of

MOP, which are expressed on large numbers of normal OLs both in vivo and in culture [28,

44]. Figure 1B shows no difference in MOP expression in wild-type versus jimpy OLs at

either 5–8 days (59.8% vs. 51.1%) or 16–18 days (58.9% vs. 53.2%). MOP expression on

normal OLs was somewhat reduced or delayed from in vitro findings [28] perhaps reflecting

different milieus, or regional variations in timing of receptor expression. We also tested

whether reduced KOP expression was specific to OLs by examining KOP expression in

striatal neurons. Fig. 3 shows a significant increase in the percent of KOP+ neurons with age

in both normal and jimpy striatum. There was no difference due to genotype at either age.

Overall, the results indicate a severe reduction of KOP expression in jimpy CNS that is

specific to OLs and not accompanied by decreased MOP.

Immunoblots from 5–8 day corpus callosum always showed a significant decrease in KOP

(Fig. 4), mirroring the immunostaining. Results from 16–18 day samples were variable. A

total of 3 sets of blots from 16–18 day old mice were performed, comparing “N”s of 4–6
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jimpy and wild-type samples each. Only one experiment was significant. Since immunoblots

reflect the aggregate expression on all KOP-expressing cells, which include astroglia and

microglia as well as neurons and OLs, immunostaining likely provides a more accurate

picture of KOP changes in OLs alone. Additionally, the jimpy CNS exhibits astrogliosis

throughout the lifespan [43] and KOP expression in hypertrophied astroglia may offset KOP

loss in the OL population

Mechanism(s) underlying reduced KOP expression in jimpy mice are unclear, although

maintained MOP expression argues against a general decline of opioid signaling in sick/

dying jimpy OLs. The finding that KOP expression is significantly reduced by day 5 also

counters this argument, since OLs in jimpy corpus callosum appear phenotypically normal

and are not dying at that age [30]. As KOP levels are unaffected in neurons, the mutation

appears specific for OLs. Ultimately, whether diminished KOP levels result from failure of

production or failure to be inserted into OL membranes, they must stem from either loss of

normal PLP or production of mutant jimpy PLP. One intriguing possibility comes from

work showing that both PLP and its alternative splice product DM-20, bind cholesterol and

are components of lipid rafts [41]. Missense PLP mutations similar to jimpy (jimpy-msd and

rumpshaker) lead to impaired cholesterol binding and lipid raft association [31]. Lipid rafts

can influence receptor function and turnover, including trafficking, stability, and

internalization [1], which might in turn affect expression of KOP and other G-protein

coupled receptors associated with lipid rafts [35, 51].

What are possible ramifications of reduced KOP levels in jimpy OLs? Overall, little is

known about specific actions of KOP agonists on OL function or survival. In vivo studies

generally suggest that selective KOP signaling is protective against CNS damage due to

ischemia or trauma [3–5, 17, 18]. Much of this effect is probably indirect, mediated by

reduced production of inflammatory agents or vascular changes [18, 37]. However, direct

protective effects of KOP signaling may occur. Several studies with KOP agonists in vivo

have shown specific sparing of white matter, suggesting direct or indirect effects on OLs [4,

18]. If direct protective effects occur through KOP signaling, loss of KOP might make jimpy

OLs more vulnerable to injury. Our culture studies showed protective KOP signaling against

glutamate toxicity in OLs [27], while KOP signaling has been variably effective against

glutamate toxicity in neuron cell lines and cortical cultures [6, 7]. Studies discussed above

use specific KOP agonists and antagonists. They do not cite studies with dynorphin peptides,

whose interpretation is complex due to conflicting glutamatergic and KOP activities, as well

as non-opioid effects [10, 14, 19, 46, 47, 49]. Taken together, discrepancies between in vivo

and in vitro results suggest KOP signaling effects are cell and context specific, although the

sparse data on hand suggests that KOP signaling may protect OLs. Supporting our concept

that opioid status can affect myelination, the KOP antagonist and partial MOP agonist

buprenorphine was recently shown to have multiple and complex actions on myelin and OLs

during CNS development [39].

We previously showed increased baseline [Ca2+]i in jimpy OLs [26], and it is tempting to

speculate a role for KOP since KOP-mediated signaling is implicated in regulating [Ca2+]i.

Specific KOP agonists inhibit Ca2+ influx or increase extrusion in neurons [2, 7, 8, 33], and

this might play a role in CNS protection observed with KOP signaling. KOP loss on jimpy
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OLs might thus elevate [Ca2+]i. Astroglia, in contrast, respond to KOP activation with

increased [Ca2+]i, both through influx (L-type channels) and mobilization of intracellular

stores [9, 16]. Another intriguing possibility is that loss of KOP-mediated protection evokes

autocrine effects that elevate [Ca2+]i in jimpy OLs. OLs synthesize several opioids,

including the KOP agonist dynorphin, which is detected even in immature OLs [27]. Some

dynorphin peptides have excitotoxic, non-opioid activities via direct cell membrane effects

or through interaction with glutamate receptors (reviewed in [19]) [22, 46, 47], including N-

methyl-D-aspartate receptors, which are expressed by OLs [45]. If KOPs were reduced, the

predominant dynorphin effects on OLs might be excitotoxicity and calcium influx, perhaps

contributing to elevated [Ca2+]i and premature death. Alternatively, KOP can activate ERK

in neural precursors, including those giving rise to OLs [24]. If KOP couples to protective

ERK pathways in OLs, diminished KOP signaling might contribute to excitotoxic injury

and/or a loss of ERK-mediated protection, promoting premature OL death.

In conclusion, jimpy mice exhibit a profound reduction in KOP expression in the CNS that

is specific for OLs. Numbers of OLs expressing KOP are dramatically reduced by 5 days,

and remain so throughout life. Jimpy OLs die prematurely, before forming myelin. Although

reduced KOP levels probably do not directly cause OL death, we speculate that loss of KOP

may increase vulnerability of jimpy OLs to other toxic events, perhaps by modulating

[Ca2+]i or through loss of protective KOP-mediated signaling effects.
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Figure 1.
Expression of KOP and MOP in normal and jimpy (Jp) OLs. A. Most normal, APC+ OLs at

5–8 and 16–18 days express KOP. In contrast, <10% of jimpy OLs immunostain for KOP at

either age (*p<0.0001 vs. normal, same age). KOP expression increases with age in normal

but not jimpy OLs (# p<0.01). B. Unlike the situation for KOP, MOP expression was

apparently not influenced by either genotype or age. Error bars represent S.E.M.
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Figure 2.
OLs from 16 day normal and jimpy (Jp) corpus callosum double-labeled for APC and either

KOP (A–F) or MOP (G–L) and counterstained with Hoechst 33342. Many normal, APC+

OLs express KOP robustly (arrows indicate double-labeled cells in panels A–C). There is

little KOP staining in jimpy corpus callosum (D–F). Although APC+ OLs are present

(arrows in D), most are not KOP+ (E). The inset in F shows an APC+, KOP+ jimpy OL to

illustrate morphology. In contrast, there is robust expression of MOP in APC+ OLs in both

normal (G–I) and Jp (J–L) corpus callosum. Arrows in G–I indicate double-labeled cells in

wild-type. Arrows in J–L indicate double-labeled cells in jimpy.
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Figure 3.
KOP expression in striatal neurons. KOP expression increases with age in both genotypes.

There is no difference in the percentage of KOP-immunoreactive striatal neurons in jimpy as

compared to wild-type mice at either 5–8 or 16–18 days. * p<0.005 vs. same genotype at 5–

8 days of age. Error bars represent S.E.M.
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Figure 4.
Immunoblot analysis of KOP in corpus callosum at 5–8 days. Panel A shows a

representative immunoblot with duplicates of 4 wild-type (wt) and jimpy (Jp) samples

stained for KOP and actin. KOP staining revealed a single band at 55 Kd. Panel B shows

results of 2 separate experiments using different mice. Although absolute values differ

between experiments, the jimpy KOR/actin ratio is significantly decreased from normal in
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both (* p<0.02 in experiment 1; * p<0.01 in experiment 2). Data in Experiment 1 are from

panel A immunoblot. Error bars represent S.E.M.
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