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Abstract

Objective—This article presents the rationale for applying different sequences of multivariate

analysis algorithms to determine if and where, in the large and high dimensional data space, events

have led to change in karyometric features. Such procedures have become known as knowledge

discovery processing, or data mining. The objective is to reveal the structure of the data under

analysis, and the algorithms are used as tools to this end. A statistical significance statement is

attained to secure the biologic interpretation.

Materials—Clinical materials and results from the analysis of four studies were used: the

demonstration of chemopreventive efficacy of letrozole in a situation where only a small subset of

cells is affected; the detection of a pre-neoplastic lesion in colorectal tissue; data processing to

document clues that predict risk of recurrence of a bladder lesion; and the use of metafeatures and

second order discriminant analysis in a study of efficacy of Vitamin A in the chemoprevention of

skin lesions.

Results—Evidence for chemopreventive efficacy was demonstrated in the first example only

after processing identified the small subpopulation of affected nuclei in a study of breast epithelial

cells. Detection of a pre-neoplastic development is linked to a progression curve connecting nuclei

from normal tissue to nuclei from pre-malignant colorectal lesions. The prediction of risk of

recurrence of papillary bladder lesions is possible by detecting changes in nuclei of a certain

phenotype. Efficacy of Vitamin A as a chemopreventive agent for skin cancer could be

demonstrated with a dose response curve after a second order discriminant analysis was employed.

Conclusions—The information of biologic interest would, in none of these instances, have been

revealed by a straightforward single algorithmic analysis.
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Introduction

Karyometry has brought objective measurement to the assessment of histopathologic

samples. It has also resulted in the ability to detect, and statistically secure, very small

differences in the spatial and statistical distribution of nuclear chromatin, differences too
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subtle to be detected by visual observation [1, 2]. A number of applications take advantage

of the increased sensitivity of detection. There has been the discovery of pre-neoplastic

lesions in histologically “normal-appearing” tissue [3, 4]. There has been the detection of

multiple, statistically distinguishable phenotypes of nuclei in premalignant and malignant

lesions [2, 5, 6]. The enhanced sensitivity has allowed measurement of efficacy of

chemopreventive intervention. This may have found expression as a small change in the

majority of nuclei of the target tissue [7], or in only a minor subset, which after intervention

show a reduction in their deviation from normal [8]. There has been the detection of clues to

the risk of lesion development, progression or recurrence [9].

The nuclear chromatin pattern reflects the differentiation and functional state of a cell. It

may serve as an integrating biomarker that is not limited in its ability to indicate change by

particular pathways [10]. The nuclear chromatin offers a rich assortment of diagnostic clues

expressed by variables characterizing its spatial and statistical distribution. Most computer

packages developed for karyometry [11] offer a rather large number of variables (from 30 to

400), or features, for a mensuration of the nuclear chromatin distribution [12-15].

The events that lead to a change in nuclear differentiation and of the nuclear chromatin

pattern find expression in a feature space of high dimensionality. One may see data analysis

in karyometry as a search in this high dimensional space for the location of change in

variable values, for the nature of such changes (i.e. for the features that are involved) of the

magnitude of change, of the trend, and for their statistical significance. In many instances, it

may not even be known a priori whether any change in the nuclear chromatin pattern has

occurred. This is a task closely related to problems where massive amounts of recorded data

have to be searched through for events of interest. Such problems are commonly addressed

by data mining [16], or knowledge discovery processing [17].

Many of the analytical procedures used in karyometry have their basis in multivariate

statistical algorithms. Here, these are not used primarily to establish some statistical

significance. Rather, they are applied as tools in data mining to reveal the structure of the

data. It is the structure of the data sets that allows an interpretation. Only then is an

evaluation of the statistical significance of interest.

One typically is dealing with the need to detect a potentially very small change in the

presence of often highly variable background information. The target population of nuclei is

frequently heterogeneous, and may consist of a number of phenotypes. It should be clear

that application of a single algorithm – such as only a straightforward discriminant analysis

or a neural net classifier – may not lead to the desired clarification and understanding of the

data structure.

It is the objective of this study to describe the sequence of procedures in which a number of

the above mentioned applications may reveal sufficient data structure to allow a biologic

interpretation.
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Materials and Methods

The data used in thus study have all been presented in earlier communications, proper

citations of which are provided.

The overall objective of this study is to describe the rationale of applying certain procedures

in a particular sequence, the clues that intermediate results provide for the selection of the

next procedural step, and which particular information is sought and obtained from each

procedure.

Key to the ability to home in on the location in feature space where relevant change occurs,

and to sort out which subset of nuclei, if any, are affected, and to following through certain

trends of change, is software with specific capabilities for forming and manipulating subsets

of data. This very extensive software collection has been developed over the past 30 years at

the University of Arizona Optical Science Center in Tucson, originally for the TICAS

software used first in research efforts at the University of Chicago [11, 12, 18].

Results

Case study 1: Efficacy of chemopreventive intervention

Chemopreventive intervention can be expected to be most effective in situations where there

is a high risk for development of progressive disease, such as in pre-neoplastic or pre-

malignant lesions. In either case, changes due to intervention must be expected to be subtle.

The material for this exploratory study involved women at high risk for the development of

breast cancer [8]. Participants received the aromatase inhibitor, letrozole, for a period of six

months. Fine needle aspirate cytologic preparations were collected at baseline and at the end

of study.

The processing sequence started with a search for features that had changed from the

baseline samples to the end of study samples. The second processing step was a search for

features with significant differences between the baseline and end-of-study data sets. The

rationale was that nuclei with extreme values for those features were likely to represent the

subpopulation with deviations from normal. This search was done by running a Kruskal

Wallis test [19]. This test is non-parametric; therefore, it makes no assumptions concerning

distribution characteristics of the features. The test is liberal and is able to identify a number

of features with significant differences, but this does not necessarily predict high

discrimination potential. The test is instead used as a pre-selection tool. The Kruskal Wallis

test results, for every feature, in the value of a test statistic and in a p-value for the

significance of the value difference found between baseline and end-of-study nuclei. Since

about 100 features were tested, a p-level of p < 0.05 implies that there is a one in 20 chance

for a spuriously discriminating feature to be declared as significant. In this study, a p-value

of p < 0.005 was used to reduce the chance for inclusion of a spuriously significant feature

to below one in two hundred.

To enrich those nuclei in the set to be analyzed for an intervention effect, two

subpopulations were formed of the 10% nuclei most deviating from normal in the baseline
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and end-of-study data sets. The 10% figure is arbitrary. It was chosen to retain enough

nuclei, without including too many nuclei which are still quite normal. This should result in

a more specific feature selection to discriminate between nuclei deviant from normal at

baseline, and nuclei after the intervention at end of study.

The processing sequence started with a search for features that had changed from the

baseline samples to the end of study samples. It resulted in a list of mean values for features

for the baseline and end-of-study samples. The results were not encouraging--the differences

were on the order of only a few percent, and expressed in only a modest number of features.

The conclusion was that there was either no effect of the agent measurable by karyometry,

or, that in these participants, who after all merely were at high risk, only a small proportion

of cells showed deviations from normal. Only those few cells could possibly show a

response. However, the deviation of feature values was almost completely averaged out by

the presence of a great majority of still normal cells.

The second processing step was a search for features with significant differences between

the baseline and end-of-study data sets. Six of these features were submitted to a stepwise

linear discriminant algorithm. The discriminant function DF I,1 resulted in a poor

classification success; a correct identification of nuclei as baseline or end-of-study of less

than 60% may, in fact, occur by chance. Fig. 1 shows the distributions and the overlap. The

discriminant function score distributions show a shift. Two conclusions are drawn. The most

prominent features in the discriminant function were those that usually increase in value

with increasing deviation from normal. Here, these features undergo a decrease in value; the

end-of-study distribution of discriminant function scores is shifted towards lower values, to

the left in the plot.

One may assume that nuclei at the higher score value side of the distribution are most

deviant from normal. Fig. 1 suggests that there are more such nuclei in the baseline sample

than in the end-of-study sample. For the new two subpopulations in the enriched set (10%

most deviating from normal), a search for discriminating features was made.

The selected features were submitted to a stepwise linear discriminant algorithm, and a

function DF I,2 was derived. The expectation was that for both, the 10% subpopulations of

the baseline and the end-of-study samples, the score distributions would be bimodal, but that

the mode of nuclei with higher deviations from normal would be diminished in the ES

sample. Nuclei with higher deviation from normal have scores in the positive range, to the

right in the plot. The score distributions are shown in Fig. 2.

The distribution of scores at baseline shows a broad spread. At the end of study, a distinct

shift to less deviation from normal, to the left in the plot, and to negative score values, is

observed. The number of nuclei classified as baseline (i.e., expressing deviation from

normal) is reduced by a factor of almost four. Estimates are prepared of the number of nuclei

deviating from normal at baseline and end of study, and then related to the total number of

nuclei recorded. The result is that only about 10% of all nuclei showed deviations from

normal in the study participants, and that this percentage was reduced at end of study to
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about 4%. This reduction, attributed to the intervention, is statistically significant according

to the Fleiss Tables.[20] The conclusion is that the agent shows efficacy.

Case study 2: Documenting a pre-neoplastic lesion

The material used in case study 2 were part of a karyometric study of colorectal tissue [21].

The first step in the processing sequence was to establish end points, based on nuclei from

normal cases at one extreme, and nuclei from a progressed lesion (e.g. high grade

intraepithelial neoplasia) at the other. It is important that the “normal” control nuclei come

from patients free of any premalignant or malignant lesion. The end points serve to establish

a location and a direction in feature space where the earliest stage of progression, from

normal to a pre-neoplastic lesion might be expected. It also provides a first stab at a choice

of features.

A feature selection procedure was applied, and a discriminant function derived. This

function was next applied to every premalignant and early malignant diagnostic category for

the organ site (e.g. low grade intraepithelial neoplasia, high grade neoplasia and carcinoma

in situ). This allows plotting a progression curve [22] using the discriminant function scores

as one variable in a two-dimensional plot, and a suitable other variable, such as total optical

density, nuclear area, or average nuclear abnormality, as the second variable. The

progression curve is drawn connecting the mean scores for the diagnostic categories. It is

instructive to plot the 95% confidence ellipses for nuclei in each of the diagnostic categories

to convey an idea of the separation of these diagnostic categories in feature space. The mean

discriminant function score, and the confidence ellipse for the nuclei recorded in the

histologically normal appearing tissue of the organ harboring a malignant or premalignant

lesion are expected to appear along the progression curve between the normal reference

nuclei and the lowest grade premalignant lesion.

The progression curve, shown in Fig 3., extends from normal rectal mucosa (norm/norm) to

adenoma and to adenocarcinoma. The nuclei recorded in histologically normal-appearing

tissue from subjects with colonic lesions (norm/lesion) appear on the progression curve

between normal mucosa and adenoma. There appeared to be no difference between nuclei

from a pre-neoplastic lesion in case of adenoma, or of adenocarcinoma. The confidence

ellipse for the tentative pre-neoplastic lesion is displaced in the expected direction from the

normal reference, but it also overlaps the norm/norm data set. Nuclei sampled in such

histologically normal-appearing tissue may comprize a substantial number of normal

appearing and normal nuclei. This diminishes the separation of the nuclei characterizing the

pre-neoplastic development from normal.

As a next step therefore the norm/lesion data set is submitted to a non-supervised learning

algorithm. This will establish whether two statistically different groups of nuclei exist--one

matching the norm/norm nuclei, the other more displaced in direction of the lowest pre-

malignant lesion, representing a purified set of the pre-neoplastic lesion nuclei. As a feature

set for the non-supervised learning procedure one may use the same features as in the

initially derived discriminant function. However, a more specific selection might be

obtained from a feature selection based on the norm/norm versus the low grade pre-

malignant data set.
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Fig. 4 shows an example for the processing step and the result. The norm/lesion group of

nuclei divides into two subgroups. One merges with the norm/norm data set, the other is

displaced in direction of the premalignant lesion, and constitutes the purified set of nuclei

from the pre-neoplastic lesion.

A non-supervised learning algorithm [23] will always form the number of subgroups – often

referred to as “clusters” – that the user specifies. Whether these are to be accepted as

statistically significant, different, and valid is decided by a test statistic. Test statistics used

in cluster analysis are sometimes based on a reduction of a sum of squares of a distance

metric, as it is done in the Beale statistic [24]. That is a very conservative measure. One may

find that two clusters, declared not significantly different on the basis of the p-value due to

such a test statistic, have widely separated confidence ellipses when a test based on

multivariate Gaussian assumptions is applied.

The separation of norm/norm nuclei from norm/lesion nuclei, which establishes the

existence of a pre-neoplastic lesion, based on the 95% confidence ellipses for the nuclei, is

scientifically interesting, but clinically of little diagnostic value. Clinically, the tolerance

ellipses for the case mean values are of interest (e.g. the regions into which a certain

percentage of cases, say 90%, are expected to fall with the mean values of their nuclei).

Finally, once the separateness of nuclei from the pre-neoplastic lesion is established, a better

distinction from normal may be attained by an additional processing step. Feature selection

for non-supervised learning is always an educated guess. But as a result, one has two data

sets: norm/norm and norm/lesion. They could be submitted for feature selection and a repeat

of the non-supervised learning based on a well-targeted feature set for optimum distinction.

The scheme is shown in Table I.

Case study 3: Risk of lesion recurrence

The identification of cases which pose a high risk for lesion recurrence may involve a

lengthy processing sequence. As an example, the processing sequence followed in a study of

cases of papillary bladder cancer is presented. The clinical materials in this study consisted

of 40 cases who had no recurrence for at least 8 years (NR data set), and 40 cases which had

a recurrence (R data set) [9]. The goal of this study was the identification of diagnostic clues

that would allow an assessment of risk for recurrence from tissue taken at the time of initial

diagnosis. The expectation was that differences in karyometric characteristics, if any, would

be small.

As a first exploratory step in the processing sequence, a Kruskal Wallis test was conducted

to identify features with statistically significant differences between the R and NR data sets.

An adequate number of such features with p-values < 0.005 was found. A stepwise

discriminant analysis (DF I,1) resulted in a score distribution for the R data set with a

modest shift towards greater deviation from normal, as seen in Fig. 5. The discriminant

algorithm here had assigned the scores with greater deviation from normal to the negative

score scale. The relative frequencies of scores in the score range from −1 to – 3 are

increased for the cases with recurrence, and the frequencies of scores in the score range +0.4
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to +2.0 is decreased in the R data set. The score distributions for both data sets indicated a

notable heterogeneity of the nuclear populations.

In situations where the distributions of nuclear values for the entire data sets show severe

overlap and there is poor prospect for adequate discrimination on that basis, it is sometimes

helpful to inspect the score distributions for each case. In this instance, inspection revealed

that about one third of the NR cases had a high percentage of nuclei in the high positive

score range. In fact, setting a threshold on the DF I,1 axis and using the percent nuclei in

each case above that threshold as a “metafeature” allowed a substantial portion of the NR

cases to be classified as such without error. This criterion--more than 50% of nuclei above

the threshold--was used as a first stage in a hierarchic decision sequence. The cases with that

percentage of nuclei above threshold were declared identified as NR and removed from

further consideration. A plot was prepared, shown in Fig. 6, with the proportion of nuclei

with a discriminant function score less than – 0.8 plotted as ordinate. This did not, however,

result in useful information.

For all of the remaining cases, a new feature selection was done and a discriminant function

DF I,2 was derived. The scores for the DF I,2 function were saved. The primary objective

for this was a targeted, more specific feature selection for non-supervised learning

processing. The features given the highest weight by the discriminant algorithm were

submitted to the non-supervised learning procedure P-index [18, 25].

The rationale for this approach was that the score distribution of the DF I,1 function

suggested phenotypical heterogeneity, and that the discriminant function DF I,2 did not

result in a useful distinction of R and NR cases. It was hoped that a difference in the

composition of subpopulations of different phenotype might allow such a distinction.

Two runs of that algorithm were set up separately for the NR and the R data sets, based on

five features. The P-index algorithm formed four clusters, for each data set (NR and R data

sets). The clusters corresponded between the NR and the R data sets in pairs, with a

moderate shift of the R clusters away from the corresponding NR clusters. Of the four

cluster pairs, one pair at the high end of the feature value range showed non-overlapping

confidence ellipses for the nuclei from R and from NR cases. These nuclei were denoted as

R1 and NR1. The next cluster pair, NR2 and R2 has overlapping confidence ellipses, but

still shows some separation. This offered potential for a diagnostic differentiation. A

bivariate plot, based on the DF I,2 score and one of the features used in the non-supervised

learning algorithm (a chromatin texture feature) is shown in Fig. 7.

The P-index algorithm computes the mean vector of the employed features and the variance-

covariance matrix for each cluster. These data are saved for later use in setting up a

classification sequence for an unknown case, as described below.

Nuclei from each case of the NR data set, and of the R data set were assigned if not to all

four, at least to one of the clusters. For each cluster, the mean value of the nuclei from each

case was computed, since a diagnostic distinction had to result in a case assignment. Four

NR and R pairs resulted. First, cases were classified based on the assignment of their nuclei

to NR1 or R1 cluster. A record was kept of the cases correctly assigned NR or R categories

Bartels et al. Page 7

Anal Quant Cytol Histol. Author manuscript; available in PMC 2014 May 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and of the erroneously assigned cases. The cases thus identified were removed from further

consideration (i.e. the mean values of their nuclei were removed from the second cluster

pairs NR2 and R2). Then, the process was repeated for the second cluster pair. In this study,

no further classification of nuclei assigned to the third and fourth cluster pairs was needed.

The hierarchic classification procedure resulted in the correct identification of 37 of the 40

patients experiencing recurrence, and of 41 of the 45 patients free from recurrence. Thus, for

the total of 85 cases there were 92% correct assignments. The discriminating information

predicting risk for recurrence was found in the subset of nuclei assigned to the first or

second clusters.

Classification procedure for an unknown case

The above sequence is not useful for the processing of a single, unknown new case. To

derive a classification procedure for unknown cases, the following procedure sequence was

developed. The discriminant function score for DF I,1 is computed, and the percentage of

nuclei above the threshold on the score axis is determined. If the percentage is above 50%,

the case is classified as non-recurrent. If below 50%, the five features used in the P-index

run are computed.

A run of the Cooley-Lohnes maximum likelihood classifier [26] is set up for the features

used in the original P-index algorithm for eight classes: four clusters of the R data set and

four clusters of the NR data set. For these, the cluster mean vectors and variance-covariance

matrices computed by the P-index algorithm were used in the Cooley-Lohnes classification

algorithm. Nuclei of the unknown case were classified by the Cooley-Lohnes algorithm on

the basis of a maximum likelihood criterion. The mean value for the nuclei from the single,

unknown case, in each cluster is computed. The case was assigned based on the

classification of its nuclei.

To visualize the results, a bivariate plot was prepared. The P-index algorithm provides a

listing of the mean values of the features for each cluster. From this listing two features with

the greatest difference in value between clusters for the R and the NR data sets were selected

by inspection, to allow a bivariate plot. The mean values of those two features, for each case

assigned to either the NR1 or the R1 cluster were plotted, as seen in Fig. 8.

Case study 4: Second order discriminant analysis

In a clinical study of the efficacy of topically applied Vitamin A at various dose levels to

prevent actinic damage to the skin [27], biopsies were taken at baseline and at 12 months

(end of study). An exploratory discriminant analysis DF I,1 of nuclei from skin with no sun

exposure versus nuclei from the sun-exposed forearm revealed substantial differences. The

question arose whether the features distinguishing nuclei from those two sites were really

the best to detect the small changes expected in sun damaged skin due to the Vitamin A

intervention.

The processing sequence therefore began by using the score distribution of the DF I,1

function and setting a threshold. The nuclei with scores above the threshold were taken to

represent nuclei with greater sun damage, and those below threshold represented nuclei with
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less damage. Two data sets were formed of these nuclei. However, this was only done for

the purpose of feature selection. A Kruskal Wallis test identified a number of features with

statistically significant differences at a level of p < 0.005.

A second discriminant analysis (DF I,2) of the baseline versus the end-of-study data sets was

carried out using those features. The score distributions were practically identical, as seen in

Fig. 9. There was a very slight shift in the end-of-study distribution towards “less damage”.

A threshold was set by visual inspection such that about 15% of nuclei with the highest

scores were considered above threshold and excluded. These amounted to 353/2600 nuclei

at baseline, but only 258/2600 nuclei at end of study. This reduction in the number of nuclei

with higher deviation from normal was statistically significant and an indication that there

might be some efficacy of the agent.

The distributions for the DF I,2 scores of the baseline and end-of-study data were not

significantly different according to the Kolmogorov-Smirnoff test [28]. No adequate

classification could be obtained for the nuclei, nor did the case mean scores provide a useful

classification. The characteristics of the baseline and end-of-study data sets thus offered no

hope for proof of efficacy. However, not all of the information offered by the data had been

used. The case mean scores had not been sufficient, but they are just one statistic per case.

Yet, each case is also characterized by its own score distribution. The frequencies of

occurrence of scores offer as many “metafeatures” as there are intervals along the DF 1,2

axis. This is information that had not been considered.

To provide useful metafeatures, the distributions must have an adequate, large sample size.

This, fortunately, was the case in the Vitamin A study, with 100 nuclei per case, 26 cases for

the baseline data set and 26 cases for the end-of-study data set, for a total of 5,200 nuclei.

To elect to use metafeatures, one does something counterintuitive. One gives up the large

number of degrees of freedom provided by the large sample size of nuclei, and is restricted

to the much smaller number of degrees of freedom offered by the number of cases. The

range of DF I,2 scores was then divided into 20 intervals (thus, 20 potential metafeatures). A

Kruskal Wallis test revealed that 12 had statistical significance at p < 0.01.

Submitted to a second-order discriminant analysis (DF II,1), the algorithm selected three of

the metafeatures. Wilks’ Lambda was reduced to 0.68. The case score distributions for

baseline data were correctly identified for 18 of the 26 cases (69%). Twenty-two (22) of 26

(85%) end-of-study cases were correctly identified. The distributions of DF II,1 scores for

the 26 cases are shown in Fig. 10.

To secure chemopreventive efficacy by some statistical significance statement several

options exist. One may use the discriminant function DF II,1 scores for the 26 cases at

baseline and at end of study in an analysis of variance. A randomized block design with

pairwise comparison is an appropriate design [29]. This last step in the processing sequence

resulted in a significant effect of Vitamin A (p < 0.0001). Between subject variance was not

significant.
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The above reported results applied to the Vitamin A dose level of 50,000 units over a period

of 12 months. In the entire study, patients were randomized to one of four groups--placebo

group or one of three treatment groups: 25,000 units; 50,000 units, and 75,000 units of

Vitamin A, all of which were analyzed. A dose response curve was constructed using all

treatment groups.

Discussion

The rationale for much of the early work in quantitative cytopathology and histopathology

was diagnostic decision support [30]. Even then, the use of image information which is

either not, or only poorly, visibly appreciated made a valuable contribution. In the great

majority of studies, the objective could be accomplished by processing with a single

algorithm, such as a straightforward discriminant analysis or a maximum likelihood

classifier. This applies even to situations where multiple diagnostic categories had to be

considered, and the use of a hierarchic decision sequence was required [31].

In recent years, karyometry has increasingly been applied to problems where visual

inspection is entirely equivocal and, where it is not even known a priori, whether diagnostic

or prognostic information can be extracted and statistically secured. This is certainly true for

the detection of pre-neoplastic lesions, but even more so in efforts to detect very subtle

effects due to a chemopreventive intervention, or due to a different risk for lesion

recurrence.

The subtle differences that reflect these effects may find expression in value shifts in some

features. Although it is not known ahead of time which these might be, they may affect only

a small proportion of nuclei, or they may affect only nuclei from a certain phenotype. It may

not even be known ahead of time whether such karyometric phenotypes are present or not.

Even then, only a proportion of nuclei of a given phenotype may be found to have a nuclear

chromatin pattern with measurable differences.

The multivariate statistical analysis algorithms are invaluable in these efforts. However,

even advanced multivariate methodology does not offer procedures designed to cope with

such data set heterogeneities.

Given the diversity and the expected subtle nature of changes in the nuclear chromatin

pattern, it has become clear that a single processing step is unlikely to lead directly to their

identification. Instead, processing by a sequence of algorithms, revealing different aspects of

the multivariate data sets has been found effective. Some of the processing steps utilize

information already and routinely computed in a more exhaustive manner: so the second

order discriminant functions or metafeatures in general. Some applications require an

iterative approach to arrive at a definition of the most effective features, so e.g. the

alternative use of supervised and non-supervised learning algorithms.

Most algorithms are provided by multivariate statistics, but statistical significance is really

not the prime reason for their use. Rather, it is their ability to reveal the structure of data

sets. It is that structure which allows a biologic interpretation. The material encountered in

karyometry has properties which are not usually assumed to be valid in formal statistics.
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There, variability is attributed to randomness. However, in karyometric data variability may

be due not only to randomness, but to the effects of gradual, and different degrees of

progression of change within a set of nuclei and, variability is due also to inherent

qualitative differences, such as nuclei of different phenotype within the same population of

nuclei.
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Figure 1.
Distribution of discriminant function scores ( DF I,1 ) for nuclei aspirated at baseline and at

the end of study. The distribution undergoes a shift towards negative function values at the

end of study, indicating less deviation from normal.
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Figure 2.
Distribution of discriminant function scores (DF I,2) for nuclei representing 10% of the

nuclei deviating most from normal.
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Figure 3.
Progression in colonic lesions plotted on a relative scale from zero (mean of zero for nuclei

from normal tissue) to 100 (mean for nuclei from adenocarcinoma). Shown are the bivariate

mean vectors, and the 95% confidence ellipses for nuclei. The nuclei sampled in

histologically normal-appearing tissue from cases harboring an adenoma or an

adenocarcinoma lesion (norm/lesion) fall into the same region along the progression curve,

between the nuclei from normal tissue ( norm/norm) and from adenoma.
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Figure 4.
Example of heterogeneity in a population of nuclei from a pre-neoplastic lesion. The top

figure shows the nuclei from the pre-neoplastic lesion separated from the nuclei from normal

tissue. Processing by the non-supervised learning algorithm P-index separates out nuclei

truly representing the pre-neoplastic progression, and shows that the remainder nuclei

sampled at that location are undistinguishable from normal nuclei (norm/norm).
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Figure 5.
Distributions of discriminant function scores DF I,1 for nuclei from cases of papillary

bladder cancer of low malignant potential which had a recurrence, and those which had not.

The nuclei from recurrent cases show a slight shift in the score distribution. In this instance,

the algorithm assigned negative scores to greater deviation from normal. Shown is the

threshold set that allowed about 30% of the non-recurrent cases to be recognized in a first

stage of a hierarchic classification scheme.
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Figure 6.
First stage in a hierarchic classification scheme to identify cases with high likelihood for

recurrence of papillary bladder cancer. Cases that had more than 50% of their nuclei with a

discriminant function score of greater than +0.4 were declared “non-recurrent”.
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Figure 7.
Processing of the remaining data by the non-supervised learning algorithm P-index. The

algorithm formed four clusters each for the recurrent and the non-recurrent cases. The

clusters correspond to each other. For the clusters NR1 and R1 a diagnostically useful

separation is seen--the prognostically interesting information is expressed in only a subset of

the data.
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Figure 8.
Classification of individual cases by the Cooley-Lohnes algorithm into clusters NR1 and R1.

Shown are the bivariate mean vectors for each case, the 95% confidence ellipses for those

mean values, and the 90% tolerance ellipses.
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Figure 9.
Distribution of discriminant function scores for nuclei from sun-exposed, histologically

normal-appearing skin before and after chemopreventive intervention with topically applied

Vitamin A. The two distributions are statistically indistinguishable, although there is a very

slight shift towards less deviation from normal.
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Figure 10.
Distribution of case scores for the second order discriminant function DF II,1
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Table I

Processing scheme alternating supervised and non-supervised learning

1. Establish training sets

2. Feature selection

3. Supervised learning

4. Classification rule

     a. Plot of score distributions

5. Processing to check for heterogeneity

     a. choice of features for non-supervised learning (educated
     guess)

     b. non-supervised learning algorithm

     c. statistical significance test for subpopulations

6. Processing of subpopulations

     a. plot of confidence ellipses for nuclei

     b. plot of tolerance ellipses for case means

7. Alternative choice :

     a. submit subpopulations to formal feature selection e.g.
     Kruskal Wallis test or Genchi & Mori ambiguity measure
     [18, 32]

8. Non-supervised learning algorithm with targeted features

9. Statistical significance testing of subpopulations

     a. Plot of confidence ellipses for nuclei

     b. Plot of tolerance ellipses for case means

10. Supervised learning (e.g. discriminant analysis of subpopulations)

11. Classification rules

     a. Plot of score distributions
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