Skip to main content
. 2013 Dec 13;13:43. doi: 10.1186/1471-2342-13-43

Table 2.

Comparison of the performance of wavelet bases on the DDSM dataset

Wavelet basis § Best feature combination Sensitivity * (%) Specificity (%) Classification rate (%)
Haar
M-h1
M-d1
S-h3
99.2
36.6
60.3
Db 2
M-h3
M-d8
S-h5
97.4
42.7
63.4
Db 4
M-h8
M-d1
S-h5
95.2
20.8
49
Db 8
M-h6
S-v8
S-d3
97.5
40.4
62
Bior 1.5
M-d4
S-h6
---
96.9
38.8
60.8
Bior 2.2
M-h5
M-v2
S-d2
98.8
44.8
65.2
Bior 2.8
M-d4
S-d2
S-a5
92.9
46.9
64.4
Bior 3.7
M-d4
S-h4
S-d4
98.9
28.1
54.9
Bior 4.4
M-h1
M-d4
S-d2
96.1
43
63.1
Bior 5.5
M-h6
M-d5
S-d2
98.5
38.1
61
Bior 6.8 M-v3 M-d4 S-d2 98 39 61.3

§Wavelet basis notation: Dbn where n describes the number of coefficients used in the wavelet. Db2 encodes polynomials with two coefficients, i.e. constant and linear components. Biorm.n where n describes the order for decomposition and m is the order used for reconstruction.

*Sensitivity is defined as TP/(TP + FN).

†Specificity is defined as TN/(TN + FP).

‡Classification rate is defined as (TP + TN)/(TP + TN + FP + FN).

The best triplet feature was selected for each wavelet.