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Abstract

Diffusion tensor imaging cannot represent heterogeneous fascicle orientations in one voxel.

Various models propose to overcome this limitation. Among them, multi-fascicle models are of

great interest to characterize and compare white matter properties. However, existing methods fail

to estimate their parameters from conventional diffusion sequences with the desired accuracy. In

this paper, we provide a geometric explanation to this problem. We demonstrate that there is a

manifold of indistinguishable multi-fascicle models for single-shell data, and that the manifolds

for different b-values intersect tangentially at the true underlying model making the estimation

very sensitive to noise. To regularize it, we propose to learn a prior over the model parameters

from data acquired at several b-values in an external population of subjects. We show that this

population-informed prior enables for the first time accurate estimation of multi-fascicle models

from single-shell data as commonly acquired in clinical context. The approach is validated on

synthetic and in vivo data of healthy subjects and patients with autism. We apply it in population

studies of the white matter microstructure in autism spectrum disorder. This approach enables

novel investigations from large existing DWI datasets in normal development and in disease.
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1 Introduction

Diffusion tensor imaging is unable to represent the signal arising from crossing fascicles.

Various approaches have been proposed to overcome this limitation. Among them,

generative models such as multi-tensor models [2,3] seek to represent the signal contribution

from different populations of water molecules. Based on biological modelling, they are of

great interest to characterize and compare white-matter properties. However, estimating

their parameters from conventional diffusion data has proven inefficient.
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Recent works have suggested that part of this inaccuracy is explained by the ill-posedness of

the problem and not only by the imaging nuisance [3,4]. To regularize the estimation of

models with a single anisotropic tensor, elaborate spatial priors have been proposed [2], and

it was shown that acquiring additional b-values improves the analysis of isotropic fraction

[1]. For N-tensors, it was proposed to fix the tensor eigenvalues [4], solving the ill-

posedness problem but reducing the amount of microstructural information contained in the

model. No method has proposed to regularize the estimation of an N-fascicle model while

keeping all its degrees of freedom. Furthermore, there is a strong need for a strategy to

estimate multi-fascicle models from conventional single-shell data due to their wide

availability in clinical setting. Section 2 analyzes the estimation problem from a geometric

point of view. Section 3 develops an estimator based on a prior informed by an external

population of subjects. Section 4 presents results and Section 5 concludes. Conclusions

about estimating an N-tensor model can be applied to all generative models that include a

multi-tensor as part thereof.

2 Manifolds of Equivalent Models at a Given B-value

A multi-fascicle model is represented as a mixture of single fascicle models. In the multi-

tensor formalism, the generative model for the formation of the diffusion signal S for a b-

value b and a gradient direction g is:

(1)

where Di and fi are the tensor and the volumetric fraction of fascicle i. Since γie−log γi=1, all

multi-fascicle models with fractions γifi and tensors  produce the same signal:

(2)

The tensors remain positive definite as long as , where  is the lowest

eigenvalue of Di. Each of these models is uniquely identified by its vector ( ).

The set of all models respecting Equation (2) is a manifold of dimension (N − 1) defined by

the implicit equations (we let ):

(3)

where ( ) is the true unknown model (Fig. 1(a)). Since these equations depend

on b, so will the manifold. Acquiring diffusion images at different b-values amounts to

defining different such manifolds. Let us investigate how those manifolds intersect at the

point of interest . The explicit equation of the hypersurface λN (λ1, …, λN−1)

obtained by eliminating the γ’s between equations (3) is:
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(4)

The normal vector to the hypersurface is . Its k-th component

evaluated at the true model is:

(5)

Remarkably, this normal vector (and thereby the tangent hyperplane) does not depend on b

at the point of interest. In other words, at the first-order approximation, the manifolds at all

b-values coincide locally, explaining the high sensitivity to noise encountered when

optimizing the parameters of a multi-fascicle model (Fig. 1(b)).

At the second-order approximation, the manifold is characterized by the Hessian matrix of

λN (λ1, …, λN−1):

where f̃ = [f1, …, fN−1]T. The difference between the Hessian matrices at two different b-

values, b and b′ > b, is positive definite since, for all x ≠ 0, we have

(6)

Therefore, there exists no direction x along which the two manifolds have the same

curvature. Consequently, the true model is locally the only intersection of all manifolds.

Given the difference (6), it appears that a wider range of b-values leads to a larger difference

between their manifolds, which should in turn improve the accuracy of the estimation

(ignoring the potential impact of b on noise).

When an isotropic compartment fisoe−bDiso is added to the model, one can show that the

above development remains valid with an unchanged N if Diso is known and considering an

(N + 1)-fascicle model if Diso needs also be optimized.

3 Posterior Predictive Distribution of the Parameters

While all models of (3) are equally compatible with the observed DWI at a given b-value,

they are not all as likely from a biological point of view. This knowledge can be learnt from

available observations at several b-values of a fascicle i in mi subjects

, and incorporated in the estimation as a prior over

the parameters (fi, Di) (Fig. 1(c)). If the effect of the fascicle properties on partial voluming
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is negligible, and if the properties of one fascicle are independent of those of another, then

the prior can be expressed as:

(7)

The fractions are not independent since they sum to 1. However, we assume that any

fraction fi is independent of the relative proportions of others fj/(1 − fi). This neutral vector

assumption naturally leads to the Dirichlet distribution:

(8)

To prevent negative eigenvalues of the tensors, the prior knowledge about Di can be

described as a multivariate Gaussian distribution over their logarithm [5]:

(9)

In general, Σi has 21 free parameters, which may overfit the usually small training dataset.

For DTI, it is suggested in [5] to constrain Σi to be orthogonally invariant, imposing the

following structure that depends only on σi and ιi:

This structure yields a closed-form solution for the maximum likelihood [5]:

(10)

(11)

where  is defined by 〈A, B〉t=Tr(AB)−t Tr(A)Tr(B). The ML estimator may be unreliable

for compartments with only a few observations. This uncertainty is accounted for by

replacing point estimates of θ by posterior distributions and integrating over all possible θ.

This yields the posterior predictive distribution (PPD) which contains all the knowledge

about new observations that we learn from previous observations. Its derivation requires the

definition of hyperpriors over θ and is closed-form if we select conjugate hyperpriors. Mi ~

 (M0, Λ0) is a conjugate hyperprior for the tensor part of (7) assuming a deterministic Σi =

Σ̂ i. We set Λ0=B(1, 0) and M0=log Diso to keep it weakly informative (this hyperprior
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merely encodes the order of magnitude of diffusivity at 37°C). The PPD over the tensors is

 with

(12)

(13)

For the parameters αi, a conjugate hyperprior is the Dirichlet distribution. We set all its

parameters to 1, making it uniform over the simplex . The resulting PPD is a Dirichlet with

parameters . In this expression, we consider  as frequency counts since they

are samples of fi rather than samples from a multinomial parameterized by fi. The complete

PPD is (with  constant):

(14)

We incorporate this PPD as a prior in the estimation. We assume Gaussian noise on the DWI

measurements yk since they are acquired on a single shell typically at b=1000 for which

noise is approximately Gaussian. The maximum a posteriori estimator at each voxel

amounts to maximizing the following for f and D:

(15)

The influence of the noise  is analyzed in the next section. In practice, the prior is built

from data acquired in completely different subjects at several b-values. All these subjects are

registered to a multi-fascicle atlas as in [7]. Following alignment, tensors from all subjects at

each voxel are clustered in N compartments as in [6]. Each cluster represents the sets  and

 of available observations. The prior is then aligned with an initial estimate (without prior)

of the multi-fascicle model. To evaluate (14), all assignments of compartments to tensors are

considered and the highest prior value is recorded. BOBYQA algorithm is used to maximize

(15) and the number of fascicles is estimated by an F-test as in [3].

4 Results

We compare the models estimated by our method to a ground truth {gi, Gi} with five root

mean square metrics, ΔFA, ΔMD, Fro, ΔF and Δiso defined by:
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Synthetic Phantom Experiment

DWI were simulated under Rician noise from a phantom containing an isotropic

compartment and 0 to 3 tensors of various properties with S0=400. The prior was built from

20 datasets of 90 DWI at b=1000, 2000 and 3000. The accuracy was evaluated with 20

datasets of 30 DWI at b=1000 in three scenarios. First, the noise variance increased from 40

to 120. Second, the FA of the phantom was offset by −10% to +10% without changing the

prior to simulate patient’s data with a prior built from healthy subjects. Third, random

deformations of 0 to 2 voxels were applied to the prior to simulate registration errors. In the

last two scenarios, the noise variance was 80. In all scenarios and for all metrics,

incorporating the prior significantly improved the accuracy of the estimation (one-tail paired

t-test: p < 10−6) (Fig. 2)

In Vivo Data Experiment

Eighteen healthy subjects and 10 subjects with autism were imaged to test the method and

an extra 13 healthy subjects were imaged to build the prior. For all subjects, DWI at

resolution 1.7 × 1.7 × 2mm3 were acquired with a Siemens 3T Trio with a 32 channel head

coil using the CUSP-45 sequence [3]. This includes 30 gradients on a single-shell at b =

1000 and 15 gradients with b-values up to 3000. For each test subject, all 45 DWI were first

used to estimate a multi-fascicle model considered as a ground truth. Estimations using the

single-shell subset only were then compared to it. Four strategies were compared: estimation

without prior, estimation by fixing all tensors to a globally optimized value, and estimation

with the prior assuming a noise level  of 20 and 500. Results in Fig. 3 show that

estimations which incorporate a prior outperform other strategies. Estimations with 

are significantly better than estimations without prior for all metrics and, remarkably, for

both healthy controls and ASD patients (one-tail paired t-test: p < 10−6). The true noise level

of DWI is arguably closer to 500 than 20. However, estimations with  remain more

accurate than estimations without prior, indicating that the population-informed prior

improves the model accuracy even for crude estimates of the noise level. Empirical

estimates of this noise level is kept for future work. Finally, fixing the fascicle response

results in accuracies that strongly vary among quality metrics and, furthermore, only

provides average information about the brain microstructure, which is not suitable in most

studies.

Application to Population Studies

One could be concerned that the improved accuracy brought by the prior would come with a

severe shrinkage of the estimated parameters towards the mean of the population. This

would prevent its use in population studies. To address this concern, we conducted two

population studies of autism spectrum disorder (ASD) using the proposed estimator. The
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first one focused on fascicle properties in the left arcuate fasciculus by analyzing the FA

along the median tract. The second study investigated whether an increased extracellular

volume fraction fiso is observed in ASD. Less restricted diffusion may be related to the

presence of edema, thinner axons, and neuroinflammation [1]. The latter has been proposed

as a possible cause of autism. Corrections for multiple comparisons were based on cluster-

size statistics in 1000 permutations with a threshold on t-scores of 3. As presented in Fig. 4,

the first study revealed decreased FA integrity in the arcuate fasciculus of patients with

ASD, in line with most recent studies of autism. The second study revealed one clusters of

significantly increased unrestricted diffusion (permutation test: p < 0.003). Without the

prior, none of these findings were observed (p > 0.1). These studies show that the use of a

prior in the estimation preserves contrasts of diffusion properties between groups, so that

single-shell HARDI data can be used in large population studies based on multi-fascicle

models.

5 Conclusion

Multi-fascicle models cannot be estimated from conventional single-shell HARDI data

because a manifold of models produce the same diffusion signals. However, we showed that

a posterior predictive distribution over the model parameters can be learnt from data

acquired at several b-values in an external population. By incorporating this population-

informed prior in the maximum a posteriori estimator of the parameters, we are able to

estimate accurate multi-fascicle models from data at a single b-value. This method thus

opens new opportunities for population studies with the large number of available clinical

diffusion images.
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Fig. 1.
(a) Infinitely many models produce the same diffusion signal at a given b-value and form a

manifold. The manifolds for different b-values intersect at the true underlying model. (b) For

N-fascicle models (here N =3), manifolds are (N−1)-dimensional hypersurfaces that intersect

tangentially, making the estimation sensitive to noise. (c) The population-informed prior

assigns different probabilities to models on the manifold.

Taquet et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 May 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
(Left) Incorporating the prior in the estimation significantly improves the accuracy of the

estimated model under the three simulated scenarios and for all five comparison metrics

(distributions are shown for 20 datasets simulated for each set of parameters).(Right) The

better accuracy mostly affects the diffusion properties of tensors (other than their directions),

as predicted by Equation (3).
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Fig. 3.
(a) Incorporating prior knowledge significantly improves the quality of the model estimation

for all five metrics and for both healthy controls and ASD patients. This improvement

implies that (b) the extracellular water fraction can be visualized with more contrast and less

noise in smaller details of the white matter up to its boundary with the grey matter, and (c)

properties of the fascicles in crossing areas (shown is the corona radiata) are better

represented and do not suffer the arbitrary choice of a model from Equation (3).
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Fig. 4.
The population-informed prior enables population studies of multi-fascicle models from

single-shell HARDI data. (a–b) The first study reveals significantly decreased FA related to

autism in the left arcuate fasciculus (*p<.05,**p<.01). (c–d) The second study reveals a

cluster of significantly higher fiso. (d) Average fiso in the cluster.
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