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Abstract

In the human brain, functional activity occurs at multiple spatial scales. Current studies on

functional brain networks and their alterations in brain diseases via resting-state functional

magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined

analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic

analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not

been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-

granularity subnetwork scale can provide new insight into the neural mechanisms of neurological
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and psychological conditions, thus offering complementary information for healthy and diseased

population classification. In this paper, we derived fine-granularity functional interaction (FGFI)

signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion

tensor imaging (DTI) and rsfMRI, and used patient-control classification experiments to evaluate

the distinctiveness of the derived FGFI features. Our experimental results have shown that the

FGFI features alone can achieve comparable classification performance compared with the

commonly used inter-regional connectivity features. However, the classification performance can

be substantially improved when FGFI features and inter-regional connectivity features are

integrated, suggesting the complementary information achieved from the FGFI signatures.
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Introduction

Resting-state functional magnetic resonance imaging (rsfMRI) measures spontaneous low-

frequency fluctuations in the blood oxygen level-dependent (BOLD) signal that is correlated

with intrinsic neuronal signaling (Biswal et al. 1995; Raichle and Mintun 2006).

Considering the intrinsic neuronal signaling accounts for a large proportion of brain activity,

the study of these spontaneous fluctuations has enabled systematical delineation of the

functional brain architecture (e.g., Smith et al. 2009; Biswal et al. 2010; Sporns 2011;

Behrens and Sporns 2011) and the examination of whether the functional architecture of

intrinsic activity is altered in neurological and psychiatric conditions (e.g., Alzheimer's

diseases (AD) and mild cognitive impairment (MCI) (Reiman and Jagust 2011), and

Schizophrenia (SZ) (Fornito et al. 2012)). Several review articles (Barabasi et al. 2011;

Bassett and Bullmore 2009; Zhang and Raichle 2010) have provided extensive surveys of

relevant studies. In rsfMRI based disease pathophysiology studies, functional activity and/or

functional architecture related measurements are typically derived from rs-fMRI for both

patients and matched controls, followed by discriminative studies that usually involve

feature selection, classifier training and evaluation through pattern analysis algorithms. The

most discriminative features, often referred to as neuroimaging biomarkers, are then

interpreted to elucidate the functional alterations in the brain conditions under study.

Recently, it has been realized that spatial scale is a critical issue when using intrinsic

functional activity measured by rs-fMRI as a biomarker for brain diseases (Zhang and

Raichle 2010). The reason is that functional activity occurs at multiple spatial scales, and

various diseases at different stages might be sensitive to activity changes at different scales.

For example, Autism is hypothesized to involve relative alterations in global connectivity

(Courchesne and Pierce 2005; Li et al. 2012a). In this case, increased sensitivity might be

accomplished by detecting global changes such as those constructed with graph theory,

rather than by detecting localized connectivity deficits. In other diseases, the deficit might be

highly localized (Seeley et al. 2009), thus the detection of functional activity alterations may

be confined to the relevant locations. In our understanding, the spatial scales in previous

studies can be briefly categorized into three groups: 1) Regionally-confined analysis; 2)
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Inter-regional connectivity analysis; and 3) Global network-level analysis based on graph

theory, which will be discussed as follows.

Regionally-Confined Analysis

Regionally-confined analysis usually depends on the properties of the regional rs-fMRI time

series. For example, the amplitude of low-frequency fluctuation (ALFF) measures the total

power of the time course for a given voxel within a specific frequency range (e.g.,0.01–0.10

Hz) (Zang et al. 2007), and fractional ALFF (fALFF) measures the power within a specific

frequency range divided by the total power in the entire detectable frequency range (Zou et

al. 2008). In comparison, the regional homogeneity (ReHo) focuses on the functional

coherence of a given voxel with its nearest neighbors (Zang et al. 2004). Both ALFF/fALFF

and ReHo alterations have been widely reported in a variety of brain conditions (Liu et al.

2008). For example, Hoptman et al. showed that patients with SZ had reduced fALFF in the

lingual gyrus, left cuneus, left insula/superior temporal gyrus and right caudate, and

increased fALFF in the medial prefrontal cortex and the right parahippocampal gyrus. Also,

the ALFF was reduced in SZ patients in the lingual gyrus, cuneus, and precuneus and

increased in the left parahippocampal gyrus (Hoptman et al. 2010). Dai et al. reported that

AD patients had significantly decreased ReHo in the posterior cingulate cortex/precuneus

and increased ReHo in the bilateral cuneus, left lingual gyrus and right fusiform gyrus

compared with healthy subjects (Dai et al. 2011).

Inter-Regional Connectivity Analysis

Inter-regional connectivity analysis usually involves the identification of correlations

between distinct brain regions, commonly referred to as functional connectivity. Roughly,

inter-regional functional connectivity analysis methods can be classified into two categories:

model-dependent and model-free methods (van den Heuvel and Hulshoff Pol 2010).

One of the most popular model-dependent techniques for performing rs-fMRI analysis is

seed-based correlation (Andrews-Hanna et al. 2007; Biswal et al. 1995; Cordes et al. 2000;

Fransson 2005; Larson-Prior et al. 2009; Song et al. 2008). In seed-based correlation, the rs-

fMRI time course is first extracted from a ‘seed’ region of interest (ROI). Correlations are

then computed between the seed's fMRI time course and each voxel's fMRI signals in the

brain, generating a functional connectivity map (fcMap). In general, fcMaps provide a clear

view of with which regions the seed region is functionally connected, making it an elegant

way of examining functional connectivity in normal and diseased human brains. For

example, in one of the early studies that used rs-fMRI to examine disease pathophysiology

in patients with either AD or MCI (Li et al. 2002), the authors used seed-based analysis and

demonstrated that patients with AD showed decreased bilateral hippocampal connectivity

compared with the control group.

However, the information of an fcMap is limited to the functional connections of the

selected seed region, making it difficult to examine functional connectivity patterns on a

whole-brain scale (van den Heuvel and Hulshoff Pol 2010). The first step towards mapping

large-scale functional brain network is to define the network nodes (or ROIs) that cover the

entire brain (Bressler and Menon 2010). To address this challenge, a popular model-
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dependent method is to use image/surface registration algorithms to warp the candidate

brain to a predefined volume/cortical surface template, and parcellate the candidate brain

into a set of anatomical ROIs (e.g., (Tzourio-Mazoyer et al. 2002)). Functional connectivity

is then measured for each pair of regions, resulting in a large-scale functional brain

networks. A rich set of studies have used this method to systematically investigate

functional alterations in brain diseases. For example, a variety of increases and decreases in

functional connectivity were detected in patients with AD/MCI versus controls in (Supekar

et al. 2008; Wang et al. 2007), and relatively high sensitivity and specificity have been

reported in differentiation diseased population from normal controls using those functional

connectivity patterns (Fox and Greicius 2010). The limitations of registration based image/

surface parcellation for brain ROIs identification have been discussed in (Liu 2011). As an

alternative approach, we have developed and validated a cortical ROIs localization system

named Dense Individualize Common Connectivity-based Cortical Landmark (DICCCOL)

(Zhu et al. 2012b), in which 358 brain ROIs that provide intrinsically-established structural

correspondences across different subjects can be accurately localized and each identified

ROI was optimized to possess maximal group-wise consistency of DTI-derived fiber shape

patterns (Zhu et al. 2012a, b). By using the DICCCOL system, our recent study investigated

the discrepant brain regions of prenatal cocaine exposure (PCE) affected adolescents on the

whole cortex, and identified 10 DICCCOLPCE ROIs that exhibit significant differences of

functional connectivity between PCE brains and normal controls (Li et al. 2012a, b). It is

notable that rather than the inter-regional functional connectivity patterns, statistical

measures such as global/local connectivity strength and diversity of connectivity (e.g.,

(Lynall et al. 2010)) derived from the large-scale connectivity matrix have also been used as

potential bio-markers for clinical studies.

Beside model-dependent methods, several model-free methods have also been proposed for

rs-fMRI analysis including principal component analysis (PCA) (Friston 1998), independent

component analysis (ICA) (Beckmann et al. 2005; Calhoun et al. 2001; De Luca et al. 2005;

van de Ven et al. 2004) and hierarchical (Cordes et al. 2002; Salvador et al. 2005), Laplacian

(Thirion et al. 2006) and normalized cut clustering (van den Heuvel et al. 2008). With those

model-free methods, a set of resting-state functional brain networks such as visual network,

motor network and default mode network (DMN) have been successfully identified

(Beckmann et al. 2005; Damoiseaux et al. 2006; De Luca et al. 2005; van de Ven et al.

2004; van den Heuvel et al. 2008). Similarly, statistical measures including global/-local

connectivity strength and diversity of connectivity derived from the identified functional

networks have been used to investigate functional alterations in brain conditions, and

promising results have been reported (Bassett and Bullmore 2009; Zhang and Raichle 2010).

Global Network Level Analysis Based on Graph Theory

The ascendancy of graph theoretical analysis of brain networks has been driven by the

growing realization that the behavior of complex systems of the human brain is shaped by

interactions among their constituent elements (Bullmore and Sporns 2009). Once the brain

network has been represented in graphical form, its topological properties can be measured

based on graph theory. The quantitative measurements offered by graph theory allow the

characterization of the traditionally abstract concepts of integration (for example, high
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clustering and short path length) and segregation (for example, modularity and centrality),

thereby providing a comprehensive understanding of how brain networks are structurally

and functionally organized and how they generate complex dynamics, as well as a statistical

means to distinguish between healthy and diseased populations. It is notable that current

studies of graphical properties alterations in brain diseases are usually performed at global

network scale. Preferential interests have been directed to graphical parameters that infer

global organization of the human brain such as small-worldness, global efficiency, wiring

cost, hierarchy and assortativity (Bullmore and Sporns 2009).

In general, using rs-fMRI, regionally confined analysis and inter-regional connectivity

analysis investigate the brain at localized spatial scale, while graph theoretic analysis

provides information about global organization of functional brain networks at global scale.

Those studies have largely advanced our understanding of the neural mechanisms of

neurological and psychological diseases. However, functional interactions at fine-granularity

sub-network scale have not been adequately examined yet as far as we know. As mentioned

before, functional activity occurs at multiple spatial scales, and brain diseases at different

stages might exhibit functional activity alterations at different spatial scales. Thus, our

hypothesis is that functional interactions measured at fine-granularity sub-network scale

may provide new insight into the neural mechanisms of neurological and psychological

conditions, thus offering complementary information for classification between healthy and

diseased population using rs-fMRI. Compared with regionally-confined and inter-regional

connectivity based analyses, fine-granularity functional interaction (FGFI) measures the

functional integration among multiple (n>2) segregated brain regions. Compared with graph

theoretical analysis, FGFI measures the functional interaction in brain networks with fine-

granularity.

In this paper, we use rs-fMRI and DTI datasets of subjects with MCI and SZ as two test-

beds to demonstrate their corresponding FGFI signatures, and examine how FGFI features

can improve the performance in the differentiation of diseased population from healthy

controls. The overview of our study is summarized in Fig. 1. Briefly, the DICCCOL system

(Zhu et al. 2012b) was adopted to localize 358 cortical ROIs for each subject individually

(Fig. 1(a)). Then, the whole-brain structural connectomes (Fig. 1(b)) were constructed from

fiber tracts derived from DTI tractography (via MEDINRIA (Fillard and Gerig 2003)) (Zhu

et al. 2012b; Li et al. 2012a, b). Afterwards, structural cliques (complete sub-graphs) were

identified based on the structural connectomes, serving as the structural substrates of sub-

networks for evaluating the FGFI signatures (Fig. 1 (c)). With concurrent rs-fMRI data,

functional interactions in each graph clique were measured via the propensity for

synchronization (PFS) (Fig. 1(d)). FGFI signatures for MCI/SZ were derived as the

decreased and increased clusters of significant functional interaction alterations inferred by

group-wise significance analysis between patients and matched normal controls (Fig. 1(e)).

Finally, patient-control classification experiments were used to evaluate the discriminability

of FGFI features in differentiation of patients from healthy controls.
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Materials and Methods

Data Acquisition and Preprocessing

MCI Dataset—This study included 28 volunteer participants (10 MCI patients and 18

socio-demographically matched controls) who were recruited and scanned in the Duke-UNC

Brain Imaging and Analysis Center (BIAC). Informed consent was obtained from all

participants, and the experimental protocols were approved by the Duke IRB. The criteria

for MCI determination were in accordance with NACC procedures and NINCDS-ADRDA

diagnostic guidelines. Confirmation of the diagnosis for all subjects was made by a clinical

psychiatrist (Dr. Wang) at Duke University Medical Center. The characteristics of the

participants in this study are summarized as follows: numbers of males in MCI and controls:

5 and 8; age: 74.2±8.6 (MCI) and 72.1± 8.2 (controls); MMSE: 28.4±1.5 (MCI) and

29.4±0.9 (controls); years of education: 17.7±4.2 (MCI) and 16.3± 2.4 (controls).

The DTI and rs-fMRI datasets were acquired on a 3.0 Tesla scanner (GE Signa EXCITE,

GE Healthcare). For functional imaging, 34 slices were acquired in the same plane (as the

low resolution T1-weighted images) using a SENSE inverse-spiral pulse sequence with echo

time (TE)= 32 ms, repetition time (TR)=2000 ms, FOV=25.6 cm2, matrix=64×64×34, 3.8

mm3. For diffusion tensor imaging, 25 direction diffusion-weighted whole-brain volumes

were acquired axially parallel to the AC-PC line using diffusion weighting values, b=0 and

1000 s/mm2, flip angle=90°, TR=17 s and TE=78 ms. The imaging matrix was 256× 256

with a rectangular field of view (FOV) of 256× 256 mm2 and 72 slices with a slice thickness

of 2.0 mm.

SZ Dataset—Multimodal T1 structural MRI, DTI and rsfMRI datasets of 10 SZ subjects

and 10 healthy controls were downloaded from the publicly available NA-MIC dataset

(http://hdl.handle.net/1926/1687). In brief, the multimodal imaging parameters are

summarized as follows. The structural MRI acquisition protocol was based on spoiled

gradient-recalled acquisition (fast-SPGR) with the following parameters: TR=7.4 ms, TE=3

ms, TI=600, 10° flip angle, 25.6 cm2 field of view, matrix=256×256. The voxel dimensions

are 1×1×1 mm3. Both DTI and rs-fMRI scans were acquired on a 3 Tesla GE system using

an echo planar imaging (EPI) sequence. An 8 channel coil was used to perform parallel

imaging using ASSET (Array Spatial Sensitivity Encoding Techniques, GE) with a SENSE-

factor (speed-up) of 2. The DTI used 51 directions with b=900 and 8 baseline scans with

b=0. Other imaging scan parameters include: TR 17000 ms, TE 78 ms, FOV 24 cm, 144×

144 encoding steps, 1.7 mm slice thickness. Totally, 85 axial slices parallel to the AC-PC

line covering the whole brain were acquired. The rs-fMRI was 10 min long, and contained

200 repetitions of a high resolution EPI scan (96×96 in plane, 3 mm thickness, TR=3000 ms,

TE=30 ms, 39 slices, ASSETT). Subjects were asked to close their eyes and rest during the

scans. The same data pre-processing steps used in the above multimodal DTI and rs-fMRI

MCI datasets were used here. Two cases of SZ subjects were discarded due to low quality of

DTI data.
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Cortical ROIs Localization

Localizing robust, reproducible and accurate cortical ROIs that are consistent and

correspondent across individuals and populations is a critical problem for effective brain

networks studies (Liu 2011). Recently, we developed and validated a novel data-driven

discovery approach that identified 358 consistent and corresponding cortical ROIs in over

240 brains (Zhu et al. 2012a, b; Li et al. 2012a, b), in which each identified ROI was

optimized to possess maximal group-wise consistency of DTI-derived fiber shape patterns.

The neuroscience basis is that each brain's cyto-architectonic area has a unique set of

extrinsic inputs/outputs, named the “connectional fingerprint” in (Passingham et al. 2002),

which principally determine the functions that each brain area could possibly possess. Our

prior studies have shown that these 358 DICCCOLs can be used to effectively construct

large-scale structural connectomes (Zhu et al. 2012b) and to derive informative functional

connectomics signatures (Li et al. 2012a, b). Thus, in this paper, we employ the DICCCOL

system to localize dense cortical ROIs for each subject.

Localizing cortical ROIs using DICCCOL system includes steps of DICCCOL discovery

(training) and prediction, which are briefly described as follows and more details are

referred to (Zhu et al. 2012b; Zhang et al. 2011). In the training stage, a simple strategy is

adopted to generate a regular grid initialization of 2056 cortical landmarks for each subject

in ten training samples. The initialization aimed to place a dense map of cortical ROIs

distributed over major brain regions, while establishing rough correspondences across those

subjects by linear registration. After initialization, we formulated the problem of

optimization of ROI locations as an energy minimization problem, which aimed to

maximize the consistency of structural connectivity patterns across the ten training samples.

The optimization was performed for each initialized ROI separately. Specifically, for a

given ROI, we extracted white matter fiber bundles emanating from the small regions

around the neighborhood of its initial location. Then a trace-map model (Zhu et al. 2012b)

was employed to describe the shape pattern of the extracted fiber bundle. By searching the

whole-space of candidate locations, we found an optimal combination of new landmarks that

exhibited the least group variance of the fiber bundle shape pattern in the ten training

samples. The optimization step was then followed by a determination step in which both

quantitative and qualitative methods were used to evaluate the consistency of converged

ROIs, and finally 358 ROIs with high consistency across the training samples were selected

as the DICCCOL landmarks. In the prediction stage, the 358 DICCCOL landmarks were

predicted for any new subject with DTI dataset (e.g., Fig. 1a). In current stage, the prediction

was performed for each landmark separately. The initialization of the DICCCOL landmarks

in the candidate new subject was achieved via a linear registration of the training samples to

the candidate. Then, an optimization step was employed to finalize the landmarks so that the

similarity of the fiber bundle shape patterns between the candidate and those training

samples is maximized.

Sub-Networks Identification

In the literature, clustering algorithms (e.g., N-cut in (van den Heuvel et al. 2008)) are

typically used to group predefined voxels/ROIs (358 DICCCOL landmarks in our study)

into sub-networks based on their functional and structural connection patterns. However, a
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prerequisite to perform sub-network clustering is a predefined number of clusters. Such a

prerequisite is somehow ambiguous since how many sub-networks exist in the human brain

is unknown yet. Moreover, the spatial scale of the sub-networks, that is, the number of ROIs

that compose a sub-network, is difficult to control in clustering approaches. For example,

some resulted clusters may enclose dozens of ROIs while other clusters may include only

several ROIs.

To address this challenge, we identify n-clique from the DTI-derived structural

connectomes, serving as the structural substrates of sub-networks to measure the functional

behavior of sub-networks at fine granularity. In graph theory, a clique in a graph is defined

as a subset of its vertices such that every pair of two vertices in the subset are connected by

an edge (Luce and Perry 1949). Clique is one of the basic concepts in graph theory and has

been used in many mathematical problems (Kemp and Tenenbaum 2008), as well as in

structural and functional brain network studies (Wu et al. 2012; Lohmann and Bohn 2002).

More importantly, it has been observed that the spontaneous fluctuations measured in rs-

fMRI are synchronous within brain regions that are anatomically connected by large white

matter tracts (Vincent et al. 2007), and functionally correlated networks demonstrate a high

degree of correspondence with DTI-reconstructed anatomy in a variety of networks (Honey

et al. 2009; Greicius et al. 2009). Thus, the cliques extracted from the structural

connectomes provide a natural way to define structural substrates for investigating

functional interactions of a sub-network and possesses strong biological support given the

intrinsic close relationships between structural and functional connectivities.

The structural connectivity matrix was derived from the DTI data for each subject. The

structural connectivity between any pair of the 358 DICCCOL ROIs was approximately

quantified as the number of the fiber tracks connecting the two ROIs (Zhu et al. 2012b).

Figure 2 visualizes examples of structural connectivity matrices of two randomly selected

subjects. It can be seen that the structural connectomes are reasonably consistent across

subjects. The structural connectivity matrices of the subjects in the MCI or SZ dataset were

averaged and a predefined threshold (5 in our study) was applied to remove the noise in

fiber tracking. The resulted binary matrix, corresponding to the adjacent matrix of an

undirected and un-weighted graph, was considered as the structural connectomes of the

corresponding dataset. The cliques are identified for each dataset separately. Figure 3

illustrates the definition of cliques by taking those in the sizes of 3, 4 and 5 as examples, and

shows some correspondence examples of structural graph cliques identified in our dataset.

Notably, we can identify graph cliques with up to 11 and 13 nodes from the structural

connectomes in the MCI and SZ datasets, respectively.

Functional Interaction of Sub-Network

In our study, the propensity for synchronization (PFS) (Hu et al. 2011) is used to

characterize the functional interaction in each clique. In general, PFS describes the

synchronizability of the network from which it is derived (Chung 1997; Hu et al. 2011;

Boccaletti et al. 2006). Lower PFS indicates higher synchronizability of the network, while

higher PFS indicates lower synchronizability of the network. We first describe the definition
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of PFS in a generic networked system and then demonstrate the calculation of PFS for the

identified cliques.

Considering a generic, networked system of N coupled dynamical units, each of them gives

rise to the evolution of an m-dimensional vector field xi, the dynamical variables of the i-th

node, governed by a local set of ordinary differential equations x = Fi (xi. The equation of

motion follows (Hu et al. 2011; Boccaletti et al. 2006)

(1)

where xi = Fi(xi) governs the local dynamics of the vector field xi in each node, H(x) is a

vectorial output function, α is the overall coupling strength, and M is a zero row-sum N×N

symmetric coupling matrix with strictly positive diagonal terms that specify the strength and

topology of the underlying wiring connection. The Laplacian matrix of graph G has been

typically used as M to characterize the topology of the networked system which G represents

(Chung 1997). The definition of Laplacian matrix L(G) of a weighted graph G followed the

description in (Chung 1997). Let d(v) denote the degree of v ∈ V(G). Given the connectivity

matrix C(G), d(v) is defined as d(v) =Σu C(u,v). L(G) is calculated as

(2)

The spectrum of L, that is, the eigenvalues of L are nonnegative. Denote the eigenvalues of L

by 0 = λ1 ≤ λ2... ≤ λ. The variational equations governing the stability the synchronized

state {xi(t) = xs (t),∀i} of the system in Eq. (1) follow the form (Boccaletti et al. 2006)

(3)

where ξ = (ξ1, ξ2, . . . ; ξN) is the collection of the variations of the units, ⊗ stands for the

direct product between matrices, and J denotes the Jacobian operator. To assess the stability

of the synchronous state of the system, Eq. (3) is further diagonalized and can be written in

N-blocks variational equation with each block following

(4)

where λk is the k-th eigenvalue of the coupling matrix L. Replacing αλk by v in Eq. (4), the

behavior of the largest Lyapunov exponent against v fully accounts for linear stability of

synchronization manifold. For a large class of networked system, the master stability

function is negative in a finite parameter interval Ist ≡ (vmin ≤ v ≤ vmax). The stability

condition is satisfied when all the eigenvalues enter the interval Ist. Since v1 and v2 depend

on the specific choice of F(x) and H(x), the key quantity for assessing the PFS on a network

is the eigenratio r = λn/λ2. The small r is, the more packed the eigenvalues are, leading to an

enhanced interval Ist for any choice of F and H.
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Given a graph clique with size of n, its functional connectivity matrix Cn×n is calculated

according to the coincident rs-fMRI BOLD signals. Specifically, after co- registering the rs-

fMRI with DTI data, the procedure of BOLD signal mapping, in which both the GM map

and fiber tracks derived from DTI data are used as anatomical constraints (Li et al. 2010), is

performed to find the corresponding rs-fMRI time series for each DICCCOL ROI for each

subject. Note that each ROI typically contains multiple BOLD signals. In this paper, the first

principal component derived from the principal components analysis performed on the

multiple time series is used as the representative BOLD signal for the ROI. The functional

connectivities are quantified as the temporal Pearson correlations between the representative

BOLD signals for any possible pair of ROIs. The Laplacian matrix for the clique is

calculated according to Eq. (2) and the PFS is measured as the eigenratio of the Laplacian

matrix.

Derivation of FGFI Signatures

With the PFSs measured for all the cliques, we adopted the well-established approaches of

deriving genomics signatures in genome-wide gene expression studies (Alizadeh et al. 2000)

to discover FGFI signatures for the characterization of the brain conditions of MCI and SZ

groups. Specifically, a hierarchical clustering algorithm (Alizadeh et al. 2000) was used to

group FGFI attributes (equivalent to genes in genome-wide microarray data) on the basis of

similarity in the pattern with which their attributes (equivalent to gene expression) varied

over all brains (equivalent to samples). One of the prominently similar features between

FGFI attributes and genome-wide gene expressions is that the increase or decrease in FGFI

is equivalent to the up-regulated or down-regulated gene expression. Before the actual

clustering procedure, we applied a preprocessing step of two-tailed t-test to remove those

FGFIs that do not exhibit significance difference between MCI/SZ patients and controls. It

is notable that false positive discovery rate correction was performed for the significant test

in our study. Thus, the clustering procedure can not only be significantly speeded up, but

also be less prone to the possible noises. For visual examination and interpretation (e.g., Fig.

1e), the FGFI signatures after the hierarchical clustering were shown in a matrix format

(Alizadeh et al. 2000), with each row representing all attributes for a single element of the

FGFIs, and each column representing the measured attributes for all FGFIs in a single brain.

Feature Selection, Classifier Training and Testing

Statistical t-test was performed to select the most discriminative features for classification.

Features with p-values smaller than a predefined threshold (p-value<0.01) were selected to

train the classifier. It is notable that the selected features might be in high dimensional while

the number of training samples is relatively small (28 for MCI dataset and 18 for SZ

dataset), thus the training of the classifiers is at the risk of over-fitting. To address this

problem, we applied an unsupervised dimension reduction algorithm (Martinez and Kak

2001) based on principal component analysis for feature reduction. Specifically, the

eigenvalues and eigenvectors of the covariance matrix of the feature set were calculated. Let

λ = {λ1; λ2; . . . ; λm; λ1 > λ2 > . . . > λm denotes the set of eigenvalues. The number of

the principalg components mx, that is, the dimension of the reduced feature is determined

such that , where 0 is a threshold revealing the percentage of
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information preserved in the new feature set compared with the original one. T=0.95 was

used in our experiment.

With the reduced feature set, linear kernel based support vector machine (SVM) classifier

implemented in LibSVM (Chang and Lin 2001) was used to evaluate the discriminability of

the FGFI features. The leave-one-out cross-validation strategy was used in training and

testing due to the limited number of samples. It is notable that the feature selection and

reduction were performed in each run of leave-one-out cross-validation separately so that

the training and testing are fully separated. The parameters used in SVM classifier are

optimized via the grid search strategy.

For comparison study, the feature selection, feature reduction and classification experiments

described above were also performed using functional connectivity features and fused

features in which functional connectivity features and FGFI features were sequentially

concatenated.

Results

FGFI Signatures in MCI

The total number of identified cliques (Ncliques), the number of cliques with significantly

altered PFSs (Naltered), and the number of cliques with significantly increased (Nincreased)

and decreased (Ndecreased) PFSs, and the ratio of cliques with significantly increased

(Rincreased) and decreased (Rdecreased) PFSs are summarized in Table 1. For instance, we

identified 58 cliques with consistently increased PFSs and 39 cliques with consistently

decreased PFSs when the size of the clique is 3, as shown in Fig. 4(a). As these hyper- or

hypo-interaction patterns in 10 MCI subjects, in comparison with 18 healthy controls, are

very consistent across individuals (Fig. 4), thus we name these two patterns as FGFI

signatures of MCI.

It can be clearly seen in Table 1 that decreased and increased PFSs co-exist in MCI patients,

which corresponds to increased and decreased synchronization in the subnetworks,

respectively. The result is in line with the literature in which the coexistence of dysfunction

and functional compensation in functional brain networks of MCI patients (Liang et al.

2011; Buldu et al. 2012; Woodard et al. 2009; Qi et al. 2010; Staffen et al. 2011; Verma and

Howard 2012). It is also notable that the functional interaction alterations in MCI are

dominated by decreased ones, indicating the overall condition of the brain networks in MCI

is disturbed and has resulted in reduced network efficiency (Buldu et al. 2012; Vannini et al.

2007; Iachini et al. 2009).

To demonstrate the spatial distributions of the cliques with altered PFSs, Fig. 4(b) and (c)

visualize the cliques with increased and decreased PFSs in MCI respectively on a cerebral

cortical surface when the clique size is 3. Figures 5 and 6 depict the distributions of the

cliques with altered PFSs in other sizes. It should be noted that despite there is a certain

degree of overlap between altered sub-graphs of different orders, e.g., some 3-clique sub-

graphs might be contained in some 6-clique or 7-clique sub-graphs in Figs. 5 and 6, these

different sub-graphs still provide rich information about the alterations of functional
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interactions in various spatial scales and their spatial distribution patterns are substantially

different (Figs. 5 and 6). Quantitatively, the percentages on the left frontal, left parietal, left

temporal, left occipital, right frontal, right parietal, right temporal and right occipital lobes

are 28.89 %/20.44 %, 3.33 %/10.22 %, 11.11 %/13.14 %, 1.11 %/4.38 %, 31.11 %/19.71 %,

0 %/5.11 %, 16.67 %/17.52 %, and 7.78 %/9.49 %, respectively. It is evident that the

majority of the functional interaction alterations occurs in the temporal and frontal lobes,

which is consistent with the findings in the literature as well (Liang et al. 2011; Dickerson

and Sperling 2009; Buldu et al. 2012; Sorg et al. 2007). The novel contribution here is that

we systematically and comprehensively characterized and quantified those functional

interaction alterations in fine granularity.

One interesting finding is that in a large proportion of cliques that show significantly altered

PFSs in MCI compared with normal controls, none of the functional connectivities among

the cortical ROIs that composed the clique is significantly different. The proportion of these

cliques in all the identified cliques with increased (Pincreased) and de- creased (Pdecreased)

PFSs in different size is summarized in Table 1 (last two columns). For example when the

clique size is 3, 58 cliques show significantly increased PFSs, however, there is no

significantly altered pairwise functional connections in 31 (53.45 %) cliques. Figure 7

illustrates an example of such a clique that has three nodes. Figure 7(a), (b) and (c) shows

the distribution of the pairwise functional connectivities. The p-value in significance test

(two-tailed t-test) for each edge is 0.2851, 0.3496 and 0.1593, respectively. The PFSs on this

clique are shown in Fig. 7(d). The corresponding p-value is less than 0.001. This result

indicates that FGFI can provide complementary information to currently used functional

connectivity features in differentiation between MCI and normal controls. The reason to

additional sensitivity and specificity provided by FGFI features compared with pairwise

functional connectivity features may attribute to the fact that the realization of brain's

function depends on the integration of multiple segregated brain regions. Pairwise functional

connectivity is successful in capturing functional interactions between two brain regions, but

it is limited when functional integration involves more brain regions (here, 3 to 11). In

comparison, FGFI intrinsically measures the functional integration in widely distributed

brain regions.

FGFI Signatures in SZ

The total number of identified cliques (Ncliques), the number of cliques (Naltered) with

significantly altered PFSs, and the number of cliques with significantly increased (Nincreased)

and decreased (Ndecreased) PFSs, and the ratio of cliques with significantly increased

(Rincreased) and decreased (Rdecreased) PFSs for SZ compared with age-matched normal

controls are summarized in Table 2. For example, we identified 11 cliques with consistently

increased PFS and 100 cliques with consistently decreased PFS when the size of the clique

is 3, as shown in Fig. 8. Figures 9 and 10 depict the distributions of the cliques with

significantly decreased and increased PFSs in SZ group for various clique sizes,

respectively.

The distributions of the ROIs involved in the cliques with decreased/increased PFS on brain

lobes are assessed. Specifically, the percentages on the left frontal, left parietal, left
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temporal, left occipital, right frontal, right parietal, right temporal and right occipital lobes

are 18.64 %/18.75 %, 6.78 %/0, 11.86 %/28.13 %, 8.47 %/6.25 %, 19.49 %/9.38 %, 1.69

%/0, 16.95 %/28.13 %, and 16.10 %/9.38 %, respectively. It is seen that the majority of the

functional interaction alterations are in the temporal and frontal lobes, which is consistent

with the findings in the literature (Calhoun et al. 2009; Schneider et al. 2007). It is also seen

that the functional interaction alterations in SZ are dominated by decreased PFSs, which

indicates that the functional interaction in SZ are substantially higher than healthy controls.

This result is in agreement with the increased functional integration and the excessive

salience of, and/or focus on, internal stimuli (Whitfield-Gabrieli et al. 2009) in SZ patients

which may attribute to the disorder of the metastable balance between large-scale integration

and independent processing in the cortex (Bressler 2003).

Similarly, we also find that in a large proportion of cliques that show significantly altered

PFSs in SZ compared with normal controls, none of the functional connectivities among the

cortical ROIs that composed the clique is significantly different. The proportion of these

cliques in all the identified cliques with increased (Pincreased) and decreased (Pdecreased) PFSs

in different size is summarized in Table 2 (last two columns). This result demonstrates that

additional sensitivity and specificity in characterizing the functional alterations in SZ using

rs-fMRI can be achieved by FGFI signatures.

Classification Performance in MCI and SZ

The classifiers are evaluated based on sensitivity and specificity. The classification

performances when using FGFI features, functional connectivity features and directly fused

features are summarized in Table 3. It is seen that FGFI features yield a relatively high

sensitivity (80.00 % and 75.00 % in MCI and SZ dataset, respectively) and specificity

(77.78 % and 80.00 % in MCI and SZ dataset, respectively). Despite the limited number of

available samples, the relatively high accuracy classification demonstrated the good

discriminability of FGFI features in characterizing functional alterations in MCI and SZ

patients. It is also seen that FGFI features can achieve comparable performance compared

with functional connectivity features (sensitivity: 80.00 % and 75.00 % in MCI and SZ

dataset, respectively; specificity: 83.33 % and 80.00 % in MCI and SZ dataset). However,

the sensitivity (90.00 % and 100.00 % in MCI and SZ dataset, respectively) and specificity

(94.44 % and 90.00 % in MCI and SZ dataset, respectively) can be remarkably improved

(sensitivity improvement: 10 % and 25 % in MCI and SZ dataset, respectively; specificity

improvement: 11.11 % and 10.00 % in MCI and SZ dataset, respectively) when the directly

fused features were used, demonstrating FGFI features can provide complementary

information for patient-control classification using rs-fMRI.

Discussion and Conclusion

In this paper, we presented an algorithmic pipeline to systematically and comprehensively

explore the functional interaction signatures of brain networks in fine granularity and

applied them to characterize the functional alterations in MCI and SZ patients. Compared

with the commonly used functional connectivity patterns used in current studies, the FGFI

features yield comparable classification performance in differentiating patients and normal

controls in both MCI and SZ datasets. More importantly, we showed that FGFI features can
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provide complementary information for examining disease pathophysiology using rs-fMRI.

Performance of patient-control classification can be substantially improved by integrating

FGFI features with functional connectivity/connectomes features. We also investigated the

spatial distribution of the DICCCOL landmarks that involved in the brain condition

alterations in MCI and SZ. The results are consistent with the literatures. Importantly, the

FGFI features can capture functional interaction and dynamics in brain sub-networks at fine

granularity level that inter-regional functional connectivities could not, and thus may shed

novel light on the dysfunctions in MCI and SZ.

In the current study, the FGFI signatures were examined only in the complete sub-graphs

extracted from the structural connectomes constructed from DTI data. The close relationship

between structural and functional connectivity in human brain renders strong biological

support for using structural cliques as the representation of brain subnetworks. However, it

is also known that many functional pathways do not have corresponding direct structural

pathways, and functional units may communication through indirect structural pathways

(Honey et al. 2009). In our study, other possible sub-graphs connected by indirect structural

connections were not considered for the purpose of computational feasibility. As a result,

our study in this paper only assessed a sub-set of meaningful functional interaction patterns

within the DICCCOL-based connectomes, and could possibly miss other meaningful

functional interaction patterns that occur in non-complete sub-graphs. In the future, with the

availability of additional pieces of information, other approaches of defining meaningful

sub-graphs could be considered such as by integrating multimodal neuroimaging data into

the definition of sub-network that is consistent multi-modalities. In addition to defining and

including more sub-graphs, other quantitative metrics (in addition to the PFS used in this

paper) including a variety of spectral graph theoretic measurements (Chung 1997; Boccaletti

et al. 2006) could be used to assess the functional interactions and dynamics on these sub-

graphs. It is expected that the improvements in these lines could contribute to deriving more

informative functional interaction signatures for brain conditions in the future. In addition,

the number of available samples is limited in our study, which may increase the risk of over-

fitting in classifier training and prevent us from fully examining the potential benefit brought

by FGFI features in differentiation between diseased populations from normal controls. In

the future, we plan to validate the proposed FGFI features on larger dataset.

Despite the limitations discussed above, the proposed FGFI signatures investigate functional

brain network at spatial scale that is in-between those spatial scales utilized in existing

studies using inter-regional functional connectivities (local scale) and graphical analysis

(global scale). In comparison with inter-regional functional connectivity analysis, the

proposed FGFI signatures consider the interaction of functional integration in multiple (n>2)

segregated brain regions. And compared with current graph theoretical studies, FGFI

signatures measure the functional interaction in brain networks at fine granularity scale.

Thus, FGFI signatures can provide complementary information for study functional brain

network in both healthy and diseased populations and improve classification performance

between them using rs-fMRI, as validated by our experimental results. It should be pointed

out that the functional interactions measured by PFS were derived from the pair-wise

connectivity matrix (“Functional Interaction of Subnetwork”) and there could exist intrinsic

relationships between the derived functional interaction signatures and pairwise connectivity
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patterns, which should be further explored in the future. In the current patient/control

classification experiments, we demonstrated improved classification performance can be

achieved by integrating FGFI features and inter-regional functional connectivity features. It

has been reported that the integration of functional and structural connectivity patterns can

provide new avenues for brain disease classification. We envision that the classification

performance can be further improved by integrating structural connectivity via advanced

feature fusion algorithms (e.g., Multi-Modal Spectral based feature fusion (Cai et al. 2011))

and learning algorithm (e.g., multiple-kernel SVM (Wee et al. 2012), multi-view learning

(Bickel and Scheffer 2004) and co-training (Kumar and Daume 2011)), rather than the

straightforward direct concatenation used in our study. Further, our future work also lies in

the joint analysis of FGFI signatures and structural connectivity patterns to investigate the

relationship between brain structure and functions.

In the bioinformatics and genomics fields, genomics signatures such as genome-scale gene

expression analyses are transforming medicine in many facets including disease sub- type

identification, differential diagnosis, disease staging, personalized treatment, and follow-up.

In parallel, in the neuro-science and neuroimaging fields, the mapping of human brain

connectomes (Allen and Williams 2011; Buckner 2010; Behrens and Sporns 2011; Biswal et

al. 2010; Kennedy 2010; Sporns 2011) and derivation of connectomics signatures (Li et al.

2012a, b) will fundamentally advance our understanding of brain structure and function and

reveal widespread alterations in a variety of neurological or psychiatric conditions such as

Alzheimer's disease and Schizophrenia. In particular, we believe quantitative mapping of

functional interaction signatures in fine granularity (as shown in this paper) in healthy and

disease populations have significant importance to systematically and comprehensively

understand, characterize, diagnose and treat many devastating brain conditions. It has been

shown in this work that the DICCCOL-based structural connectomes provide a common

representation of human brain architecture and thus offer a solid foundation for deriving,

integrating and comparing functional interaction signatures across individuals and

populations. We predict that once those functional interaction signatures are cross-validated

across different labs and datasets, they will play important roles in the clinical managements

of many brain conditions.
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Fig. 1.
The overview of our study. a Cortical ROIs (red dots) localized via DICCCOL system for

each subject. b Structural connectomes constructed from fiber tracts derived from DTI

tractography. c Examples of structural cliques (complete sub-graphs) (purple polygons)

serving as the structural substrates of sub-networks for evaluating the FGFIs. d Significantly

altered FGFIs in patients. e FGFI signatures. The vertical white dashed line separates

patients and controls, while the horizontal dashed white line separates significantly increases

and decreased FGFIs in patients
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Fig. 2.
Examples of structural connectomes derived from DTI data of two randomly selected

subjects. Green circles represent DICCCOL landmarks. Grey lines represent structural

connectivities and the thickness indicates the strength of structural connectivities
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Fig. 3.
Illustration of structural graph cliques and examples of cliques overlaid on a cortical surface.

a, b and c corresponds to structural cliques with 3, 4 and 5 nodes, respectively. 3 cliques are

shown as examples in each sub-figure
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Fig. 4.
FGFI signatures for characterization of MCI when the size of the clique is 3. a The PFSs of

the clustered cliques. Green and red stand for lower and higher PFSs, respectively. We

identified 58 cliques showing consistently increased PFS and 39 cliques showing

consistently decreased PFS in MCI group, compared with the normal control group. The

vertical white dashed line separates MCI and controls, while the horizontal dashed white

line separates significantly increases and decreased functional interactions in MCI. The

spatial distributions of these cliques on the cortical surface are shown in b for increased

PFSs and c for decreased PFSs. In (b) and (c), the DICCCOL landmarks are represented as

spheres. Green ones are those landmarks involved in the cliques showing significantly

altered PFSs
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Fig. 5.
Spatial distributions of cliques with different sizes (from 3 to 8) with decreased PFS in MCI
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Fig. 6.
Spatial distributions of cliques with different sizes (from 3 to 10) with increased PFS in MCI
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Fig. 7.
The distribution of inter-regional functional connectivities and PFSs for an exemplar 3-node

clique that has significantly different PFS but has no significantly different inter-regional

functional connectivities between MCI and normal controls. a, b and c shows inter-regional

functional connectivity for the three edges of the clique, respectively. d shows the PFSs on

the clique. p-value of significance test (two-tailed t-test) is at the right-top corner in each

sub-figure
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Fig. 8.
FGFI signatures for characterization of SZ when the clique size is 3. a The PFSs of the

clustered cliques. Green and red stand for lower and higher PFSs, respectively. We

identified 11 cliques showing consistently increased PFS and 100 cliques showing

consistently decreased PFS in SZ group, compared with the normal control group. The

vertical white dashed line separates SZ and controls, while the horizontal dashed white line

separates significantly increases and decreased PFSs in SZ. The spatial distributions of these

cliques on the cortical surface are shown in b for increased PFSs and c for decreased PFSs
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Fig. 9.
Spatial distributions of cliques with different sizes (from 3 to 11) with decreased PFS in SZ
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Fig. 10.
Spatial distributions of cliques with different sizes (from 3 to 5) with increased PFS in SZ
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Table 1

Altered FGFIs in MCI patients compared with normal controls

Clique size NCliques Naltered Nincreased Ndecreased Rincreased Rdecreased Pincreased Pdecreased

3 7593 97 58 39 59.79 % 40.21 % 53.45 % 66.67 %

4 16047 107 97 10 90.65 % 9.35 % 43.30 % 50.00 %

5 24404 177 154 23 87.01 % 12.99 % 48.05 % 30.43 %

6 27323 177 143 34 80.79 % 19.21 % 46.15 % 20.59 %

7 22760 133 107 26 80.45 % 19.55 % 51.40 % 26.92 %

8 14118 66 58 8 87.88 % 12.12 % 67.24 % 12.50 %

9 6453 22 22 0 100 % 0 68.18 % /

10 2119 6 6 0 100 % 0 83.33 % /

11 475 0 0 0 / / / /
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Table 2

Altered FGFIs in SZ patients compared with normal controls

Clique size NCliques Naltered Nincreased Ndecreased Rincreased Rdecreased Pincreased Pdecreased

3 6069 111 11 100 9.91 % 90.09 % 72.72 % 46.00 %

4 10943 94 6 88 6.38 % 93.62 % 66.67 % 46.59 %

5 14528 108 5 103 4.63 % 95.37 % 40.00 % 32.04 %

6 14951 103 0 103 0 100 % / 13.59 %

7 12247 88 0 88 0 100 % / 11.36 %

8 8040 90 0 90 0 100 % / 0

9 4192 61 0 61 0 100 % / 0

10 1697 30 0 30 0 100 % / 0

11 514 8 0 8 0 100 % / 0

12 110 0 0 0 / / / /

13 15 0 0 0 / / / /
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Table 3

Sensitivity and specificity in classification of MCI/SZ and normal controls using FGFI features, functional

connectivity features and directly fused features

MCI SZ

Sensitivity Specificity Sensitivity Specificity

FGFI 80.00 % 77.78 % 75.00 % 80.00 %

Functional connectivity 80.00 % 83.33 % 75.00 % 80.00 %

Directly fused 90.00 % 94.44 % 100 % 90.00 %
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