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Abstract

Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the

single most important therapeutic problem posed by the common glioma group of tumors:

astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma.

These neoplasms account for more than two thirds of all malignant central nervous system tumors.

However, most glioma research focuses on an examination of the tumor cells rather than on host-

specific, tumor micro-environmental cells and factors. This can explain why existing diffuse

glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need

for innovation. We describe a novel strategy for the development of a more effective treatment of

diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the

defense cells of the CNS, which are manipulated by malignant glioma and support its growth.

Armoring microglia against the influences from glioma is one of our research goals. We further

discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma

cells.
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INTRODUCTION

Gliomas are tumors derived from glial cells, the non-neuronal cells of the brain and spinal

cord. They are the most common tumors of the central nervous tissue and many are fatal

comprising more than two thirds of all malignant CNS neoplasms. Gliomas occur in adults

as well as children, and their prognosis depends on subtype and grade (www.pubcan.org). A

tentative diagnosis can be made by means of modern neuroimaging techniques but the gold

standard for glioma diagnosis is the microscopic examination of tumor tissue following a

surgical biopsy. Currently, the microscopic examination can be complemented but not

replaced by molecular tests. Therefore, only a trained neuropathologist should make the

diagnosis by morphologic criteria. This is important because other CNS diseases can present

with tumor-like signs. An accurate diagnosis is of key importance for the decision on

treatment strategies. Surgery as well as radio- and chemotherapy may be applied.

The vast majority of contemporary glioma research focuses on the tumor as such rather than

on what the central nervous system (CNS) does or does not do to the infiltrating neoplastic

glial cells. This can explain why all existing diffuse glioma therapies fail and why the

prognosis of these tumors has changed insignificantly in more than a century and they have

remained incurable. Consequently, there is a great need for innovation. Recent advances in

neuroscience knowledge and technological progress in molecular biology raise hope that

such innovation is within reach.

In this article we outline a novel strategy that focuses on making use of the presence of

microglia within diffuse glioma for therapeutic purposes. There is increasing evidence that

high-grade gliomas very effectively attract microglia/macrophages and subsequently control

their activity eliciting mainly tumor-supportive functions that facilitate glioma growth [1].

We are interested in the question of whether this fatal attraction can be used against the

tumor by employing bone-marrow transplantation of genetically enhanced [2] microglia

precursors. We further discuss the need for the development of an in silico model of the

microglia, which is expected to yield a blueprint of the molecular controls that are required

to modify the behavior of glioma associated microglia. In addition, our vision for

engineering microglia that are capable of tracking down individual, deeply infiltrating

glioma cells is outlined. Lastly, we describe a technology known as zinc finger nucleases

(ZFNs) that may be employed to implement the required genetic modifications.

THE CURRENT GOLD STANDARD OF GLIOMA DIAGNOSIS

The microscopic examination of a tumor tissue reveals the histological tumor type. Gliomas

are named after the normal glial cell types with which each tumor variant shares

morphological similarities. The two main neuroglial cell types of the CNS are astrocytes and

oligodendrocytes. The third common glial cell type, the microglia, populate the CNS during

embryonic and early postnatal development and cause tumors so rarely that there is no

official classification entry [3]. After the type of brain tumor has been determined based on

morphological criteria, a WHO grade is assigned. The WHO classification of tumors

(www.pubcan.org) currently distinguishes the main subtypes of common glioma shown in

Table 1.

Li et al. Page 2

CNS Neurol Disord Drug Targets. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.pubcan.org
http://www.pubcan.org


In general terms, a tumor is referred to as grade I if the biopsy shows only very few dividing

cells and the chances of the patient is being cured by the surgical resection of the tumor

alone are high. A grade II tumor in contrast is likely to recur and may even worsen over

time, i.e. become anaplastic. The latter is called tumor progression and is regularly the case

for diffuse astrocytoma, oligoastrocytoma and oligodendroglioma. Histological signs of a

malignant or WHO grade III glioma include so-called atypical nuclei and the presence of

dividing cells (mitosis). Patients with grade III tumors are treated by adjuvant radiation

and/or chemotherapy. Glioblastoma is an example of a WHO grade IV tumor. In addition to

cells that appear malignant and variable numbers of mitotic cells, such tumors tend to show

large areas of cell death (necrosis) because they grow so rapidly that the blood supply cannot

keep up with their growth rate. However, grade IV tumors also stimulate the formation of

new blood vessels (neoangiogenesis) and the presence of the latter is another and perhaps

even more significant histological sign of their malignancy.

In summary, the WHO classification of CNS tumors (www.pubcan.org) represents a

malignancy scale aimed at aiding the clinician to choose the right treatment. It is not always

strictly logical. For instance, there is no pilocytic astrocytoma grade II and there is no

diffuse astrocytoma grade I. These two entities are very different biologically but share the

common family name astrocytoma. Patients with a WHO grade II glioma usually survive

more than five years whereas survival of 2–3 years are typical for an individual with a WHO

grade III tumor. The outcome is much worse for WHO grade IV glioblastoma where less

than half the patients survive more than one year.

THE PRESENCE OF MICROGLIA AND RELATED CELLS WITHIN DIFFUSE

GLIOMA

The occurrence of microglial cells in glioma is not a new finding [4, 5]. However, their role

remained unclear for many decades. In 1998 we reported that microglia support glioma

growth [6]. This finding has been widely reproduced in the meantime and microglia research

has yielded much information on the molecular characteristics of these cells. In 1998 we

also demonstrated that bone marrow-derived precursors can give rise to typical ramified

parenchymal microglia in the adult [7, 8], a concept now adopted by others [9]. These

observations are of great relevance in the context of our plan to send genetically enhanced

microglia as therapeutic agents into diseased brains. It is likely that many if not most of the

glioma-associated macrophages and microglia (ramified cells of typical morphology with

perpendicularly branching cell processes) have an extra-cerebral source. The phenotypic and

functional differences between these largely “M2 polarized” cells and classically activated

(inflammatory) “M1 macrophages” [10] are intriguing and point to a strategy gliomas

employ to manipulate microglial behavior in favor of tumor survival and growth.

Analyses of the signaling networks by which microglia interact with the glioma suggests the

following view [1]: Glioma-microglia synergies drive a self-amplifying cascade of events

that spirals out of control as the tumor progresses. Glioma and microglial cells not only

appear to have a symbiotic relationship but one that becomes highly skewed in favor of the

glioma [11]. Specifically, the immunosuppressive microenvironment in a glioma created by

molecules such as TGFB1, CSF1, and IL10 polarizes glioma-infiltrating microglia towards
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the M2 phenotype. Gliomas also produce chemotactic factors, such as MCP-1, resulting in

the recruitment of large numbers of additional microglia and macrophages. Gliomas further

promote the proliferation of microglial cells. In turn, microglia support glioma angiogenesis

as well as glioma cell invasion. This cross talk between glioma and microglia is governed by

multiple paracrine loops formed by glioma- and microgliareleased molecules and their

receptors. Some of the molecules involved also act in an autocrine manner regulating glioma

and microglia behavior, respectively (for details see [1]). It therefore appears that immune

cells, which are a major source of angiogenic and growth factors as well as matrix-

remodeling enzymes that have an entirely normal and necessary function in wound healing,

are recruited and subverted to support neoplastic progression [12] in glioma.

There is an additional and particularly interesting aspect of microglia-tumor cell interactions

that has attracted attention only very recently. Fusion of tumor cells with bone marrow-

derived cells has been proposed as a mechanism underlying invasion and metastasis in

human cancer [13]. Accordingly, cellular fusion of microglia with glioma cells is being

considered as a possible explanation for the surprising finding that isocitrate dehydrogenase

mutations can be observed in microglia/macrophages associated with glioma [14]. We have

suggested earlier that some macrophages in glioblastoma may derive from tumor stem cells

[15], which would be in line with the view of a significant role of microglia/macrophages in

glial tumorigenesis [14]. The fusion hypothesis is of particularly great interest as

macrophages are highly migratory cells and gliomas are the most diffusely growing tumors

of all. One way to test this hypothesis experimentally will be to use gender-mismatched

microglia and glioma cells in combination with FISH to detect Y-chromosomal sequences in

cells exhibiting a macrophage phenotype (the tumor cell line, e.g. CNS-1, being derived

from male animals).

Taken together, the microglial contributions to glioma growth appear significant and justify

serious efforts to study microglia/macrophage-glioma interactions in the greatest detail

possible and not only to bring genetically modified microglia into the glioma-affected brain

to exert an inhibitory influence on glioma growth but to reduce the vulnerability of the

microglia towards glioma influences as the first step.

NON-INVASIVE ACCESS TO THE CNS

Using bone-marrow chimeras carrying a non-expressed marker gene and a combined model

of facial nerve axotomy and transfer experimental autoimmune encephalitis, we

demonstrated that cells from the macrophage precursor cell pool of the bone marrow have

the ability to become typical ramified microglia in the adult [8]. Thus, if recently bone

marrow-derived parenchymal microglia fully integrate into a regenerating brain nucleus’

architecture, entirely new approaches for delivering genes into the adult CNS become a

possibility [8]. The validity of this hypothesis has been dramatically confirmed by the recent

finding that pathological grooming in Hoxb8 mutant mice can be cured through a bone

marrow transplant [16]. Furthermore, transplantation of wild-type bone marrow into

irradiation-conditioned Mecp2-null hosts resulted in engraftment of brain parenchyma by

bone-marrow-derived myeloid cells of microglial phenotype, arresting the development of

disease [17]. Importantly, only the use of a conditioning regimen capable of ablating
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functionally defined brain-resident myeloid precursors allows turnover of microglia that is

mediated by local proliferation of early immigrants rather than entrance of mature cells from

the circulation [18].

We are using a syngeneic glioma model that employs GFP-transgenic Lewis rats and

mCherry-transduced CNS-1 [19, 20] glioma cells (Fig. 1). Our goal is to achieve non-

invasive access to the experimental glioma through autologous bone marrow-transplants. As

a first step, we are replicating earlier results from a C6 glioma model, which based on use of

a non-expressed marker gene strongly suggested that a significant portion of the microglia/

macrophages in glioma are bone marrow-derived [21].

TOWARDS AN IN SILICO MODEL OF MICROGLIAL CELLS

There is currently no complete systems biological definition of microglial cells (or of any

other cell type). Starting out from a first partial transcriptome signature, which we obtained

previously [22], we are currently complementing our database by mining publicly available

microarray datasets. Pathway analysis software [23, 24] is used to extract information that

can assist with the design of an in silico microglia pathway model, which will serve as a

blueprint for the controls of microglial behavior in vivo. Reducing microglial susceptibilities

to the influence of glioma (e.g. by knocking out receptors such as IL4R, Table 2, Figs. 1, 2)

while strengthening or introducing other properties, e.g. the ability to track down glioma

cells similar to what stem cells can do [25–32], represent key areas where this in silico

knowledge will be applied.

NEW MOLECULAR GENETIC METHODS FOR REPROGRAMMING CELLS

Technologies with the potential for editing the genome hold great promise for cell-based

therapies. Termed zinc finger nucleases (ZFN), one such technology, which has matured

significantly in recent years, combines the most abundant DNA binding motif, zinc fingers

and the power of restriction endonucleases to provide sequence-specific modification of the

genome. Zinc finger proteins (ZFPs), discovered in Xenopus the mid-1980’s [33], are the

largest class of DNA-binding proteins found in eukaryotic cells. They serve diverse roles in

most cell processes including DNA replication and repair, transcription, translation,

metabolism and cell signaling among others [34]. Each zinc finger motif consists of

approximately 30 amino acids folded into a ββα structure. A ZFP recognizes three bases in

a DNA sequence via the single α-helical structure in the C-terminal region of the protein

and binds by inserting the α-helix into the major groove of the DNA double helix [35]. The

stability of the entire protein complex is afforded by the anti-parallel β-β hairpin structure

present at the N-terminal region. The hairpin is created by the binding of a Zn2+ ion to two

canonical cysteine residues that are generally 2–4 amino acids apart followed by the zinc ion

interaction with two histidine residues, commonly referred to as the C2H2 zinc finger [36].

The discovery that several ZFPs linked in tandem are capable of recognizing a broad

spectrum of DNA sequences with high specificity opened a “toolbox” capable of tinkering

with the molecular machinery of a cell.

In 1996, a report on the generation of a fusion construct between zinc finger proteins and the

nuclease domain of the non-discriminative, type IIS restriction enzyme FokI heralded a new
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era in DNA manipulation [37]. The uniqueness of this design was many-fold. The first

among these was the ability to engineer tandem ZFPs to target specific DNA sequences.

This implied that by linking engineered ZFPs in tandem, it was technically possible to target

any DNA sequence in the human genome – a highly sought after molecular tool with the

ability to manipulate the human genome at desired sites. Secondly, the use of the FokI

restriction nuclease implied that enzymatic activity would only be present when the cleavage

domain was present as a dimer, an intrinsic characteristic of the enzyme [38]. This

empowers the ZFP-FokI hybrid, commonly referred to as a zinc finger nuclease (ZFN), with

further specificity as each half of the nuclease dimer is fused to ZFPs flanking the desired

cleavage site in DNA. Additionally, since the ZFPs bind to opposite strands of the DNA, the

ZFN creates a highly desirable double-strand break (DSB) at the target locus in the genome.

It is well established that cells employ the universal process of homologous recombination

(HR) to mediate site-specific recombination following DSB in DNA in order to maintain

genomic stability and integrity. This phenomenon offers another advantage to the ZFN

technology whereby “correction” of the cleaved DNA helix can be afforded by introducing a

targeting DNA sequence homologous to the cleaved segment but bearing the “corrected” or

“edited” gene sequence. DSB repair of damaged DNA by HR is the most accurate form of

cellular repair that usually employs the undamaged sister-chromatid as a template.

ZFN technology is gaining more wide use. Investigations in mammalian as well as other

systems have revealed the key parameters that offer maximum efficacy of targeting.

Continuous minor modifications are honing the technology. A plethora of studies have

demonstrated the potential of the technology and clinical trials are underway [39–46]. We

are planning to apply this technology to the genetic modification of microglial cells and their

precursors.

SUMMARY

The clinical consequences of diffuse glioma are serious and their prognosis is dire.

Symptoms range from neurological and other somatic deficits to cognitive and

psychological problems. As a result, brain tumors cause the fourth highest loss of potential

life years of all cancers. This justifies an intense research effort. Importantly, after decades

of failure there is a clear case for more interdisciplinary research and specifically studies

into the question of what CNS constituents do and do not do in support of glioma cell

growth. By combining experimental neuropathological and immunological with some of the

latest molecular genetics techniques, the approach outlined here will contribute to an

improved understanding of bone marrow-derived microglia and their suitability for the

treatment of CNS disorders. It will be tested using glioma as a first target. There is reason

for optimism because successful cell-based treatments for nervous system disorders

employing bone marrow-transplantation are already beginning to emerge in other areas [47].

If successful the results of the work proposed here are likely to be of relevance also for other

cancers that are characterized by the presence of macrophages [48]. ZFNs and new methods

such as TALENs that are currently being developed [49] are expected to facilitate the

synthetic biological engineering of microglia precursors and will assist in making use of the

microglia as a novel and powerful vehicle for treating glioma. Ultimately such engineered
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cells could also be made to carry a payload [50, 51] that may be of additional diagnostic as

well as therapeutic utility through interactions with hadrons for instance [52] (Fig. 3).
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ABBREVIATIONS

ADAM8 ADAM metallopeptidase domain 8

AKT1 v-akt murine thymoma viral oncogene homolog 1

CCL2 Chemokine (C-C motif) ligand 2

CD4 CD4 molecule

CD14 CD14 molecule

CD40 CD40 molecule, TNF receptor super family member 5

CD40LG CD40 ligand

CD86 CD86 molecule

CD8A CD8a molecule

CNR1 Cannabinoid receptor 1

CNS-1 Glioma cell line syngeneic to Lewis rats

CNS Central nervous system

CSF1 Colony stimulating factor 1 (macrophage)

CSF1R Colony stimulating factor 1 receptor

CSF2 Colony stimulating factor 2 (granulocyte-macrophage)

CSF2RA Colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-

macrophage)

DNA Deoxyribonucleic acid

DSB Double-strand break

EGFR Epidermal growth factor receptor

FAS Fas (TNF receptor super family, member 6)

FISH Fluorescent in situ hybridization

FOKI A restriction endonuclease

IFNB1 Interferon, beta 1

IFNG Interferon, gamma

IFNGR2 Interferon gamma receptor 2 (interferon gamma transducer 1)

IFNGR1 Interferon gamma receptor 1
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IL1B Interleukin-1, beta

IL4 Interleukin-4

IL4R Interleukin-4 receptor

IL6 Interleukin-6 (interferon, beta 2)

IL6R Interleukin-6 receptor

IL10 Interleukin-10

IL10RA Interleukin-10 receptor, alpha

IL12 Interleukin-12

IL13 Interleukin-13

MAPK1 Mitogen-activated protein kinase 1

MAPK14 Mitogen-activated protein kinase 14

MAPK3 Mitogen-activated protein kinase 3

MAPK8 Mitogen-activated protein kinase 8

MIF Macrophage migration inhibitory factor (glycosylation-inhibiting factor)

NGF Nerve growth factor (beta polypeptide)

NOS2 Nitric oxide synthase 2, inducible

PTPN6 Protein tyrosine phosphatase, non-receptor type 6

RAF1 v-raf-1 murine leukemia viral oncogene homolog 1

REL v-rel reticuloendotheliosis viral oncogene homolog

SOCS1 Suppressor of cytokine signaling 1

SOCS3 Suppressor of cytokine signaling 3

STAT1 Signal transducer and activator of transcription 1

STAT3 Signal transducer and activator of transcription 3 (acute-phase response

factor)

TGFB1 Transforming growth factor, beta 1

TGFBR2 Transforming growth factor, beta receptor II (70/80kDa)

TLR4 Toll-like receptor 4

TNF Tumor necrosis factor

TNFRSF1A Tumor necrosis factor receptor super family, member 1A

TP53 Tumor protein p53

ZFN Zinc finger nucleases

ZFP Zinc finger protein
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Fig. (1).
Experimental tools used in the project. A. mCherry labeled CNS-1 glioma cells in culture;

B. transgenic astrocytes (green, obtained from GFP-transgenic Lewis rats) being overrun in

culture by syngeneic mCherry labeled CNS-1 glioma cells (red) mirroring the in vivo

situation; C. bone marrow cells isolated from GFP-transgenic Lewis rats in culture; D. a

GFP-transgenic microglial cell/macrophage in culture; E. Co-culture of mCherry labeled

CNS-1 glioma cells and microglia isolated from GFP transgenic rats; F. schematic

representation of intercellular microglia “polarization signaling”: CSF2 (GM-CSF) and
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IFNG are the molecules that drive microglia towards the M1 phenotype, whereas TGFB1,

CSF1, IL10, IL4 and IL6 are molecules that polarize microglia towards the M2 phenotype

when binding to their respective receptors located on the surface of microglia (purple lines);

however, these signals may also act on other receptors on the surface of the microglia;

stimulatory regulation is represented by green lines, inhibitory regulation by red lines, and

ambiguous effects are shown as grey lines; IL-4 and its receptor, IL-4R are highlighted in

blue; the biological associations of the latter with molecules that are regulated during

microglial activation are illustrated by the lower panel of this figure and referenced in detail

in Table 2. Scale bar: 40 µm (appx. 80 in E).
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Fig. (2).
Zinc finger nuclease (ZFN)-mediated DNA double-strand break. A ZFN designed to create a

DNA double-strand break (DSB) in the target consists of two monomers. Each monomer

encompasses three zinc-fingers (1, 2, 3), which recognize 9 base pairs within the target and a

FokI nuclease domain. A short “linker” sequence connects the two domains. The FokI

nuclease only functions as a dimer and therefore, following dimerization the nuclease is

activated and cleaves the DNA within the spacer sequence.
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Fig. (3).
Vision for a future glioma treatment utilizing the potential of genetically enhanced

microglia: two non-invasive strategies converging on the tumor. 1. Once the trafficking

(entry into the CNS) and tracking (following glioma cells) behavior of the microglia can be

controlled satisfactorily, these cells like other macrophages could also be employed to carry

a payload [50, 51]. 2. Very precise and effective and therefore perhaps even curative tissue

destruction/stimulation could then be achieved by means of a hadron beam [52]. 3. This

approach may also allow real-time monitoring of the treatment if appropriate radiation

sensors are implanted stereotactically (initially, for calibration purposes) and suitable

radiochemicals for visualization become available. The glioma and its diffusely infiltrating

Li et al. Page 25

CNS Neurol Disord Drug Targets. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cells is represented by the star. Coronal brain slice taken from inter BRAIN 1.1 for

Windows, Springer 1998.

Li et al. Page 26

CNS Neurol Disord Drug Targets. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Li et al. Page 27

Table 1

Main Types of Human Glioma

Astrocytic tumors

Pilocytic astrocytoma (I)

  Pilomyxoid astrocytoma (II)

Subependymal giant cell astrocytoma (I)

Pleomorphic xanthoastrocytoma (II)

Diffuse astrocytoma (II)

  Fibrillary astrocytoma

  Gemistocytic astrocytoma

  Protoplasmic astrocytoma

Anaplastic astrocytoma (III)

Glioblastoma (IV)

  Giant cell glioblastoma

  Gliosarcoma

Gliomatosis cerebri (III)

Oligodendroglial tumors

Oligodendroglioma (II)

Anaplastic oligodendroglioma (III)

Oligoastrocytic tumors

Oligoastrocytoma (II)

Anaplastic oligoastrocytoma (III)

Ependymal tumors

Subependymoma (I)

Myxopapillary ependymoma (I)

Ependymoma (II)

  Cellular

  Papillary

  Clear cell

  Tanycytic

Anaplastic ependymoma (III)

Grades of the different glioma variants are indicated by Roman numerals shown in brackets following the respective glioma subtype.
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Table 2

Biological Associations Relating to the IL4R Receptor

Relation Type Reference

CD4 ---> IL4R Regulation [53, 54]

CD40 ---> IL4R Expression [55–58]

CD40LG --+> IL4R Expression [59, 60]

CD86 --+> IL4R Regulation [61]

IFNB1 ---> IL4R Expression [62]

IL12 --+> IL4R Expression [63–66]

IL13 --+> IL4R Direct Regulation [67–165]

IL1B ---> IL4R Expression [166–168]

IL4R --+> CD8A Regulation [169–171]

IL4R --+> CNR1 Expression [172]

IL4R --+> NGF Molecular Transport [173]

IL4R --+> STAT3 Regulation [174, 175]

IL4R ---- PTPN6 Binding [176–181]

IL4R ---- SOCS3 Binding [182]

IL4R ---- TP53 Binding [183]

IL4R ---> ADAM8 Expression [184]

IL4R ---> AKT1 Regulation [185, 186]

IL4R ---> CCL2 Expression [187]

IL4R ---> CD4 Regulation [188–195]

IL4R ---> CD86 Expression [57, 61, 196]

IL4R ---> EGFR Regulation [197]

IL4R ---> IL12 Expression [95, 198, 199]

IL4R ---> IL1B Regulation [83]

IL4R ---> MAPK14 Regulation [200]

IL4R ---> MAPK3 Regulation [156, 201]

IL4R ---> MAPK8 Regulation [156]

IL4R ---> STAT1 Regulation [202, 203]

IL4R ---| FAS Regulation [204, 205]

IL4R ---| IFNGR1 Regulation [202]

IL4R ---| MAPK1 Regulation [206]

IL4R ---| NOS2 Regulation [90]

IL4R ---| TLR4 Regulation [207]

MAPK1 --+> IL4R Regulation [208]

MAPK14 --+> IL4R Expression [209]

MIF --+> IL4R Regulation [210]

RAF1 ---> IL4R Regulation [211]

REL ---| IL4R Expression [212]
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Relation Type Reference

SOCS1 ---| IL4R Regulation [213]

STAT1 ---> IL4R Expression [214]

TNF --+> IL4R Expression [215–219]

TNFRSF1A ---> IL4R Regulation [217]

--+>Positive influence.
---|Negative influence.
(Pathway Studio, Elsevier).
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