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Abstract

Background: Global climate change will noticeably affect plant vegetative and reproductive development. The
recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing
regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not
been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to
abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present
study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental
stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered
according to the developmental stages along their vertical axes. The recently proposed microvine model
(DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent
common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry
heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars
measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using
NimbleGen 090818 Vitis 12X (30 K) microarrays.

Results: Present work reveals significant differences in heat stress responsive pathways according to day or night
treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise
distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts
modulated by heat stress. Important changes in cell wall modification related processes as well as indications for
heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at
later stages.

Conclusions: This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome
of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of
including different developmental stages and especially several daytime points in transcriptomic studies.
Background
Agricultural systems are vulnerable sectors to climatic
variability and global warming. Drawing on the output
from several simulation models, global mean surface
temperature will rise between 1°C and 4.5°C, depend-
ing on future industrial emissions. The most optimistic
estimates point to a 1.8 – 2.5°C warming by the middle
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of the next century [1,2]. Despite their multiple adaptive
responses, most plants suffer reduced productivity when
exposed to prolonged elevated temperatures [3,4]. The
reasons for this decline are not fully understood on a
molecular and physiological basis yet, but many studies
in the current literature have been conducted to further
elucidate this subject [3].
Increasing temperature is altering yields and quality of

important annual global crops such as potatoes, rice, maize
and wheat [5-7] in addition to perennials such as the grape-
vine, almonds, apples, oranges and avocados [8]. The most
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important changes in fruit production are predicted to
occur only at the end of the 21st century [9,10] leaving time
for growers and breeders to adapt cultivation systems,
change varieties or move to different climatic zones.
The grapevine is one of the most cultivated fruits with

a total global surface area of 7.6 million hectares under
vines, where most of it is processed to wine, leading to a
global production of 265 million hectoliters [11]. Climate
change, and in particular temperature increases have led to
an alteration of wine quality and typicity in many growing
regions over recent years [12-14]. This temperature in-
crease will require varietal adaptations within traditional
wine growing regions [15] but will nonetheless significantly
reduce the suitable area for vine growing [16]. The principal
modifications in the grapevine berry due to elevated
temperatures occur during the ripening phase, resulting,
for example in increased malic acid respiration leading
to a drop in total acidity and increased pH [17-20]. Sugar
concentration is usually promoted by high temperatures
[21] leading as consequence to undesirably high alcohol
levels. This combination of circumstances leads to poorly
balanced wines that are microbiologically unstable with
reduced aging potential and varietal aroma [22,23]. It has
also been shown that berry size and weight at harvest are
reduced by temperatures exceeding 30°C [24] in particular
before the ripening phase [25,26]. Anthocyanin content
in berries is usually lowered by high temperatures [27,28]
due to impairment of biosynthesis [29] and/or accelerated
degradation [29,30]. Frequently a shift in metabolites
of the phenylpropanoid pathway is observed which seems
to be highly temperature-sensitive. Tarara et al., 2008 [31]
observed a change in anthocyanin composition with respect
to malvidin-based derivates and Cohen et al., 2012 [32,33]
reported a temperature-induced alteration in proanthocya-
nidin (PA) composition and concentration.
Several thermo-tolerance related genes have been re-

cently characterized in grapevine [34-36]. Molecular
and transcriptomic studies conducted on fruiting cuttings
[35,37,38] led to the identification of genes directly involved
in the heat stress response in the fruit. These studies
provide new clues to the adaptation of the grapevine to
high temperatures. However, the regulation of major
metabolic pathways in response to heat stress within the
fruit is by no means elucidated.
The grapevine berry undergoes marked physiological

changes during its development [39,40]. Its growth pattern
follows a double sigmoid curve [41] where the first phase is
mainly dominated by cell division and enlargement [42], or-
ganic acid and tannin accumulation followed by a lag phase
known as the herbaceous plateau. The transition between
the lag phase and ripening is called véraison and is char-
acterized by abrupt softening of the berry within 24 h.
Most transcriptomic changes are triggered during this
brief transition, before the resumption of berry growth
[39]. The ripening phase can mainly be characterized
by the accumulation of water and sugars, malic acid
respiration and anthocyanin accumulation. The ripen-
ing growth period with its massive phloem unloading
ceases simultaneously when hexose concentrations reach
1.1 M (ripe/maturity stage). Hexoses continue to con-
centrate by berry shriveling, due to evapotranspiration
(over-ripening) [41,43,44].
Climatic chamber experiments are relatively complicated

and costly with perennial plants like the grapevine, which
has an annual reproductive cycle. Therefore, experiments
are usually carried out in the field, where the fine control of
temperature becomes obviously impossible, on the contrary
to water availability. Biases introduced by fluctuations
in the environment are difficult to circumvent and
usually unquantified. Transient variations in direct or
reflected light irradiance, air speed and moisture, may,
through acting on stomatal conductance and plant sur-
face temperature, erratically affect major physiological
processes (respiration, photosynthesis) and thereby genes
expression level. Additionally, unfavorable environmental
conditions may amplify the noticeable asynchrony in berry
ripening due to increasing berry competition for photo-
assimilates [45,46]. The statistical bias resulting from
mixing unsynchronized berries probably masks many
targeted effects in molecular studies. Here we use the L1
gai1 (GA insensitive) mutant of Pinot Meunier L. [47,48]
as a recently proposed model for grapevine research
[49-52]. Its dwarf stature and continuous fructification
along the main axis render it particularly suitable for
experiments in climatic chambers.
Recent microarray screenings of cDNAs have shown

that critical events in the program of berry development
occur specifically at night [53]. Furthermore, the same
study showed that day - night modulated transcripts
differ to a large extent according to berry stage. For ex-
ample, transcripts associated with secondary metabolism
were mainly up-regulated at night in ripening berries,
whereas cell wall synthesis and modification processes
were enriched in night-induced genes at green stages.
To the best of our knowledge long-term effects of moder-
ate temperature gradients have retained most attention on
fleshy fruits and their transcriptomic responses to abiotic
stress have never been characterized during the night
[38]. In those studies, plants had the time to adapt to
their changed environments, which probably masked
many heat-induced transient changes in gene expression
critical for long term adaptation.
The present study is the first where whole plants grown

in climatic chambers under precisely controlled cool
conditions were subjected to a short but abrupt period
of heat stress during day or at night. The microvine
model enabled the application of this stress at several
stages of berry development simultaneously. Changes
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in gene expression under heat stress were analyzed with
whole genome 30 K microarrays (NimbleGen 090818 Vitis
12X) on green berries and two post-véraison stages. Two
sets of gene annotations derived from Grimplet et al.,
2012 [54] and from the NCBI RefSeq [55] database were
used for functional annotations. Depending on the devel-
opmental stage, considerable differences in the response
of berries to heat stress between the day and night were
revealed, emphasizing the necessity to include night-time
in further studies on abiotic stress in plants.

Results and discussion
Stress application and sampling protocol
A short stress period of two hours was applied to whole
plants bearing berries at all reproductive stages from flow-
ering to maturity, following an acclimatization period of ten
days at constant day and night temperatures (22/12°C). The
target heat stress temperature was set at 37°C for both day
and night treatments which may appear as a rather moder-
ate stress for grapevine, that would just impair photosyn-
thesis by 17% [56]. Berries exposed to solar irradiance can
reach temperatures 10°C above those of ambient air [57,58]
and grapevine vacuolar proton-pumps, that play a pre-
dominant role in the energization of the tonoplast are
thermostable up to 65°C [59,60]. However this temperature
triggered maximal expression of the two heat shock pro-
teins At-HSP17.6 and At-HSP18.2 in Arabidiopsis thaliana
[61,62] and several studies indicate that after two hours,
a transcriptomic shift in the heat stress response occurs
in other plant species [61,63].
As Figure 1 illustrates, during the day, this temperature

could be achieved within 15 min and remained fairly
constant with a slight drop during sampling due to the
opening of the chamber. During the night the rise in
temperature took slightly more time owing to the lack
of supplemental warming by the lighting system, which
was switched off. The first stage of fruit development
analyzed was composed of green berries (G) sampled
during the first growth phase where malic acid accumulates
Figure 1 Temperature recordings in climate chambers during stress a
at maximal rate as major osmoticum, while tartaric acid
synthesis has already ceased (as illustrated by the small fruit
size, the lack of hexoses and a ca. 50% load in malic acid:
Table 1). The two consecutive developmental stages were
composed of berries sampled in clusters at and after the
onset of ripening, as estimated by pericarp softening. Due
to a lack of synchronism in the ripening process, single ber-
ries were individually frozen and powdered in liquid nitro-
gen before sugar and organic acid HPLC analysis, in order
to constitute two homogenous batches for RNA extraction,
named VéraisonSugar (VS, 0.16 mol.Kg FW-1 hexoses) and
VéraisonColor (VC, 0.36 mol.Kg FW-1 hexoses; Table 1),
because no coloration could be detected in the VS samples.
These respective values represented 1/7 and 1/3 of hexose
concentration in ripe berries (not shown), indicating that
sugar storage had just began in the VS samples, and pro-
ceeded at maximal rate in the VC ones. Malate breakdown
was negligible between VS and VC, owing to the relatively
cool temperature of the acclimation period. The 2 h 37°C
period was obviously too short to detect the induction of
malate breakdown by heat stress.
Biochemical analysis confirmed that berries within the

VC stage just started to synthesize anthocyanins (Table 1),
with a noticeable delay following the onset of sugar storage.
It is known that conditions prevailing during the night
play an important role in grape berry composition particu-
larly during ripening [64,65]. Heat treatment seemed to
have reduced total anthocyanin content at night by factor
2.5 but not during day. This result, which is in accordance
with long-term temperatures studies, conducted dur-
ing the day [28,56], appears rather surprising given the
short duration of stress application. A previous gene
expression study showed activation of transcripts involved
in secondary metabolism during the night in ripening
berries, but not specifically for anthocyanin-related
transcripts [53]. Since total anthocyanin content was
generally very low in analyzed samples, the observed
difference between stressed and control samples could
be an analytical artefact.
pplication and sampling for day and night treatment.



Table 1 Biochemical characteristics of extracted samples

Stage Treatment Avg berry
weight (g)

Hexoses
(mol.kg.FW-1)

Malate
(μEq.berry-1)

Tartrate
(μEq.berry-1)

Total anthocyanins
(μg.berry-1)

Green Stage (G) CD 0.54 ± 0.08 nd 150 ± 15 97 ± 8 nd

TD 0.51 ± 0.04 nd 155 ± 10 101 ± 7 nd

CN 0.39 ± 0.10 nd 145 ± 12 107 ± 7 nd

TN 0.47 ± 0.03 nd 143 ± 17 102 ± 5 nd

Véraison Sugar (VS) CD 1.7 ± 0.2 0.16 ± 0.06 290 ± 30 110 ± 10 nd

TD 1.6 ± 0.3 0.21 ± 0.03 280 ± 22 108 ± 6 nd

CN 1.3 ± 0.2 0.18 ± 0.03 275 ± 20 105 ± 8 nd

TN 1.4 ± 0.2 0.12 ± 0.01 278 ± 17 103 ± 11 nd

Véraison Color (VC) CD 1.6 ± 0.4 0.35 ± 0.02 262 ± 43 105 ± 8 4.2 ± 1.7

TD 1.9 ± 0.4 0.36 ± 0.03 255 ± 39 103 ± 4 4.6 ± 3.3

CN 1.6 ± 0.3 0.34 ± 0.03 265 ± 40 102 ± 6 8.4 ± 2.3*

TN 1.5 ± 0.3 0.38 ± 0.02 258 ± 37 104 ± 6 2.9 ± 1.6*

CD: Control Day: TD: Treatment Day; CN: Control Night; TN: Treatment Night.
± standard deviation (n = 3).
*significant differences between treatment (p < 0.05).
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Main transcriptional variations induced by high temperature
Principal component analysis of normalized gene expression
data is presented in Figure 2. Despite the fact that berries
were still green in the véraison sugars (VS) samples
and their hexose concentration was only 1/7 of that ex-
pected at the ripe stage (not shown) pre- and post-véraison
berries are clearly distinguished on PC1 accounting for 52%
Figure 2 Principal component analysis on normalized expression data
day; Circles: Green Stage (G); Squares: VéraisonSugar (VS); Triangles: Véraiso
of the variation, which can be explained by the shift in
the berry transcriptome during softening, before or at
the very beginning of sugar accumulation [39,40]. PC2
explained 14% of the variation and accounts for changes
in gene expression triggered by temperature. The varia-
tions due to temperature on PC2 were almost the same
for all developmental stages.
. Red: heat stress; Blue: control; Filled symbols: night; Empty symbols:
nColor (VC).
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A clear day - night separation could be detected with
PC4 (Additional file 1) in the sense that the difference
in gene expression between day and night were notice-
ably impaired by heat stress at all developmental stages.
The expression data was consistent and reproducible
between replicates and therefore considered reliable for
further analysis.
All transcripts differentially expressed between control

and heat stress in at least one of the three developmental
stages and time points were extracted (fold change >2, pval
adj <0.05), yielding a total of 5653 heat modulated genes
(Additional file 2). Venn diagrams (Figure 3) show the
number of transcripts modulated by stress at all stages
separated by day and night. Greater changes in gene
expression were triggered at night, as illustrated by a
1.6 fold increase in the total number of genes induced
or repressed at night. It can be argued that the absolute
applied temperature in the heat treatments was theoretically
the same for both day and night and thus the temperature
gradient between control and heat-stressed plants was
greater at night thereby inducing larger modifications.
However, this seems quite unlikely since, due to the
previously described technical difficulties, stress at the
target temperature was in fact shorter at night, and this
increase in stress-modulated genes at night did not
hold for VS. Interestingly a dramatic five-fold increase
in genes triggered by temperature at night was ob-
served at VC. Analyses of functional categories of heat-
modulated genes are illustrated in Additional files 3
and 4. Temperature stress response, heat shock protein
(HSP)- mediated protein folding and HSP 70 related
categories were induced under in all stages at day and at
night which illustrates that their temperature regulation
prevails over developmental or circadian regulation. Inter-
estingly these categories were least responsive at night in
VS. On the other hand, stage or/and time point specific
Figure 3 Venn Diagrams of up-or downregulated transcripts (fold cha
different developmental stages separately (G: Green, VS: VéraisonSug
heat induction can be observed for some categories, such
as cell wall modification and metabolism in G or xyloglucan
modification only at night in G and VC (Additional file 3).
Amongst heat-repressed transcripts a night specific

repression at VS of stilbenoid and phenylalanine metabolism
and synthesis can be remarked and confirms observations
made in a a previous study [53] where a night up-regulation
of these pathways was observed under controlled con-
ditions. On the other hand pathways such as terpenoid
biosynthesis and metabolism were downregulated only
at day in G (Additional file 4).

Identification of similarly regulated transcripts in
all conditions
In order to identify patterns of gene expression com-
monly regulated during both daytime and night-time
heat stress, the 5653 detected transcripts were allocated
into 8 clusters by hierarchical clustering (Figure 4) before
analyzing the relative enrichment of functional categories
(Additional file 5).
Transcripts consistently induced by heat stress during

all developmental stages were mainly allocated to cluster
2 and 4. In cluster 4, the heat stress response occurred
mainly at VS and was more subtle than in cluster 2. The
HSP (Heat Shock Protein) – mediated protein folding and
temperature stress functional categories were enriched
(Cluster 4; Additional file 5), indicating that the main
heat stress associated transcripts are triggered by
temperature independently of developmental stage and
day time. Conversely, other functional categories exhibited
clear heat stress regulation only at specific stages. For
example cell wall modification related processes pre-
vailed in cluster 5, which includes transcripts mainly
modulated by heat stress in green berries and subse-
quently repressed in later stages. Transcripts consist-
ently repressed by temperature can be found in cluster
nge > 2; padj < 0.05) between control and heat stress at the
ar, VC: VéraisonColor) for DAY (left) and NIGHT (right).



Figure 4 Cluster with their centroid graphs identified by hierarchical clustering on averaged and mean centered expression values of
all modulated transcripts. Stages are ordered according to developmental stage form the left: G (Green), VS (VéraisonSugar), VC (VéraisonColor),
day and night and Control (C) and Heat Stress (HS).
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1 and clusters 7. In the latter, down-regulation appears to
be less pronounced and enriched categories of allocated
transcripts were principally related to hormone signaling,
primary metabolism and some secondary metabolism. This
suggests that genes within these families respond less or at
a slower rate to temperature increases.
Some clusters can be attributed to genes that showed

clear heat stress regulation only at specific stages. For
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example cluster 5, which comprises transcripts mainly
modulated by heat stress in green berries and subse-
quently repressed during ripening is dominated by
modification of cell wall-related processes. Clusters 3,
6 and 8 are dominated by developmentally-regulated
genes. Cluster 6 comprises genes modulated between
G and VS that become more responsive to diurnal
changes and stress at VC. Transcripts within this cluster
can be attributed to the biosynthetic pathway of flavonoids
and xyloglucan modification, which were both considerably
over-represented. This first global analysis demonstrates
that functional categories related to processes other than a
response to heat stress response do exhibit a very different
thermal modulation according to developmental stage.

High temperature induced heat shock related genes
whose modulation varied little along stages and day time
Functional categories within heat stress-induced tran-
scripts (Additional file 3) were mainly related to abiotic/
temperature stress response and Heat Shock Protein
(HSP)/Chaperone - mediated protein folding. This was
consistent at all stages during the day and at night. A
more detailed illustration of heat-modulated transcripts
is given in the MapMan graph (Figure 5). This figure
differentiates night-specific genes from those modulated
by heat stress in an experiment, which only considers
daytime stress. In regards to heat shock protein category
it can be observed that most of the heat shock respon-
sive genes were heat induced during the day and at
night, whereas only a small number of the latter were
specifically night-modulated which was most apparent
in green berries (G).
Similar categories were shown to be modified by

temperature in a previous study with fruiting cuttings
[38]. The short heat stress period of 2 h in the present
study presumably enhanced the induction of these
transcripts in which over-expression was not observed
with longer temperature treatments in other studies
where plants started to adapt to their changed conditions
[66-68]. Heat-shock proteins (HSPs)/chaperones are
responsible for protein folding, assembly, translocation
and degradation in many normal cellular processes; they
stabilize proteins and membranes, and can assist in protein
refolding under stress conditions thus preventing the for-
mation of abnormally folded protein structures [69]. HSPs
have been shown to be a prerequisite in plant thermo-
tolerance [34,70-72] and other abiotic stresses [73].
The expression of HSPs in response to various stimuli

is regulated by heat shock transcription factors (HSFs)
[72]. In this study several HSFs were induced upon heat
stress, most of them regularly amongst all conditions and
stages. Yet, some displayed quite interesting modulation
patterns. A HSF (VIT_04s0008g01110; cluster 8) was con-
sistently up-regulated by heat stress, but this induction
was more pronounced at night than during the day, irre-
spective of developmental stage. The latter locus is anno-
tated HSFA6B according to Grimplet et al., 2012 [54] and
HSF30-like according to RefSeq [55], and was previously
identified and named VvHsfA2 in heat stressed Cabernet
Sauvignon berries [35]. A heat shock transcription factor
B2B (VIT_02s0025g04170; cluster 4) involved in pathogen
resistance in Arabidopsis thaliana [74] was also induced at
all stages by thermal stress during the night only. Several
transcripts coding for members of the family of ethylene
responsive transcription factors (ERFs), which are thought
to intervene in the regulation of abiotic stress response,
acting upstream of HSFs [75,76] exhibited a very distinct
modulation: VIT_04s0008g06000,VIT_18s0001g03120;
VIT_18s0001g05850; VIT_16s0013g00980 and VIT_
16s0013g01000 were all activated by heat stress but
only at night in green berries. This stage-specific
temperature response of ERFs is amplified by an over-
representation of this functional category in cluster 5
(Figure 4; Additional file 5).
Amongst heat shock transcription factors, we also

detected MBF1c (VIT_11s0016g04080; cluster 8) induced
at all stages and MBF1a (VIT_19s0014g01260; cluster
8) at night in VC. MBF1c did not show differences in
day/night stress regulation in VS and VC, but in green
berries, its response was more than two fold greater at
night than during the day. MBF1c acts upstream to
salicylic acid, ethylene and trehalose in the heat stress
response of Arabidopsis thaliana [77,78] where its reg-
ulon was previously characterized [77]. The putative Vitis
vinifera orthologs of the genes inside the Arabidopsis
MBF1c regulon were identified amongst those probed
by the NimbleGen 090818 Vitis 12X microarrays. The
expression matrix illustrated in Figure 6 confirms that
most of these transcripts were actually induced by heat
stress in grapevine berries as well. However their response
was less significant in the green berry, with even inversions
in some cases.
The present results suggest that the expression of some

heat shock transcription factors is correlated with the
temperature gradient, which was greater for the night heat
stress treatment. Conversely, the regulation of other heat
shock transcription factors seems to be triggered as soon
as heat stress is experienced by the plant, regardless of the
temperature gradient, berry stage or time of day.
Galactinol (GOL) and other raffinose (RFO) oligosac-

charides accumulate in response to heat stress in plants
and can act as osmoprotectants in cells [79]. Galactinol
synthase (GOLS) catalyses the first committed step in the
RFO biosynthetic pathway, synthesizing galactinol from
UDP-D-galactose and myo-insositol. It has been identified
and characterized previously as day heat-responsive gene
in Cabernet Sauvignon L. berries exposed to elevated tem-
peratures [35]. Here, seven transcripts annotated as GOLS



Figure 5 MapMan overview of day and night modulated transcripts at the three different stages: G (Green), VS (VéraisonSugar) and
(VC) (VéraisonColor). Left: up-regulated transcripts; Red: day and night modulated; Blue: night-specific; Right: down-regulated transcripts; Green:
day and night modulated, Blue: night-specific. Scale in log2 control/stress.
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[54] or glycogenin-2 [54] were detected. Only two of
these showed consistent induction in response to heat
stress at several stages (VIT_07s0005g01970; cluster 2 and
VIT_14s0066g02350; cluster 5) whereas VIT_07s0005g01970
corresponds to the VvGOLS1 gene characterized in previous
temperature studies by Pillet et al., 2012 [35].
The same inconsistent regulation of transcripts anno-
tated as raffinose synthase [54] or as galactinol-sucrose
galactosyltransferase in the RefSeq [55] annotation was
observed: VIT_17s0000g08960 was allocated to cluster
2 thus induced by stress at several stages whereas
VIT_14s0066g00810 was assigned to cluster 1 exhibiting



Figure 6 Expression matrix of MBF1c regulon transcripts from Arabidopsis thaliana identified in NimbleGen 090818 Vitis 12X microarrays.
Scale is in log2 change between control and heat treatment.
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tendencies of down-regulation. Carbonell-Bejerano et al.,
2013 [38] observed the induction of an osmotin transcript
(VIT_02s0025g04340) indicating its putative function in
activating osmoprotection in response to elevated tem-
peratures. Conversely, in this study, this transcript and
three other osmotin-coding genes were down-regulated
by heat stress at VS during the day, which brings into
question the actual role of this gene in response heat
stress in grapevine fruits.

Phenylpropanoid and in particular anthocyanin-related
transcripts are impacted by short heat stress
Phenolic compounds are major wine quality determining
substances derived via the phenylpropanoid pathway. They
are largely responsible for the color and astringency of wines
and are attributed to various physiological benefits associated
with moderate wine consumption [80]. Phenolic compounds
comprise a range of structural classes such as lignins, phen-
olic acids, flavonoids and stilbenes [81]. The MapMan over-
view in Figure 5 illustrates the importance of daytime and
developmental stage on the heat response of transcripts
within secondary metabolism where phenylpropanoid and
flavonoid pathways are mainly temperature-affected at VS
at night. Several phenylalanine ammonia-lyase (PAL) cod-
ing transcripts (VIT_16s0039g01100, VIT_16s0039g01120,
VIT_16s0039g01130, VIT_16s0039g01240; cluster 7), the
key enzyme of the phenolpropanoid pathway [82] were re-
pressed by high temperature during the night at VS only.
The same pattern could be detected for chalcone syn-
thase (CHS), the first committed enzyme in flavonoid
biosynthesis [83]; three CHSs transcripts were strongly
down-regulated by heat stress at VS at night (VIT_
14s0068g00930,VIT_14s0068g00920,VIT_16s0100g00860).
VIT_16s0100g00860 is probably not correctly annotated
in Grimplet et al., 2012 [54] since it is named stilbene
synthase (STS) in RefSeq [55]. This annotation prob-
lem is probably due to the high number of STS in the
grapevine reference genome (PN4002), its evolution
and hence high similarity to CHS. STSs and CHSs are
both members of the type III polyketide synthases family,
whereas STSs play an important role in the adaptation of
plants to abiotic stresses [84].
Transcripts involved in flavonoid synthesis were

found to be repressed by heat stress at VS, such as UDP-
glucose:flavonoid 7-O-glucosyltransferase transcripts (VIT_
05s0062g00660, VIT_05s0062g00700, VIT_05s0062g00270,
VIT_05s0062g00710, VIT_05s0062g00350), several STS
coding transcripts such as VvSTS18 (VIT_16s0098g00860)
[85], which is not correctly annotated in Grimplet et al.,
2012 [54] and RefSeq [55], and a resveratrol synthase
(VIT_16s0100g01070).
Proanthocyanidins (PAs) are polymers of flavan-3-ol

subunits often called condensed tannins that also derive
from the phenylpropanoid pathway. They protect plants
against herbivores, and UV radiation; they are important
quality components of many fruits and constitute the
majority of wine phenolics [86]. Two enzymes, leucoantho-
cyanidin reductase (LAR) and anthocyanidin reductase [87]
can produce the flavan-3-ol monomers required for the
formation of PA polymers [88]. Indications exist that
increased temperature enhances the production of PA in
grape berries [32,33]. The present study could not confirm
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these results since a LAR transcript (VIT_01s0011g02960)
was found to be repressed by heat stress at VS at night
in addition to an ANR (VIT_00s0361g00040) in green
berries at night.
Anthocyanins belong to the group of flavonoids which

are plant pigments responsible for red, blue and purple
color of plant tissue and whose accumulation is often in-
duced by abiotic stress [89,90]. Several studies report an in-
crease in their accumulation during berry ripening in low
temperature conditions and vice versa [25,31,91]. However,
not all genes involved in anthocyanin biosynthesis showed
unambiguous repression by high temperature in previous
field studies [29,30], contrary to detached fruits in vitro,
[92]. In field experiments, Yamane et al., 2006 [93] found
VvMYBA1, which controls anthocyanin biosynthesis in
grapes [94-97] to be repressed by heat, however, this
was not confirmed in fruiting cuttings despite repres-
sion by temperature of several anthocyanin transporters
(VvanthoMATE/VvAM1 and VvAM3) downstream to
VvMYBA1 [38].
Several transcripts of the late anthocyanin biosynthesis

pathway were actually repressed by temperature in
this study. Heat repression at night was more evident
as was their nighttime expression compared to daytime
expression. VvMYBA1 isogenes (VIT_02s0033g00380,
VIT_02s0033g00410, VIT_02s0033g00440; cluster 8) were
down-regulated by heat stress only at VS, both during
the day and at night, consistently with Glutathione
S-transferase GST (VIT_04s0079g00690), Caffeoyl-CoA
O-methyltransferase (AOMT1; VIT_01s0010g03510) and
VvanthoMATE3, which specifically mediates the trans-
port of acylated anthocyanins. All these transcripts were
shown to be correlated with anthocyanin accumulation
and trans-activated upon ectopic expression of VvMYBA1
[89-91]. Surprisingly, UFGT (UDPglucose: flavonol 3-O-
glucosyltransferase) at the last step of anthocyanin biosyn-
thesis [94,98,99] did not correlate with the expression
of VvMYBA1, and even appeared to be heat-induced
during the day. The expression profiles of these genes
were duly validated by real time PCR in order to con-
firm microarray data (Additional file 6).
This immediate response by processes involved in

secondary metabolism is remarkable given the brevity
of the heat stress applied and has not been observed
hitherto in temperature experiments on grapevine ber-
ries. It demonstrates that changes in gene expression
involving secondary metabolism occur at the onset of
sugar loading, before any changes in coloration can be
detected. It has been shown here that coloration may
be significantly delayed as compared to hexose accu-
mulation, and that transcriptomic effects are usually
masked by berry heterogeneity within bunches around
véraison. Presumably the use of reconstructed groups
of samples after single berry biochemical analyses and
the inclusion of night sampling enabled the observation
above to be made. Further work is required to validate
that UFGT may escape from the VvMYBA1 regulon
upon heat stress at the very early stages of berry ripen-
ing which may however be consistent with its role as
quercetin-glucosyl-transferase [96].

Evidence of a reduction in aromatic potential in
grapevine berries exposed to high temperatures
Low temperatures favor aroma production in grape-
vine berries especially during ripening [64,65]. This is
well manifested in the enhanced aromatic potential of
cool climate white wines [12] made from cultivars such as
Gewürztraminer, Sauvignon Blanc or Riesling where major
aroma compounds are isoprenoids, notably monoterpenes.
Consequently, elevated temperatures potentially reduce the
aromatic potential of grapevine fruit [100,101]. The present
study supports this observation from a transcriptional
point of view. High temperatures impaired the expression
of 1-deoxy-D-xylulose-5-phosphate synthase transcripts
(VIT_11s0052g01730, VIT_11s0052g01780; cluster 7) re-
quired for isopentenylpyrophosphate (IPP) synthesis, the
universal precursor for the biosynthesis of terpenes [102].
Several transcripts coding for geraniol 10-hydroxylase,
an enzyme thought to play an important role in indole
alkaloid biosynthesis [103], were down-regulated at
night by high temperatures at VS. However these tran-
scripts are annotated as cytochrome P450 in the
RefSeq [54] database. Further evidence for the impair-
ment of terpene production arises from the repression
at all growth stages of transcripts coding (-)-germacrene
D synthase, a sesquiterpene synthase characterized re-
cently in grapevine berries [104] (VIT_19s0014g02560,
VIT_19s0014g02590; cluster 8, and VIT_19s0014g04840,
VIT_19s0014g04880; cluster 3), in addition to linalool syn-
thase (VIT_00s0271g00060; cluster 3; annotated nerolidol
synthase in RefSeq [55]) which catalyses the formation
of the acyclic monoterpene linalool from geranyl pyro-
phosphate [105].
Carotenoids play also an important role in wine fla-

vor since they can be cleaved and their concentration
is directly linked to C13-norisprenoids [106]. The C13-
norisoprenoids identified in wine with important sen-
sory properties are TCH (2,2,6-trimethylcyclohexanone),
β-damascenone, β-ionone, vitispirane, actinidiol, TDN
(1,1,6-trimethyl-1,2-dihydronaphthalene), Riesling acetal
and TPB (4-(2,3,6-trimethylphenyl)buta-1,3-diene) [107].
The first committed step in carotenoid biosynthesis is the
production of 40-carbon phytoene from the condensation
of two geranylgeranyl pyrophosphate (GGPP) molecules,
catalyzed by the phytoene synthase (PSY) enzyme. As a
result of thermal stress, a repression of a GGP synthetase
1 (VIT_18s0001g12000; cluster 7) was observed at night
in G and VS.
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Indication that heat stress delays fruit ripening
Increasing evidence suggests that the hormone abscissic
acid (ABA) is involved in the initiation of berry ripening
and sugar accumulation [108,109]. The plastidial enzyme
9-cis-epoxy-carotenoid dioxygenase (NCED) catalyses the
first committed step in ABA biosynthesis by producing
xanthoxin [110]. Several NCED isogenes were consistently
repressed by heat stress at VS and VC, in addition to
two putative ABA receptors (VIT_08s0058g00470; clus-
ter 1 and VIT_15s0046g01050; cluster 7). High tem-
peratures have been reported to delay and even stop
ripening and sugar accumulation in several experiments
[26,28,111-113]. The present indications of a decrease in
ABA synthesis and thus a delay in the onset of ripening
are supported by the repression of different sugar trans-
porters (STPs; VIT_09s0018g02060, VIT_13s0019g01320,
VIT_13s0019g01400 cluster 8 and VIT_00s0181g00010,
cluster 1). They were only repressed in the first véraison
stage (VS) and even appeared to be induced on the later
stage (VC), especially at night. These results thus confirm
a putative delay of ripening induced by high temperatures,
but only when heat is applied at the very early stages of
sugar accumulation. At the stages when sugars accumu-
late at maximal rate, the molecular data suggests that
sugar accumulation is accelerated by elevated tempera-
tures. This is in agreement with general observations by
viticulturists that moderately warm temperatures favor
sugar accumulation during ripening [21,112,114] leading
to wines higher in alcohol in warm climates and seasons.
In a previous study on fruiting cuttings ABA levels were
significantly increased by high temperature after 45 but
not after 14 days of post-véraison heat treatment [38].
This is consistent with our results where the repression of
ABA synthesis genes in berries at véraison is inversed at
the more developed stages. This is the first time where
molecular data in the same experiment suggests a delay in
and an acceleration of sugar accumulation in berries in re-
sponse to high temperatures depending on berry stage
where stress is applied. This illustrates the importance of
precise stage selection of post-véraison berries if a precise
deciphering of molecular changes is to be obtained.

Proline biosynthesis seems to be activated upon heat
stress whereas other genes involved in amino acids
biosynthesis did not show consistent modulation
Proline (Pro) and Arginine (Arg) constitute up to 70% of
total nitrogen in grapevine berries at maturity. Pro accumu-
lation is induced during ripening [115,116] and is amplified
in berries exposed to higher temperatures [19]. Pro accu-
mulation has been associated with various stresses in eu-
bacteria, protozoa, marine invertebrates and plants. In this
study a transcript coding for a delta 1-pyrroline-5-carboxyl-
ate synthetase (P5CS; VIT_15s0024g00720; cluster 4) was
up-regulated by heat stress during the day at VS. P5CS is a
bifunctional enzyme catalyzing the activation of glutamate
by phosphorylation and the subsequent reduction of the
labile intermediate c-glutamyl phosphate [117,118]. This
is consistent with the fact that a glutamate synthase
(VIT_12s0055g00620; cluster 5) and several glutamate
receptors isogenes were up-regulated by heat treatment at
G at night. These observations concur with the role of Pro
in the adaptation of the berry to a wide range of abiotic
stresses (including water deficit); these transcripts were
induced by water deficit in Cabernet Sauvignon and
Chardonnay berries in a previous study [119].
Most of other amino acid-related transcripts were

repressed by high temperatures. This is in agreement
with current understanding where a modification of
amino acid content by heat stress is generally not observed.
Carbonell-Bejerano et al. [38] reported no common pattern
of amino acid accumulation due to the effect of high
temperature. They did find that the concentration of
some amino acids increased by high temperatures namely,
tyrosine, valine, methionine and ornithine in fruiting
cutting at 14 days after the start of treatment, but that
this difference disappeared at 45 days. In this study,
transcripts associated with amino acid synthesis observed
in microvine berries did not confirm the above findings, as
most of genes related with the biosynthesis of the above-
mentioned amino acids were either not detected or were
found to be repressed by heat stress. However, an alanine-
glyoxylate aminotransferase (VIT_08s0058g00930; cluster 7)
and three aspartate aminotransferases (VIT_08s0058g01000;
cluster 5, VIT_04s0008g04250; cluster 4 and VIT_
12s0055g00920; cluster 8) transcripts were observed
to be highly up-regulated by heat stress at all stages,
with the exception of G during the day.
The tripeptide glutathione comprising the amino acids

Gly, Cys and Glu is often associated with oxidative stress,
acting as a reactive oxygen species (ROS) scavenger in
plants [120]. Many glutathione S-transferases coding tran-
scripts were modulated by heat stress but a clear pattern
did not emerge. In ripening berries stress-induction was
evident only at night, which calls into question its role
in the heat shock response of the berry. In temperature
experiments on fruiting cuttings down-regulation of two
transcripts coding for cationic amino acid transporters,
VIT_10s0003g04540 and VIT_13s0073g00050, thought to be
involved in cellular import of amino acids [121], is reported
[38]. The authors hypothesized that this repression could
compensate for probable greater transport activity resulting
from higher membrane fluidity at elevated temperatures.
The present study would partially confirm this as it was
observed that the same isogenes were allocated to cluster 7,
and thus down-regulated at G and VS stages only at night.
Additionally, and pointing in the same direction, several his-
tidine/lysine transporter transcripts were repressed by stress
mainly at night and at all developmental stages.
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Malic enzyme and mitochondrial transporters were
activated by high temperatures
Temperature stimulates the respiration of malic acid in
grapevine fruit leading to a decrease in total acidity under
warm climatic conditions [17-20]. However, the trigger and
principal pathways of malic acid degradation have not been
entirely resolved [122-125]. Degradation can take place by
oxidation to pyruvate via malic enzyme (ME), with pyruvate
entering the TCA cycle either directly [126], or following
ethanol recycling via the pyruvate dehydrogenase bypass
[39]. Alternatively, oxaloacetate (OAA) formed by malate
dehydrogenase (MDH) constitutes the entry point for
neoglucogenesis, before PEP formation catalyzed by
phosphoenolpyruvate carboxykinase (PEPCK) [123]. PEPCK
enzyme activity [127] and transcript abundance [39,128] are
increased in post-véraison grapes. However, neogluco-
genesis is an energy-consuming process, which would
be inhibited by stress. Under heat stress, a PEPCK isogene
(VIT_00s2840g00010; cluster 7) was down-regulated at all
stages. Furthermore, simultaneous thermal up-regulation
of MDH and ME coding transcripts (VIT_19s0014g01640
and VIT_00s0279g00080, cluster 4) was observed dur-
ing the day and at night at VS, when malate breakdown
occurs at maximal rate. Two additional MEs isogenes
(VIT_04s0008g00180, VIT_02s0012g02460; cluster 8) were
increasingly up-regulated at all stages towards ripening, but
only at night. This indicates that at elevated temperatures,
the oxidation of MA by ME and MDH is favored when
compared to the neoglucogenesis pathway. Moreover,
two alcohol dehydrogenase transcripts (VIT_04s0044g01120,
VIT_04s0044g01130; cluster 8, annotated as ADH2 [54] or
ADH1 [55], the first ripening-related enzyme found in grape
[123] were activated by heat stress at night at all stages,
while an ADH (VIT 04s_0023g02810, cluster 8) was induced
at night in VS and VC. Ethanolic fermentation of malic acid
scavenges two protons from the cytosol, thereby allowing
the efflux of vacuolar malic acid to transiently exceed
the capacity of its respiration and neoglucogenesis, dur-
ing warm nights. Aerobic fermentation enhanced by ele-
vated temperatures in ripe detached berries [129] may
represent a vital adaptation to heat stress once malate
breakdown has been induced in parallel with increased
permeability of the tonoplast [130].
The supposed function of tonoplast dicarboxylate trans-

porters (TDT) in malic acid degradation, transporting
MA from the vacuole to the cytoplasm where it can be
catabolized, was recently proposed [123,128]. Aluminium-
activated malate transporters (ALMT) are involved in
vacuolar malate transport in Arabidopsis thaliana [131]
and a truncated isogene has been associated with low
fruit acidity in apples [132]. ALMT transcripts showed
consistent up-regulation in ripening berries [53].
VvALMT9 acts as a typical inward rectifying chan-

nel directing anion fluxes to the vacuole [133] so its
up-regulation in ripening berries matches the activation of
H+ pumps counteracting excessive acid decompartmenta-
lisation during ripening [134]. In this study, VvALMT9
(VIT_17s0000g03850, cluster 8) was repressed by short
stress during the day in VC, which confirms previous find-
ings in long stress studies [38]. This indicates that the
energy-wasting process of malic acid re-entry into the
vacuole is transcriptionally repressed by stress, promoting
the net release of malic acid at higher temperatures.
Recent research into malic acid focused on dicarboxylate/

tricarboxylate transporters (DTCs) belonging to the mito-
chondrial family (MCF). MCF’s transport different metabo-
lites (di- and tricarboxylates, amino acids, keto acids in
addition to nucleotides and coenzymes/cofactors) across the
inner mitochondrial membrane [135,136]. DTC’s can trans-
port all the di- and tricarboxylates of the TCA cycle with
the exception of fumarate, and they exhibit a high spe-
cificity for malate. The expression of two DTCs genes
(VvDTC2 and VvDTC3) correlated well with the malic
acid content in grape berry mesocarp close to the onset
of ripening, and might be involved in the transport of
malate into mitochondria [137]. In response to heat
treatment, it was found that a large number of DTC
isogenes, (VIT_00s0607g00010, VIT_00s0827g00020, VIT_
00s0827g00030, VIT_07s0031g02470, VIT_08s0007g07270;
cluster 4; annotated mitochondrial 2-oxaglutarate/malate
carrier protein in RefSeq [54]) were induced especially at
VS were malic acid respiration occurs at maximal rate, thus
implying their putative role in malic acid metabolism. The
whole set of transcriptomic data on soluble enzymes and
mitochondrial transporters clearly confirms accelerated
malate respiration by heat stress in ripening berries.

Temperature impacts cell wall metabolism differently
according to developmental stages
The MapMan graph (Figure 5) indicates a heat induction
of transcripts involved in cell wall metabolism, which is less
night-specific in G than in VS and VC. Curiously, a large
number of transcripts within this category showed heat
repression only at VS, where they seem to respond more
during the daytime (Figure 5). A more detailed analysis of
functional categories enriched by stress (Additional file 3)
showed that these cell wall modifications are mainly due
to modification of xyloglucan, notably transcripts coding
for xyloglucan endotransglucosylases (XETs).
XETs are involved in many processes related to cell wall

modification and remodeling. Xyloglucan (XG) is a primary
cell wall hemicellulose that coats and cross-links cellulose
microfibrils. It is assumed that either breakage of the
cross-links or their disconnection from the microfibrils
is required to allow the microfibrils to move apart, allowing
the wall to expand [138]. XETs can cut and rejoin XG
chains, and are therefore considered as a key agent regulat-
ing cell wall expansion and loosening. They are believed to
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be the enzymes responsible for the incorporation of newly
synthesized XG into the wall matrix [139,140] which can
enable, for instance, fiber elongation in cotton [141].
The large number of temperature-induced XET tran-

scripts in green berries can supposedly be explained by
the adaptation of berry volume to temperature and the
need to render cell walls more flexible. XET transcripts did
show significant up-regulation in green berries during the
night in a previous study [53] which was partly associated
with the pronounced diurnal day - night swelling pattern
of green berries [142]. Surprisingly, many XET’s inverse
their heat response at the VS stage and are again heat-
induced during VC at night (VIT_11s0052g01180; cluster
6,VIT_05s0062g00610; cluster 5). Greer and Weston, 2010
[28] observed an inhibition of berry expansion under heat
stress which could explain the repression of XETs at VS.
It has been reported that the resumption of berry growth
after véraison slightly lags behind the onset of sugar accu-
mulation [143]; and it is probable that heat treatment slo-
wed down sugar accumulation as was shown in previous
studies [28] and delayed thereby the resumption of growth.
A strong co-down-regulation of expansin and expansin-like
(cell wall modification or remodeling enzymes [144]) tran-
scripts at the onset of ripening supports this hypothesis.
Presumably the inversion of XET expression by stress
throughout development can be attributed to berry elasti-
city which increases considerably at véraison, where it coin-
cides with a significant drop in turgor [145]. XET’s seem be
very responsive to the circadian rhythm, temperature and
development stage; further time-course and abiotic stress
studies are required for a greater understanding of their
role in berry development and stress response.

Conclusions
This study investigated the transcriptomic response of
grapevine fruit at three different developmental stages
exposed to heat stress during the day or at night. To reduce
errors due to berry heterogeneity, sugars and acids were an-
alyzed in each individual berry in order to precisely identify
their development stage. In addition, the new microvine
model enabled the execution of whole plant experiments
in climate chambers controlling experimental conditions
to a degree, which was impossible in previous studies.
New clues as to the impact of heat stress on many crit-

ical metabolic pathways involved in grapevine fruit devel-
opment are provided. With precise sampling, deciphering
the fruit response both during the day and at night, the
obtained findings corroborate field experiments, previous
data and empirical observations. New molecular evidence
is provided for empirically observed reductions in acidity,
aromatic potential and secondary metabolites as a result
of elevated temperatures.
The need for strict selection of ripening berries was em-

phasized by transcripts involved in primary and secondary
metabolism pathways (such as malic acid degradation
and anthocyanin biosynthesis) for which the heat response
was detectable only at the reconstituted véraison stage
(VS). The importance of incorporating several time points
in such studies was demonstrated by night specific modu-
lation of key enzymes such as CHS and PAL.
Furthermore, molecular data obtained in this study

corroborates the previously reported delay in the onset
of ripening due to heat stress. Strikingly, this was only
observed immediately after the lag phase, during the
reconstituted VS stage, whereas at more advanced stages
sugar accumulation seems instead to be favored by high
temperatures. Most of the heat stress related transcripts
were modulated independently of stage and time whereas
some such as the heat stress transcription factor B2B
were induced only at night, indicating that no general
regulation pattern throughout berry development exists
even when same treatments are applied. The magnitude
of heat stress-induced transcriptional changes validates
the approach used in this study to apply short but in-
tense heat stress to berries, which can often occur under
field conditions during summer. The present study pro-
vides clues to the transcriptomic adaptation of the berry
to heat stress but as expected no major physiological or
biochemical changes occurred within the short time of
stress application. Therefore long-term studies are re-
quired and are underway to validate results from a more
physiological point of view.

Methods
Plant material
One year-old microvine plants were grown under con-
trolled greenhouse conditions until a whole reproduct-
ive cycle from flowering until maturity was obtained
along the main axis. Two replicates of six plants were
then adapted for one week in two different climate
chambers at a constant day - night temperature couple
of 22/12°C (Photoperiod: 14 h VPD: 1 kPa). Heat stress
was applied 2 hours after sunrise in one cabinet and
two hours after sunset in the other. Stress lasted 2 h
prior to sampling of one cluster at the green stage and
the first three clusters after the lag phase. Seeds were
removed from green berries immediately before freez-
ing in liquid N2. Berries of clusters after the lag phase
were individually wrapped in aluminium foil in order
to avoid splitting during freezing. Seeds were removed
during N2 crushing. Subsequently aliquots of all sam-
pled individual berries were analyzed for organic acids
and sugar in order to constitute homogenous batches
for RNA extraction (10 berries per triplicate). Sam-
pling and the stress application protocol is illustrated
in Figure 1. Control plants were adapted under same
conditions and sampled at the corresponding times during
the day and at night.
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Organic acid and sugar analysis
Organic acid, glucose and fructose analysis was carried
out on approximately 0.1 g of sample powder ground in
liquid nitrogen. Samples were diluted five-fold in deionized
water and frozen at -20°C. After defrosting, aliquots were
heated (60°C for 30 min) homogenized and diluted with
4.375 μM acetate as an internal standard. Sigma Amberlite®
IR-120 Plus (sodium form, 0.18 g) was added to 1 mL of
sample to prevent potassium bitartrate precipitation. Tubes
were agitated in a rotary shaker for at least 10 hours before
centrifugation (13000 rpm for 10 min). Supernatants
were transferred into HPLC vials before injection on
Aminex HPX®87H column eluted under isocratic condi-
tions (0.05 mL.min-1, 60°C, H2SO4) [146]. Organic acids
were detected at 210 nm with a waters 2487 dual ab-
sorbance detector®. A refractive index detector Kontron
475® was used to determine fructose and glucose con-
centrations. Concentrations were calculated according
to Eyegghe-Bickong et al. 2012 [147].

RNA extraction
RNA extraction was performed as described by Rienth
et al., 2014 [148]. Briefly: the extraction buffer contained
6 M guanidine-hydrochloride, 0.15 M tri-sodium-citrate,
20 mM EDTA and 1.5% CTAB. Five volumes of room
temperature extraction buffer supplemented with 1%
MSH were added to 1 g of powder followed by immediate
agitation. Cell debris was removed by centrifugation, after
chloroform washing, one volume of isopropanol was added
to precipitate RNA. Samples are kept at – 20°C for at least
two hours. Precipitated RNA was separated by centrifuga-
tion after cleaning with 75% ethanol, and the pellet was
resuspended in RLC Buffer from the Quiagen rnaEasy®
Kit previously supplemented with 1.5% CTAB. To reduce
pectin and tannin residues, a second chloroform wash
was carried out. The succeeding washing steps and the
DNAse treatment were performed as described in the
kit. Absorbances at 260 and 280 nm were measured
with a NanoDrop 2000c Spectrophotometer Thermo
Scientific®. The integrity of RNA was determined using
a 2100 Bioanalyzer (Agilent Technolgies®).

Microarray analysis
cDNA synthesis, labelling, hybridization and washing
reactions were performed according to the NimbleGen
Arrays User's Guide (V 3.2). Hybridization was performed
on a NimbleGen® microarray 090818 Vitis exp HX12
(Roche, NimbleGen® Inc., Madison, WI), containing 29,549
predicted genes representing 98.6% of the 12X grapevine
gene prediction version V1 http://srs.ebi.ac.uk/. The chip
probe design is available at the following URL: http://ddlab.
sci.univr.it/FunctionalGenomics/.
The Robust Multi-array Analysis (RMA) algorithm

was used for background correction, normalization and
expression levels, [149]. Differential expression analysis was
performed with the Bayes t-statistics from the linear models
for microarray data (limma) [150]. P-values were cor-
rected for multiple-testing using the Benjamini-Hochberg’s
method [151].
Differential expression of genes was analysed between

heat stress and control conditions at all developmental
stages and time points. Transcripts were considered as
significantly modulated when the absolute fold change
was > 2 (log2 fold change > 1) and the adjusted p value
was < 0.05 between heat stress and control at at least one
stage and time point. Hierarchical clustering was carried out
using the Multiple Experiment Viewer® version 4.6.2, using
Pearson’s correlation distance calculated on RMA log2
transformed and mean centered gene expression profiles.
The raw data is available at the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/info/linking.html) under
the series GSE53409.
Gene annotation was derived from Grimplet et al.,

2012 [54]. In order to compare functional annotation,
protein sequences of significantly modulated genes
were BLASTED against the NCBI RefSeq database [54].
Alignment of sequences was considered as acceptable
when the ratio between score and aligned sequence length
was superior to 1.6.
Log2 changes of day + night and night stage-specific

differentially expressed transcripts were integrated using
MapMan® software [142,75]. Functional categories were
derived from Grimplet et al., 2012 [54]. In order to iden-
tify significant enrichment of functional categories Fisher’s
exact test was carried out to compare the genes list with
non-redundant transcripts from the grapevine genome
with the FatiGO analysis tool [152]. Significant enrichment
was considered in case of p value < 0.01 and illustrated as
fold change. To identify the MBF1c Arabidopsis thaliana
regulon sequences, gene numbers were derived from
Suzuki et al., 2011 [78] and correspondence was found
in the uniprot database (www.uniprot.org) and BLASTED
against NCBI RefSeq vitis proteins [54]. The first hit
was retained and sequences were formatted as per the
database. The correspondence with vitis-unique ID gene
numbers was obtained by blastx.

Gene expression validation
cDNA synthesis was performed with ImProm-II TM
Reverse Transcription System from Promega®. Quantitative
real-time PCR expression analysis was carried out using the
StepOnePlus Real Time PCR system (Applied Biosystems®).
Twenty μL reaction mixes were prepared, which included
10 μL of iQ™ SYBR Green Supermix (Bio-Rad), 0.5 μM of
each primer and 5 μL of diluted cDNA. Gene transcripts
were quantified with normalization to VvEF1α as internal
standard. All biological samples were tested in triplicate
and dissociation kinetics were conducted at the end of each

http://srs.ebi.ac.uk/
http://ddlab.sci.univr.it/FunctionalGenomics/
http://ddlab.sci.univr.it/FunctionalGenomics/
http://www.ncbi.nlm.nih.gov/geo/info/linking.html
http://www.uniprot.org/


Rienth et al. BMC Plant Biology 2014, 14:108 Page 15 of 18
http://www.biomedcentral.com/1471-2229/14/108
PCR run. The efficiency of each primer pair was measured
on a PCR product serial dilution. Quantitative real time
q-PCR primers were derived from Cutanda-Perez et al.,
2009 [97]: VvMybA1 (F: TAGTCACCACTTCAAAAAGG /
R: GAATGTGTTTGGGGTTTATC), UFGT (F: GGGA
TGGTAATGGCTGTGG / R: ACATGGGTGGAGAGT
GAGTT), GST (ACTTGGTGAAGGAAGCTGGA / R:
TTGGAAAGGTGCATACATGG), VvanthoMate3 (R:
GCAAACAACAGAGAGGATGC / F: AGACCTCGAC
AATGATCTTAC).

Anthocyanin analysis
One hundred mg of berry powder that was used for RNA
extraction and microarray analysis was used for anthocyanin
analysis. Analysis was performed as described in Agorges
et al., 2006 [153].
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Additional file 1: PC2 vs PC 4 of principal component analysis on
normalized expression data.

Additional file 2: Heat stress-modulated genes.
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transcripts separately analyzed in all developmental stages at day
and night.

Additional file 4: Functional categories of heat stress repressed
transcripts separately analyzed in all developmental stages at day
and night.

Additional file 5: Enriched functional categories over-represented
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