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† Background and Aims The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct
family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key
regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of
OFPs in plant development has been poorly characterized.
† Methods Public databases were searched and a total of 265 putative OVATE protein sequences were identified from
13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis
was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The
expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene
duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato.
† Key Results Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-
diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved
OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for
OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP
family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding
the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expan-
sion of the OVATE gene family.
† Conclusions This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein
family and establishes a solid base for future functional genomics studies on this important but poorly characterized
regulatory protein family in plants.

Key words: OVATE family proteins, OFP, land plants, angiosperm, phylogenetic analyses, Arabidopsis thaliana,
Oryza sativa, Solanum lycopersicum, segmental duplication, tandem duplication.

INTRODUCTION

The OVATE gene was first identified as an important regulator of
fruit shape in tomato, in which a naturally occurring premature
stop codon in OVATE results in pear-shaped fruit with longitudin-
al elongation and neck constriction (Liu et al., 2002). This
revealed a previously uncharacterized class of regulatory genes
in plant development, which encode proteins with a conserved
70 amino acid C-terminal domain. This domain was designated
as the OVATE domain, also known as DUF623 (Domain of
Unknown Function 623), and proteins containing this domain
were designated OVATE family proteins (OFPs), which are
found exclusively in plants (Hackbusch et al., 2005; Wang
et al., 2007, 2011).

To date, OFPs have been primarily characterized in arabidop-
sis (AtOFPs) and demonstrated to regulate plant growth and
development (Hackbusch et al., 2005; Pagnussat et al., 2007;
Wang et al., 2007, 2010; Li et al., 2011). AtOFPs were shown
to have close functional interactions with three amino acid

loop extension (TALE) homeodomain proteins, and AtOFP1
and AtOFP5 regulate the sub-cellular localization of TALE
homeoproteins (Hackbusch et al., 2005). The plant TALE pro-
teins are a conserved superclass of homeodomain proteins char-
acterized by an extension of three amino acids between helices 1
and 2 of the homeodomain (Bertolino et al., 1995), and comprise
two sub-classes called the KNOTTED-like homeobox (KNOX)
and BEL1-like homeodomain (BELL) proteins (Hay and
Tsiantis, 2009, 2010; Hamant and Pautot, 2010). Furthermore,
it has been well documented that interactions between KNOX
and BELL proteins result in heterodimers regulating plant devel-
opment in a connected and complex network (Bellaoui et al.,
2001; Smith et al., 2002; Smith and Hake, 2003; Chen et al.,
2004; Hackbusch et al., 2005; Cole et al., 2006). AtOFP1
has been reported to function as an active transcriptional repres-
sor of AtGA20ox1 in the gibberellin (GA) biosynthesis pathway,
suppressing cell elongation (Wang et al., 2007). A recent
study also indicated that AtOFP1 interacts with AtKu70, a
protein involved in DNA repair through the non-homologous
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end-joining pathway (Wang et al., 2010). Similar to AtOFP1,
AtOFP4 acts as a transcriptional repressor and has been proposed
to form afunctional complex withKNAT7,one of fourclass II ara-
bidopsis KNOTTED1-like Arabidopsis thaliana (KNAT)
members (Hake et al., 2004; Hamant and Pautot, 2010), in regulat-
ing secondary cell wall formation (Li et al., 2011). AtOFP5,
reported to interact with both BLH1 and KNAT3, which belong
to BELL and KNOX sub-classes of TALE homeodomain pro-
teins, respectively (Hackbusch et al., 2005), can act as regulator
of the BELL–KNOX TALE complex involved in normal
embryo sac development in arabidopsis (Pagnussat et al., 2007).
Recently, a genome-wide analysis of AtOFPs revealed conserved
functions as transcriptional repressors, with overexpression
leading to a number of abnormal phenotypes, implying
novel roles in regulating plant growth and development (Wang
et al., 2011).

Gene homologues containing the conserved OVATE domain
have been found in tomato, arabidopsis and rice (Liu et al.,
2002). Furthermore, OVATE-like genes appear to be conserved in
many plant species,with conserved genomic microsynteny discov-
ered not only between Solanaceae relatives (Wang et al., 2008), but
also in distantly related species (arabidopsis, snapdragon, papaya,
poplar, grape and coffee tree) (Causier et al., 2010; Guyot et al.,
2012), suggesting ancestral synteny of these regions in plants. In
pepper (Capsicum annuum), a relative of tomato in the
Solanaceae family, an OVATE family member (CaOvate) was
also shown to be involved in determining fruit shape by negatively
affecting the expression of CaGA20ox1 (Tsaballa et al., 2011).

Despite the aforementioned analyses of OFPs, our knowledge
concerning this protein family remains relatively poor. In this
study, we focused on the evolution of OFPs in land plants by per-
forming, for the first time, a genome-wide comparative analysis
of sequences encoding putative OFPs in a wide variety of plant
genomes. Furthermore, we provided a detailed understanding
of the evolutionary framework of the OVATE family in the
model species arabidopsis, rice and tomato, including investiga-
tion of the expression patterns of SlOFP genes.

MATERIALS AND METHODS

Retrieval of putative OVATE proteins in selected plant genomes

A total of 13 sequenced plant genomes that represent the major
evolutionary lineages of land plants and are available from
public databases (Supplementary Data Table S1) were selected
for the phylogenetic analysis of OVATE proteins. These were:
Solanum lycopersicum, S. tuberosum and Mimulus guttatus
from the asterid clade of core eudicots; Arabidopsis thaliana,
Vitis vinifera, Populus trichocarpa, Prunus persica and Carica
papaya from the rosid clade; Aquilegia coerulea representing
the basal eudicots; Oryza sativa and Zea mays representing the
monocots; and finally Selaginella moellendorffii and Physcomi-
trella patens representing lycophytes (seedless vascular plants)
and bryophytes (mosses; non-vascular plants), respectively.
Two strategies, a BLAST search and a keyword search, were
adopted to identify the putative OVATE proteins. The amino
acid sequences of well-studied OVATE proteins, namely
AtOFPs in arabidopsis (Wang et al., 2011) and the wild-type
OVATE protein in round-fruited tomato (AAN17752; designated
SlOFP1) were used as queries for TBLASTN searches of the

selected plant genomes. A BLAST search against the maize
genome was also carried out using putative rice OVATE protein
sequences as queries. All homologues with E , 10 were retrieved
for subsequent analyses. A key word search in the phytozome
(v8.0) database (http://www.phytozome.net/) for putative
OVATE proteins was conducted by searching ontologies with
the term ‘PF04844’.

From all searches, two previously unpublished AtOFPs were
identified: At2g36026 (designated AtOFP19) was identified
from a TBLASTN search against the TAIR (The Arabidopsis
Information Resource 10.0) database (http://www.arabidopsis.
org/index.jsp) using SlOFP1 as the query; while At1g06923
(designated AtOFP20) was detected in a segmental duplication
block by the PGDD (Plant Genome Duplication Database,
http://chibba.agtec.uga.edu/duplication/) as a putative paralogue
of At2g30395 (AtOFP17; see below for details). All search
results were collated and manually curated to produce a non-
redundant data set that was then subjected to a CDD (Conserved
Domain Database) search (http://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml;Marchler-Baueretal., 2011) for theveri-
fication of the OVATE domain (PF04844). All sequences were
thus verified, with the exception of SlOFP16, as well as
AtOFP17, AtOFP20 and their orthologues. SlOFP16 no longer
seems to possess the OVATE domain, whereas the AtOFP17/
20-like proteins have a divergent but still recognizable OVATE
domain in the multiple alignment with other OVATE proteins
(Supplementary Data File S2). Excluding SlOFP16, a total of
265 putative OVATE protein sequences were obtained from the
13 selected plant genomes. The nomenclature of all the putative
OVATE proteins is listed in Supplementary Data Table S2.

Phylogenetic reconstruction and motif analysis

Multiple sequence alignment of all 265 full-length putative
OVATE protein sequences was performed using MUSCLE
(http://www.ebi.ac.uk/Tools/msa/muscle/; Edgar, 2004). PtOFP5
and ZmOFP42 were re-annotated because of an insertion of 59
amino acids in the conserved OVATE domain (see
Supplementary Data File S1). Given the high degree of diversity
among the full-length OVATE protein sequences, phylogenetic
analysis was conducted on the alignment of the conserved
OVATE domain. Alignments were manually revised in BioEdit
(Hall, 1999), and the resulting alignment of 86 amino acid sites
was used for maximum likelihood (ML) analysis using
RAxML 7.0.4 (Stamatakis, 2006), with the BLOSUM62 amino
acid substitution matrix and CAT approximation, and 200 boot-
strap replicates. The phylogenetic relationships of OVATE pro-
teins in arabidopsis, rice and tomato were also estimated
separately using MEGA 4.0 (Kumar et al., 2008) with the
Neighbor–Joining (NJ) method based on the p-distance
model, pairwise deletion and 1000 bootstraps. Trees were
visually inspected and edited in Dendroscope (Huson et al.,
2007). Since there was no prior information on placement of
the root, trees were rooted with midpoint rooting. The MEME
(version 4.9.0) motif search tool (http://meme.nbcr.net/meme/
intro.html; Bailey et al., 2009) was used to detect conserved
motifs within related OFPs with the following parameters:
maximum number of motifs: 10; 4 ≤ motif width ≤ 70; 2 ≤
number of sites ≤ 300. The sequence logos and E-values for
each motif are indicated in Supplementary Data Fig. S1.
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Molecular evolutionary analysis

In order to estimate the evolutionary rate for each sub-group,
first whole cDNA sequences from each sub-group were retrieved
and aligned with the corresponding alignment of protein
sequences as reference using PAL2NAL (Suyama et al., 2006).
Then, aligned codon sequences encoding the OVATE domain
were selected for estimating the ratio of dN (the number of non-
synonymous substitutions per non-synonymous site) to dS
(the number of synonymous substitutions per synonymous site),
i.e. the v ratio, by the CODEML implemented in PAML 4.6
(Yang, 2007). The average v ratio of each group was estimated
with the one-ratio site model M0 (NSsites ¼ 0, model ¼ 0),
which assumes that all sites across the phylogeny evolve with
the same v ratio. To determine whether some branches
evolve under positive selection (v . 1), the v ratio of each
branch was estimated under the assumption of a free ratios
model (NSsites ¼ 0 and model ¼ 1).

Inference of duplication and loss of OVATE family genes

The ML tree based on the conserved OVATE domain was
reconciled with the known species tree in Notung 2.6 (Durand
et al., 2006; Vernot et al., 2008) to infer possible gene duplica-
tion and loss events. Rearrangement producing alternative
event histories with a minimum duplication/loss score was per-
formed to avoid overestimation of gene turnover along all
lineages.

Chromosomal localization of OVATE genes in arabidopsis,
rice and tomato

The chromosomal localization of AtOFP genes in arabidopsis
was visualized using the Chromosome Map Tool available at
TAIR (http://www.arabidopsis.org/jsp/ChromosomeMap/tool.
jsp). The chromosomal locations of OsOFP genes in rice and
SlOFP genes in tomato were generated by the rice genome
browser at the MSU RGAP (Rice Genome Annotation Project)
database (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/),
and the tomato genome browser at the SGN (Sol Genome
Network) database (http://solgenomics.net/gbrowse/bin/gbrowse/
ITAG2_genomic/), respectively.

Determination of gene duplication pattern

The pattern of OVATE gene duplication resulting in the expan-
sion of the OVATE gene family was determined in arabidopsis,
rice and tomato. If paralogues were either adjacent or separated
by ≤ 5 genes along a chromosome they were assigned as dupli-
cates by tandem duplication (Zhao et al., 2010; Xia et al., 2011).
If paralogues were within known genomic duplication blocks,
they were considered to be duplicated through segmental duplica-
tion. The Locus Search Tool at the PGGD (Plant Genome
Duplication Database, http://chibba.agtec.uga.edu/duplication/)
was used to determine if the AtOFP genes, OsOFP genes and
SlOFP genes existed within genomic duplication blocks.The pres-
ence of OsOFP genes in segmental duplication blocks was also
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FI G. 1. A simplified cladogram of the species selected for screening putative OVATE proteins in this study. Figures in the right column indicate the total numbers of
OVATE proteins found in each species. Figures above branches represent the estimated numbers of gene duplication (green before the forward slash) and loss (blue after
the forward slash) events in different species and species split nodes using Notung 2.6, with no estimation of gene losses/duplications for the lineages of Mimulus

guttatus and Oryza sativa. ‘N/A’ in red indicates the current lack of genome sequence data for streptophytes.
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investigated using the rice segmental duplication block database at
MSU RGAP (http://rice.plantbiology.msu.edu/segmental_dup/
index.shtml). Given that synonymous substitution rates (Ks)
within duplicated genes are postulated to be similar, Ks values
can be used as the proxy for time (Shiu et al., 2004). The Ks
values of paralogues in segmental duplication blocks were
retrieved from the PGDD or, in the case of OsOFP23 and
OsOFP30, from the rice segmental duplication block database at
MSU RGAP computed by the KaKs_calculator (Zhang et al.,
2006). The timing of duplication events can be estimated using
the Ks value and a given clock-like rate, l, through the formula
T ¼ Ks/2l, where for arabidopsis and tomato, l ¼ 1.5 × 10–8

substitutions per synonymous site per year, while for rice, l ¼
6.5 × 10–9 substitutions per synonymous site per year (Blanc
and Wolfe, 2004; Liu et al., 2010).

Quantitative real-time PCR of SlOFP genes

Quantitative real-time PCR was performed on a round-fruited
tomato variety ‘Stupicke’. Total RNA was isolated from root,
leaf, sepal, petal, stamen, pistil, green fruit and red fruit tissue
(Trizol, Invitrogen). First-strand cDNA was synthesized using
the PrimeScriptw RT reagent Kit with gDNA Eraser (TaKaRa).
Quantitative real-time PCRs were carried out in 20 mL with 2
mL of first-strand cDNA (20 ng mL–1), 10 mL of 2 × SYBR
Premixw ExTaq

TM

(TaKaRa), 0.5 mL of 50 × ROX reference
dye II (TaKaRa) and 0.8 mL of both forward and reverse
primers (10 mM) in an ABI PRISM 7500 system (Applied
Biosystems). Cycling conditions were 95 8C for 10 s followed
by40 cycles of 95 8C for 5 s and 60 8C for 34 s.Melting curve ana-
lysis was used to confirm the specificity of amplification. Tomato
Actin (Chen et al., 2007) was used as the endogenous control. The
primers used in the assay are listed in Supplementary Data Table
S3. Three technical replicates were carried out for each PCR.
Relative expression was calculated using the 22DDCT method as
previously described (Livak and Schmittgen, 2001). All expres-
sion levels were shown as relative to the expression of tomato
SlOFP9 in sepals, which exhibited an average expression level.
A heatmap was visualized using Genesis software (Sturn et al.,
2002) representing the log2 value of the relative expression
level. Bar charts for the relative expression level of each SlOFP
gene are shown in Supplementary Data Fig. S2. There is a possi-
bility that the differences in relative expression between the
different genes are due to unequal efficiencies in the amplification
of the target sequences.

RESULTS AND DISCUSSION

Distribution of OVATE proteins in land plants

OVATE-like proteins were identified in all 13 plant genomes
selected to represent the major evolutionary lineages of land
plants including the early-diverged land plants Physcomitrella
patens (moss) and Selaginella moellendorffii (spikemoss)

(Fig. 1). In general, monocots had more OFPs than eudicots,
with Zea mays (maize) containing the largest number (i.e. 45)
of OVATE proteins. With respect to the core eudicots, thegen-
omes of Mimulus guttatus (monkey flower), Solanum lycopersi-
cum (tomato) and Solanum tuberosum (potato) from the asterid
clade contained similar numbers of OVATE proteins. In the
rosid clade, the OVATE protein numbers in different species
vary from nine in Vitis vinifera (grape vine) to 29 in Populus
trichocarpa (poplar) (Fig. 1). It is worth noting that a previously
unnamed AtOFP, At2g36026 (designated AtOFP19), and an
uncharacterized AtOFP member, At1g06923 (designated
AtOFP20), were included in this study. AtOFP19 possesses the
conserved OVATE domain and is annotated as an OVATE
family protein in TAIR (http://www.arabidopsis.org/). AtOFP20
is annotated as being most closely related to AtOFP17
(At2g30395), consistent with both genes being putative paralo-
gues occurring within segmental duplication blocks detected
using the PGDD. Although AtOFP17 is annotated as an OVATE
family protein, the presence of a conserved OVATE domain was
not detected in a CDD search. The absence of the OVATE
domain is prevalent in both its paralogue AtOFP20 and their puta-
tive orthologues in other species,which cluster withAtOFP17 into
a distinct group (sub-group 8; Fig. 2). Here, AtOFP17-like
members are included as OVATE proteins on the basis that the
OVATE domain in the AtOFP17 sub-group seems to be quite
obvious from the alignment that was used for the phylogenetic
analysis (Supplementary Data File S2), as well as the fact that
AtOFP17 was annotated as an OVATE-containing protein
despite relatively low sequence similarity with other AtOFPs
determined by Wang et al. (2011).

AtOFP9 has been re-annotated to include an additional open
reading frame (ORF) encoding a new protein of 129 amino
acids (NP_191312) that is distinct from the 411 amino acid
protein in the study of Wang et al. (2011). Moreover, this
newly annotated AtOFP9 protein has lost the conserved
OVATE domain that characterizes the OFPs. Given this, the
newly annotated AtOFP9 should no longer be considered as an
OVATE protein in arabidopsis, and we propose that there are
19 arabidopsis OVATE proteins instead of the 18 originally
described (Wang et al., 2007, 2011).

To elucidate further the evolutionary history and origin of the
OVATE protein family in green plants (Viridiplantae), we also
screened the genomes of the chlorophytes, Volvox carteri and
Chlamydomonas reinhardtii, for OVATE proteins. No proteins
with similarity to OFPs were found in the two chlorophyte
genomes, which represent the ancestral algal relatives of the
Viridiplantae.

Phylogenetic relationships of OVATE family proteins
in land plants

To obtain an overview of the phylogenetic relationships
between plant OFPs, phylogenetic trees were reconstructed

FI G. 2. Maximum likelihood analysis of 265 plant OVATE proteins from 13 plant genomes. (A) An overall maximum likelihood phylogram of 265 OVATE protein
sequences, withmidpoint rooting. (B) Fullview ofpart I from(A) showingsub-groups1–3. (C) Fullview ofpart II from(A)showingsub-groups4–11. The grey rectangles
delineate 11 sub-groups of OVATE proteins in angiosperms. Bootstrap values above the nodes that define the sub-groups are indicated. The zig-zag lines indicate branches
that are not drawn to scale. Coloured branches and labels indicate the clade to which the species belong [blue, Carica papaya, Prunus persica, Vitis vinifera, Populus
trichocarpa, Arabidopsis thaliana (rosids); violet, Mimulus guttatus, Solanum lycopersicum, Solanum tuberosum (asterids); purple, Aquilegia coerulea (basal eudicots);

red, Oryza sativa, Zea mays (monocots); olive, Selaginella moellendorffii (lycophytes); green, Physcomitrella patens (bryophytes)].
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based on the alignment of the conserved OVATE regions (Fig. 2).
OVATE proteins from different flowering plant (angiosperms)
species cluster together, while bryophyte and lycophyte OVATE
proteins form distinct, predominantly lineage-specific clades
(Fig. 2). Eleven sub-groups of angiosperm OVATE proteins
were defined according to the topology of the phylogenetic trees
(Fig. 2). These sub-groups were also supported by the presence
of conserved motifs that are outside the OVATE domain and
unique to each sub-group detected by the MEME program
(Fig. 3; Supplementary Data Fig. S1). Although some of the 11
sub-groups have low bootstrap support due to the fact that only
86 amino acid sites in the OVATE domain were used for inferring
the phylogeny, the presence of conserved signature motifs unique
to each sub-group corroborates our phylogenetic analysis (Fig. 3;
Supplementary Data Fig. S1). The OVATE proteins from mosses
and lycophytes were not classified further, as they do not form
well-defined sub-groups with the angiosperm OVATE proteins.

Angiosperm OVATE proteins from different species grouped
into compact clades. This possibly resulted from rapid expansion
of OVATE proteins in early seed plants or angiosperms following
their divergence from the early-diverged land plant species.
Many gene families within angiosperms have experienced rapid
expansion during evolution and adaption to various environments
(Corrêa et al., 2008). Both monocot and eudicot OVATE proteins
expanded rapidly within sub-groups 1, 4 and 5 to form a
lineage-specific clade (e.g. a Solanum-specific clade containing
exclusively OVATE proteins from S. lycopersicum and
S. tuberosum; Fig. 2). Of the 11 angiosperm OVATE sub-groups,
sub-group 10 was specific to monocots, while sub-group 11 was an
‘orphan’ group specific to eudicots and included only three
members, AcOFP10, PpaOFP15 and PtOFP24 (Fig. 2).

Differential evolutionary pattern of the OVATE family

In order to clarify the evolution of the OVATE family further,
we examined the distribution of OFPs from different plant
species within each sub-group (Table 1). We suggest two differ-
ent mechanisms to account for the observed evolutionary pattern,
namely conserved evolution and divergent expansion, similar to
what was proposed for the evolution of F-box genes in plants (Xu
et al., 2009). Within sub-group 8, sequences are conserved in all

TABLE 1. Classification and distribution of OVATE proteins in different sub-families of each plant species

Zm Os Ac Ppa Pt At Cp Vv Mg St Sl

45 33 11 16 29 19 11 9 23 26 25
Sub-group1 9 7 1 2 5 3 2 1 4 9 9
Sub-group2 2 2 2 2 4 3 2 1 2 2 1
Sub-group3 3 1 1 1 1 1 1 1 3 2 1
Sub-group4 6 5 1 3 6 2 3 3 4 5 5
Sub-group5 12 8 1 2 4 2 – – 4 3 3
Sub-group6 3 2 1 2 4 4 1 1 2 3 3
Sub-group7 2 2 1 1 1 1 1 1 2 1 1
Sub-group8 2 2 1 1 2 2 1 1 1 1 2
Sub-group9 2 1 1 1 1 – – – 1 – –
Sub-group10 4 3 – – – – – – – – –
Sub-group11 – – 1 1 1 – – – – – –

Pp, Physcomitrella patens; Sm, Selaginella moellendorffii; Zm, Zea mays; Os, Oryza sativa; Ac, Aquilegia coerulea; Ppa, Prunus persica; Pt, Populus
trichocarpa; At, Arabidopsis thaliana; Cp, Carica papaya; Vv, Vitis vinifera; Mg, Mimulus guttatus; St, Solanum tuberosum; Sl, Solanum lycopersicum.
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FI G. 3. A schematic diagram of the organization of OVATE proteins outside the
conserved OVATE domain and signature motifs defining each OVATE sub-
group. The diagram is not drawn to scale. The sequence logos and E-values for
each motif are given in Supplementary Data Fig, S1. The sequence information
of motifs is as follows: motif 1.1, SC[TGK][HNQ]P[RK]TLSFRAE[DN][ND];
motif 1.2, [RS]S[EDK]R[LF]FFEPGETSS[IS]; motif 2, PD[FL][AS]T[AI][FI]
AS[QR]RFFFSSPGRSNSI[IV][DE]S[PS]PS; motif 3, [GD]E[GD][DH]AATL
SD[VI]DRFLFENF[RK]SLYIKDDD[EN]; motif 4.1, SF[GQ]SCRS[KR][DN]
PSD[LV][PI][EQ]; motif 4.2, [ED]D[ED]xD[ED][ED][ED]TET[LF][FV]SS[RS
][SR][FLS]SSD; motif 5, [CS][GNS]C[RG][RK][PA]KL[SV]S[VI]Fx[PS][KS];
motif 6.1, MG[NR][YH][KR]F[RK]LSDM[MI]PNAWFYKL[KR]DMSK[SPT]
R[NGK]H; motif 6.2, R[RS]S[VS]SS[SA]R[GR][VL][KR][LT]R[TA]N[ST]
PR[IL]AS; motif 7.1, P[LV]SW[LF][SA]K[FL]; motif 7.2, [ST][KA][VK][EM]
[IE]C[KR]I[KR]A[LI]ED[ML]; motif 8, [MR]K[VLK][KRS][STV][LFI][IG]
[ARS][FL]K[SC]KL[FLS][KN][PS]C[KNR][KR][FIL][LV][QRS][LI]F[RK]
F[RK]; motif 9, MVQ[EA]RL[DQ][QS]MI[RD][EA][RA][AQ]E[AR]; motif
10.1, [PAC][CAP][PACS][CPRVY][SCF]PNR[AE]SYY[FVL][APN]S[ARQ]
[DE]R[AC][RILV][PQ]; motif 10.2, [AFT][PQ][ED]L[KQ]LRPI[LRV]TR;

motif 11, SASLP[DE]DV[CQ]G[AIV][FY][AS][GD].
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angiosperm species, with only one or two members from each
species. Sub-groups 3, 7 and 9 also resemble this, comprising
primarily one or two OVATE proteins from each plant species,
with phylogenetic relationships partially mirroring the plant
phylogeny (Fig. 2; Table 1). As such, the OVATE members of
these sub-groups appear to have remained relatively conserved
without large-scale gene expansions during plant divergence.
This suggests that they may have crucial functions that are vital
to plant development. For example, AtOFP5, a previously char-
acterized protein interacting with the two TALE homeodomain
proteins BLH1 and KNAT3 (Hackbusch et al., 2005), was
reported to act as a regulator of the BELL–KNOX TALE
complex required for normal embryo sac development in arabi-
dopsis (Pagnussat et al., 2007). In this study, phylogenetic ana-
lysis placed AtOFP5 in the highly conserved sub-group 7,
consistent with a conserved role in the essential process of
female gametophyte development.

Divergent expansion of protein sub-families occurs when
members are not under such tight functional constraints and
thus may diverge more rapidly between taxa, often adopting
species-specific functions (Hamilton et al., 2006). Such sub-
families appear to have evolved for more OVATE proteins,
with each containing 3–12 members from some plant
species examined and in some cases forming lineage-specific
sub-clades (Fig. 2; Table 1). AtOFP1 and AtOFP4, the two best-
characterized OVATE proteins (Wang et al., 2007, 2010; Li et al.,
2011), were assigned to sub-group 6 (Fig. 2). This sub-group has
four AtOFPs, namely AtOFP1, AtOFP2, AtOFP3 and AtOFP4.
AtOFP1 is suggested to function as an active transcriptional re-
pressor of AtGA20ox1 expression in the GA biosynthesis
pathway, suppressing cell elongation (Wang et al., 2007).
AtOFP4 is also a transcriptional repressor and has been proposed
to form a functional complex with KNAT7, an arabidopsis
KNOX homeodomain protein, to regulate secondary cell wall
formation (Li et al., 2011). AtOFP1, AtOFP2 and AtOFP4
were shown to have similar expression patterns, with all expres-
sed in the roots, inflorescent stem, flower buds and young siliques
(Wang et al., 2011). Promoter–GUS (b-glucuronidase) fusions
for AtOFP1 and AtOFP4 revealed strong GUS activity in the
root vascular cylinder and inflorescent stem (Li et al., 2011).
Furthermore, arabidopsis plants overexpressing AtOFP4 had
similar pleiotropic phenotypes to those overexpressing AtOFP1,
including dwarfism, ovate-shaped organs and reduced fertility
(Li et al., 2011). Nevertheless, it was suggested that AtOFP4
may play a more specific role in the differentiation of xylary
fibres and interfascicular fibres based on the irx phenotype
(Brown et al., 2005) and the thicker interfascicular fibre cell
walls seen in the ofp4–2 loss-of-function mutant but not in the
ofp1–1 loss-of-function mutant (Li et al., 2011). The irx pheno-
type, described as irregular xylem (irx), is characterized by a col-
lapse of xylem vessels causing defects in the secondary wall and
might be indicative of any secondary cell wall mutation (Brown
et al., 2005). Thus, functional divergence of AtOFP1 and
AtOFP4 from a common ancestral gene may have occurred
during arabidopsis genome evolution.

Sub-group 1 contained the largest and most diverse group of
OVATE proteins among the 11 sub-groups. Within this sub-
group, the monocot OVATE proteins expanded rapidly, while
the eudicots expanded into a Solanum species-specific clade,
containing OVATE proteins from only S. lycopersicum and

S. tuberosum (Fig. 2). Sub-group 4 contained the first identified
OVATE gene (SlOFP1), controlling fruit shape in tomato (Liu
et al., 2002). AtOFP7 was the most closely related AtOFP
protein to SlOFPs, although little is known about the function
of this arabidopsis protein. Within sub-group 4, the SlOFP1/
AtOFP7 clade does not include A. coerulea OVATE proteins,
compared with the existence of AcOFP9 in the SlOFP7 group
(Fig. 2). This suggests that a duplication event occurred within
eudicots following their divergence from monocots, followed
by a loss of the SlOFP1/AtOFP7 orthologue in the basal
eudicot A. coerulea.
v (dN/dS) ratios were analysed to investigate selection acting

upon OVATE genes within each sub-group. Average v ratios of
each group showed no significant difference under the assump-
tion of the one-ratio model, with the highest and the lowest
value being 0.23 (sub-group 1) and 0.07 (sub-group 9), respect-
ively (Supplementary Data Table S4). However, v ratios esti-
mated under the assumption of free ratio models suggested that
some sub-groups were conservative while others were divergent.
As expected, most genes from sub-groups 3, 7, 8 and 9, in which
only one or two copies are retained for most species, evolved
under strong purifying selection (v , 0.3; Supplementary
Data Figs S5, S9–S11), which is suggestive of their conservative
functions. In contrast, v values of each branch from the sub-
groups which experienced expansion (sub-groups 1, 4, 5 and 6)
diversified significantly; usually one copy of duplicated genes
evolves under strong purifying selection, while the other one
evolves under relaxed purifying selection (0.3 , v , 1) or
even positive selection (v . 1; Supplementary Data Figs S3,
S6–S8), which gives the indication of sub-functionalization or
neofunctionalization. Further functional analyses are needed to
verify the functional diversification among these duplicated
genes. Only three genes were found in sub-group 11; therefore,
we did not estimate the dN/dS of this lineage.

Estimation of gene duplication and loss events in the
OVATE gene family

Reconciliation of the gene tree (Fig. 2) with the species tree
(Fig. 1) resulted in an estimation of 66 duplications and 28
losses (D/L score ¼ 127) during plant evolution in the rearrange
mode in Notung analysis. The result showed that in early land
plant evolution, the OVATE genes already experienced nine
duplications in the common ancestor of land plants. Eight dupli-
cation events occurred after the divergence of lycophytes from
early vascular plants and before the split of monocots and eudi-
cots (Fig. 1). That might possibly be related to the two ancestral
whole-genome duplications (WGDs), post-dating diversifica-
tion of S. moellendorffii and shortly before the diversification
of extant seed plants (z) and extant angiosperms (1), respectively
(Jiao et al., 2011). After the split of monocots and eudicots, 15
duplications were inferred in monocots, before the diversifica-
tion of rice and maize (Fig. 1). Similarly, two generally accepted
polyploidy events (named s and r) in the monocot lineage have
pre-dated the diversification of major grasses (shared by
Poaceae) (Paterson et al., 2004; Wang et al., 2005; Salse et al.,
2008; Tang et al., 2010). Twelve duplications were estimated fol-
lowing the split of rice and maize (Fig. 1). In the diversification of
asterids, there were five estimated duplications after the asterid–
rosid split, preceding the split of Lamiales (M. guttatus) and
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Solanales (S. lycopersicum and S. tuberosum), followed by one
duplication shared by S. lycopersicum and S. tuberosum, which
underwent one and two duplications, respectively, after they
split from each other (Fig. 1). In rosids, duplication events of
OVATE genes were not inferred to be ancestral duplications.
Up to 11 duplications were revealed to be lineage specific in
the diversification of P. trichocarpa, after the split from the last
common ancestor of P. trichocarpa and P. persica (Fig. 1).
This duplication timing fits the recent WGD referred as the ‘sal-
icoid’ duplication event (Tuskan et al., 2006).

Extensive gene loss events in the OVATE family were not
inferred in land plant evolution. Gene loss events were estimated
in lineage-specific clades only in five species: S. moellendorffii,
A. coerulea, P. persica, C. papaya and V. vinifera.

Characterization of the OVATE family in rice, arabidopsis
and tomato

The rice genome has 33 OVATE-encoding genes designated
OsOFP genes. These OsOFP genes are distributed unevenly
across the 12 chromosomes of rice, with the highest density on
chromosome 1 (eight genes), followed by chromosome 5 with
seven OsOFP genes, while chromosomes 6 and 9 have no OFP
genes (Fig. 4A). The phylogenetic relationships of OsOFPs
within rice conformed to the analysis based on the conserved
OVATE region in all 13 plant genomes (Fig. 5A). The OsOFP
family could be divided into ten sub-groups, of which sub-group
10 was a monocot-specific clade, and sub-group 5 contained
eight members accounting for a quarter of the OsOFP family in
rice (Fig. 5A). The genic structures of all OsOFP-coding genes
were also examined. Nearly all OsOFP genes are intronless,
except OsOFP10, which contains a small intron (Fig. 5D).

In the arabidopsis genome, 19 AtOFP genes are dispersed
among all five chromosomes in clusters of two or more, with the
majority clustered on chromosome 2 (Fig. 4B). Phylogenetic ana-
lysis of only the AtOFPs revealed three major clades containing
eight out of the 11 sub-groups of plant OVATE proteins in the mul-
tispecies analysis (Figs2 and 5B).CladeC1comprisedsub-groups
1, 2 and 3 (AtOFP11, 12, 13, 14, 15, 16 and 18), whereas sub-
groups 4, 5, 6 and 7 belonged to clade C2 (AtOFP1, 2, 3, 4, 5, 6,
7, 8, 10 and 19). Clade C3 contained just the paralogues
AtOFP17 and AtOFP20, which represent sub-group 8 and are
more distantly related to other AtOFPs, being the only AtOFP
genes that contain an intron (Fig. 5D).

It is of interest that overexpression of AtOFP genes with close
phylogenetic relationships was previously shown to produce
similar phenotypes. Plants overexpressing AtOFP1, AtOFP2,
AtOFP4, AtOFP5 and AtOFP7 resulted in kidney-shaped cotyle-
dons, and round and curled leaves (class I); overexpression of
AtOFP6 and AtOFP8 caused flat, thick and cyan leaves (class
II); and overexpression of AtOFP13, AtOFP15, AtOFP16 and
AtOFP18 led to blunt-end siliques (class III) (Wang et al.,
2011). Class I and II AtOFPs just fell into clade C2 while class
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OVATE proteins from the 13 plant genomes. Blue rectangles mark the conserved OVATE domains, while yellow hexagons mark the divergent OVATE domains.
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III corresponded to clade C1 according to our study. Thus it
appears that the evolution of the AtOFP family represented here
is consistent with their probable patterns of functional divergence.

In the tomato genome, over a quarter of the SlOFP family genes
(7/26) are located in a single gene cluster on chromosome 10, with
the remaining genes dispersed across all 11 remaining chromo-
somes except chromosome 7 (Fig. 4C). Nine members of the
SlOFP family are located in sub-group 1, including five of those
linked in the cluster at the end of chromosome 10 (Figs 4C and
5C). To investigate further the diversity of SlOFP genes, their ex-
pression patterns in a round-fruit tomatovariety were examined by
quantitative real-time PCR. Of the 26 SlOFP genes, 12 (SlOFP2,
SlOFP3, SlOFP5, SlOFP9, SlOFP10, SlOFP18, SlOFP19,

SlOFP20, SlOFP21, SlOFP23, SlOFP24 and SlOFP26) were
found to be expressed in all tissues examined, while expression
of SlOFP7 and SlOFP16 ws undetectable (Fig. 6). One possibility
is that their transcripts are present at a level below the limit of de-
tection, or are only induced in response to certain conditions or
treatments or at specific developmental stages. Alternatively,
SlOFP16 may be a pseudogene, which is consistent with the
fact that the OVATE region of SlOFP16 does not align with that
of the other OVATE protein sequences. Tissue-specific expression
profiles were discovered for three genes, with SlOFP4, SlOFP17
and SlOFP22 specific to stamens, sepals and pistils within the
floral organs, respectively. Meanwhile, SlOFP5 was most highly
transcribed in the leaf, while relatively high expression of
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FI G. 6. Expression profile of SlOFP family genes by quantitative real-timePCR assays in a round-fruited tomatovariety ‘Stupicke’. The colourkey represents the log2
value of the relative expression level. Grey indicates that no expression was detected. RT, root; LF, leaf; SP, sepal; PT, petal; SM, stamens; PS, pistil; FG, green fruit; FR,

red mature fruit.
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SlOFP1, SlOFP2 and SlOFP8 was detected in pistils and a high
abundance of SlOFP2 and SlOFP8 transcripts was also detected
in roots. Preferential or tissue-specific transcription of SlOFP
genes may be indicative of tissue-specific functions in plant
growth and development.

From the phylogenetic analysis of SlOFPs, nine pairs of para-
logues could be identified, eight of which were well supported by
bootstrap analysis (Fig. 5C). Their phylogenetic relationships
and expression patterns revealed two fates of the duplicated para-
logues, i.e. retention–retention (RR) indicating that two paralo-
gues retain the same original expression pattern or function, and
retention–divergence (RD) indicating that one paralogue retains
but the other diverges in expression pattern or function. Four
pairs of paralogues (SlOFP8 and SlOFP13, SlOFP19 and
SlOFP20, SlOFP18 and SlOFP21, and SlOFP2 and SlOFP9)
were consistent with the RR mode, as they exhibited the same

expression patterns.The other four pairs of paralogues
(SlOFP17 and SlOFP 24, SlOFP1 and SlOFP 14, SlOFP6 and
SlOFP10, and SlOFP25 and SlOFP26) were considered to be
RD mode owing to their diverged expression patterns (Fig. 6).
For example, SlOFP24 was found to be ubiquitously expressed
in all tissues, whereas the transcript of its most closely related
paralogue SlOFP17 was restricted to the sepal (Fig. 6). Both sub-
functionalization and neofunctionalization might follow the di-
vergence.

Duplication and OVATE gene family expansion in arabidopsis,
rice and tomato

Plant genomes contain a higher proportion of duplicated genes
than most other eukaryotic genomes and this has been argued to
be a robust evolutionary force (Lockton and Gaut, 2005; Shan
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FI G. 7. Typical duplication events underlying expansion of the OVATE family in arabidopsis, rice and tomato. (A) Major expansions of AtOFP genes by segmental
duplications in arabidopsis; (B) major expansions of OsOFP genes by segmental duplications in rice; (C) expansion of the largest tandem-arrayed SlOFP gene cluster

by tandem duplication in tomato.
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et al., 2007). Gene duplication is speculated to provide the raw
genetic materials for the phenotypic or functional novelty neces-
sary for adaptive evolution (Flagel and Wendel, 2009; Jiao et al.,
2011). Segmental duplication, tandem duplication and retrotran-
sposition or other transposition events are three major mechan-
isms for gene duplication (Kong et al., 2007). Analysis of 50
large gene families in arabidopsis combining information
about genomic segmental duplications, gene family phylogeny
and gene positions revealed that some gene families expanded
mainly through tandem duplication, while some were oriented

towards segmental duplication (Cannon et al., 2004). Based on
the chromosomal location and phylogenetic relationships of
OVATE family genes, we analysed the relative contributions of
tandem duplication and segmental duplication to OVATE
family expansion in arabidopsis, rice and tomato. Of the 19
AtOFP genes, eight (42.1 %) and 12 (63.2 %) appear to have
arisen by tandem duplication and segmental duplication
(Figs 4B and 5B), respectively. Within the rice OsOFP family,
eight (24.2 %) have resulted from tandem duplication, whereas
the majority (24/33; 72.7 %) were present within segmental du-
plication blocks (Figs 4A and 5A). In terms of the SlOFP genes,
ten (38.5 %) were tandemly duplicated and nine (34.6 %) were
located within segmental duplication blocks (Figs 4C and 5C).
Therefore, tandem duplication and segmental duplication
appear to play a principle role in SlOFP gene family expansion
in all of the three sampled plant genomes, with segmental
duplication particularly important for expansion of the arabidop-
sis AtOFP and rice OsOFP gene family (Fig. 7A, B). This is
similar to the observation in other large gene families such as
the bHLH (basic helix–loop–helix) gene family in rice (Li
et al., 2006). Also, the largest tandem-arrayed SlOFP gene
cluster, exhibiting a single-lineage expansion, on tomato
chromosome 10 arose from a tandem duplication event
(Fig. 7C). It is reported that stress-responsive gene sets are
enriched for tandemly duplicated genes, thus tandemly dupli-
cated genes involved in stress response are suggested to be pref-
erably retained (Rizzon et al., 2006; Hanada et al., 2008).

TABLE 3. Duplicated OsOFP paralogues in segmental duplication blocks in rice

Duplicated OsOFP gene in block 1 Duplicated OsOFP gene in block 2
Ks Date (Mya)

Gene name Gene locus Gene name Gene locus

OsOFP4 LOC_Os01g60810 OsOFP9 LOC_Os03g21870 0.84 64.62
OsOFP4 LOC_Os01g60810 OsOFP13 LOC_Os05g25910 0.97 74.62
OsOFP4 LOC_Os01g60810 OsOFP15 LOC_Os05g39950 0.51 39.23
OsOFP5 LOC_Os01g64410 OsOFP10 LOC_Os04g33870 0.87 66.92
OsOFP5 LOC_Os01g64410 OsOFP12 LOC_Os04g58820 0.97 74.62
OsOFP5 LOC_Os01g64410 OsOFP14 LOC_Os05g36990 0.63 48.46
OsOFP5 LOC_Os01g64410 OsOFP18 LOC_Os11g05770 0.67 51.54
OsOFP5 LOC_Os01g64410 OsOFP19 LOC_Os12g06150 0.72 55.38
OsOFP6 LOC_Os02g45620 OsOFP11 LOC_Os04g48830 0.54 41.54
OsOFP6 LOC_Os02g45620 OsOFP17 LOC_Os10g38880 0.67 51.54
OsOFP7 LOC_Os03g06350 OsOFP31 LOC_Os10g29610 0.60 46.15
OsOFP9 LOC_Os03g21870 OsOFP15 LOC_Os05g39950 0.93 71.54
OsOFP9 LOC_Os03g21870 OsOFP16 LOC_Os07g48150 0.62 47.69
OsOFP10 LOC_Os04g33870 OsOFP14 LOC_Os05g36990 0.85 65.38
OsOFP10 LOC_Os04g33870 OsOFP18 LOC_Os11g05770 0.86 66.15
OsOFP10 LOC_Os04g33870 OsOFP19 LOC_Os12g06150 0.90 69.23
OsOFP11 LOC_Os04g48830 OsOFP17 LOC_Os10g38880 0.60 46.15
OsOFP11 LOC_Os04g48830 OsOFP21 LOC_Os03g03480 0.67 51.54
OsOFP12 LOC_Os04g58820 OsOFP14 LOC_Os05g36990 0.68 52.31
OsOFP12 LOC_Os04g58820 OsOFP18 LOC_Os11g05770 0.75 57.69
OsOFP12 LOC_Os04g58820 OsOFP28 LOC_Os08g01190 0.63 48.46
OsOFP13 LOC_Os05g25910 OsOFP15 LOC_Os05g39950 1.19 91.54
OsOFP14 LOC_Os05g36990 OsOFP19 LOC_Os12g06150 0.66 50.77
OsOFP15 LOC_Os05g39950 OsOFP16 LOC_Os07g48150 1.02 78.46
OsOFP17 LOC_Os10g38880 OsOFP21 LOC_Os03g03480 0.51 39.24
OsOFP18 LOC_Os11g05770 OsOFP19 LOC_Os12g06150 0.53 40.77
OsOFP20 LOC_Os12g06160 OsOFP26 LOC_Os11g05780 0.51 39.23
OsOFP22 LOC_Os01g54570 OsOFP25 LOC_Os05g44090 0.79 60.77
OsOFP23 LOC_Os05g36970 OsOFP30 LOC_Os01g64430 0.78* 60.00

*The Ks value was calculated by the KaKs_ calculator.

TABLE 2. Duplicated AtOFP paralogues in segmental duplication
blocks in arabidopsis

Duplicated AtOFP gene
in block 1

Duplicated AtOFP gene
in block 2

Ks Data (Mya)
Gene name Gene locus Gene name Gene locus

AtOFP2 At2g30400 AtOFP3 At5g58360 1.76 58.67
AtOFP2 At2g30400 AtOFP4 At1g06920 0.79 26.33
AtOFP4 At1g06920 AtOFP3 At5g58360 1.51 50.33
AtOFP6 At3g52525 AtOFP19 At2g36026 0.78 26.00
AtOFP11 At4g14860 AtOFP16 At2g32100 1.82 60.67
AtOFP12 At1g05420 AtOFP16 At2g32100 0.77 25.67
AtOFP15 At2g36050 AtOFP18 At3g52540 0.84 28.00
AtOFP17 At2g30395 AtOFP20 At1g06923 0.70 23.33
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To better understand the evolutionary history of the OVATE
family in arabidopsis, rice and tomato, we estimated the timing
of segmental duplication events using values for Ks as the
proxy for time (Tables 2–4). Ks values of AtOFP parologues
centre around two ranges, from 0.70 to 0.84 and from 1.51 to
1.82. This suggests that two major duplication events occurred
in arabidopsis, one around 23.33–28.00 million years ago
(Mya) and a second around 50.33–60.67 Mya. These dates are
approximately in line with the two WGD events (a and b)
reported for arabidopsis, subsequent to the divergence of arabi-
dopsis and C. papaya around 70 Mya (Bowers et al., 2003;
Lockton and Gaut, 2005; Ming et al., 2008; Tang et al., 2008;
Abrouk et al., 2010; Jiao et al., 2011). These results hint that
the duplications in AtOFP sequences may be a consequence of
the two WGDs, or of isolated, local segmental duplication
events that occurred within those two periods. For the rice
OsOFP genes, most of the segmental duplication events were
estimated to occur between 50 and 70 Mya, consistent with the
r WGD event pre-dating the diversification of major cereal
clades (Paterson et al., 2004; Wang et al., 2005; Salse et al.,
2008). The duplication time of paralogous SlOFP genes via seg-
mental duplication was estimated to occur between 29 and 78.33
Mya, which may have involved the recent triplication event
(52–91 Mya) shared by both tomato and potato in the
Solanaceae, preceding their divergence about 7.3 Mya
(Tomato Genome Consortium, 2012).

Conclusions

In this study, we performed the first comparative genomic
analysis of the OVATE protein family, a recently discovered
plant-specific gene regulatory family in land plants. OVATE
family proteins are present in all major lineages of land plants in-
cluding the early-diverged species. Our phylogenetic analysis of
13 available plant genomes spanning major evolutionary
lineages defined 11 sub-groups of OVATE family proteins in
angiosperms. Two different mechanisms, namely conserved
evolution and divergent expansion, are proposed to be involved
in OVATE family evolution in plants. Detailed characterization
of the AtOFP family in arabidopsis, the OsOFP family in rice
and the SlOFP family in tomato provided a deeper understanding
of the evolutionary framework and revealed a principle role for
tandem duplication and segmental duplication in expansion of
the OVATE gene family. This study has established a solid base
for subsequent functional genomics studies on this important
gene family in plants, which has been poorly characterized
to date.
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