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Abstract

It has recently been noted that the relative prevalence of the various kinds of epistasis varies along an adaptive walk. This
has been explained as a result of mean regression in NK model fitness landscapes. Here we show that this phenomenon
occurs quite generally in fitness landscapes. We propose a simple and general explanation for this phenomenon, confirming
the role of mean regression. We provide support for this explanation with simulations, and discuss the empirical relevance
of our findings.
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Introduction

Darwinian evolution can be illustrated as an uphill or adaptive

walk in a multidimensional landscape, where one dimension

(height) corresponds to genotype fitness, and the geometry of the

remaining dimensions is determined by the locus–wise mutational

distances between the genotypes. The metaphor of a fitness

landscape was introduced by [1], and has been formalized in

various ways, see e.g. [2] for a discussion. The fitness landscapes

we consider here are called genotypic. A very basic type of a fitness

landscape is one where mutation at a locus has a uniform effect

regardless of the state of the other loci (or background in the usual

parlance). In most models, this effect is either additive or

multiplicative. Deviations from this basic type occur when the

effect on fitness of a mutation at a particular locus is dependent of

the state of the other loci. The general term for such background

dependence is epistasis. We study how epistasis varies along an

adaptive walk in a fitness landscape. The topic is important for

understanding how a population adapts after a recent change in

the environment. Several empirical studies [3,4] suggest that the

adaptation process changes character over time, and the role of

epistasis may be critical. The description of the changing form of

epistasis given in [5] is the starting point for this work.

To simplify our discussion, we will restrict ourselves to the

following model. A fitness landscape consists of all possible

genotypes with a finite number of loci, denoted L, each biallelic,

together with the fitnesses of the genotypes. In this manner, we

have a one–to–one correspondence between the set of possible

genotypes and the set of bit strings of length L. Fitnesses of

genotypes are taken to be multiplicative, in the sense that the ratio

of fitnesses of one genotype compared to another is the relative

reproductive success of the fitter compared to the less fit. In this

study, epistasis will be a feature associated with a quadruple of

genotypes which differ by at most two loci. When considering such

quadruples we will denote one genotype as a base, ab, two single

mutants Ab and aB, and the double mutant AB. If it is assumed

that ab has lowest fitness of the four, we can represent the fitness

relations among the four genotypes by the graphs shown in

Figure 1.

Fitness graphs provided an intuitive way of representing a fitness

landscape or its parts. The vertices of the fitness graph represent

genotypes. Arrows connect mutational neighbors, with the arrow

pointing toward the genotype of higher fitness. Figure 2 shows a

fitness graph for 3 loci, and the construction is similar for any

number of loci. An adaptive walk can be viewed as a path in the

graph respecting the direction of the arrows. Fitness graphs have

been used for displaying empirical data [6,7], and for deriving

theoretical results [8,9].

Cases B, C, and D in Figure 1 present a situation where a

mutation at one locus changes the direction of the fitness effect of a

mutation at the other locus. Quadruples of genotypes which

exhibit one of these relationships are said to exhibit sign epistasis, a

widely used concept first introduced in [10]. For more background

relevant in this context, see e.g. [8,9,11,12]. Several studies of

empirical fitness landscapes concern antimicrobial drug resistance,

where sign epistasis seems to occur for most landscapes where

L§4 (see e.g. [13] for a survey of empirical fitness landscapes.)

The type of non–sign epistasis in case A of Figure 1 is

determined by the sign of the quantity D~wABwab{wAbwaB,

where wij is the fitness of the genotype ij. When D is positive, the

quadruple is said to have synergistic epistasis, when negative,

antagonistic epistasis. Conceptually, synergistic epistatis occurs when

genotype AB has superior fitness to what would be expected under

a multiplicative model based on the fitnesses of ab, Ab, and aB,

while antagonistic epistasis occurs when AB has inferior fitness to

what would be expected. Throughout the paper, we will restrict

the descriptions synergistic and antagonistic to non–sign epistasis.

In [5] it was found that the prevalence of the three categories of

epistasis undergoes significant change along an adaptive walk, with

sign epistasis increasing in frequency as the walk progresses, and

antagonistic epistasis decreasing relative to sign epistasis and

marginally decreasing relative to synergistic epistasis. The authors

PLOS Computational Biology | www.ploscompbiol.org 1 May 2014 | Volume 10 | Issue 5 | e1003520

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003520&domain=pdf


discuss the phenomenon in some generality and analyze empirical

examples. However, in their explanation, the authors confine

themselves to NK models [14,15], and their arguments are

dependent of the details of how NK models are defined and

constructed.

The goal of this study is to investigate this phenomenon among

a more general class of fitness landscapes, and provide an

explanation independent of model specific assumptions. We

appreciate that the classical models, including the NK model are

valuable for testing ideas. However, explanations independent of

structural assumptions on the landscapes are desirable, especially

since it is unclear how relevant the classical models are for

empirical fitness landscapes.

Results

We consider two types of fitness landscapes in our simulations:

NK models and ‘‘Rough Mt. Fuji’’ models [7,16,17]. The precise

definition of both types of landscapes are found in Materials and

Methods. Briefly, the fitnesses of genotypes in an NK landscape

are determined by the fitness contribution of each locus. The

fitness contribution of each locus is a stochastic function of its own

state plus the state of K other loci which are fixed in advance.

When K = 0, the landscape is purely multiplicative (or additive,

depending on our choice of model), and (in the multiplicative case)

would have no epistasis. At the other extreme, when K = L21, the

fitnesses of genotypes are mutually independent, leading to

abundant epistasis. (The NK model is sometimes denoted the

‘‘LK model’’. We will use the term NK model, although we

consider L loci.)

The so called Rough Mt. Fuji models are constructed by

starting with a purely additive or multiplicative model, where each

allele contributes a fixed, equal amount, independent of

background. The determinate fitnesses obtained this way are then

perturbed by random noise. See Materials and Methods for

further details on the construction of Rough Mt. Fuji landscapes,

as well as some comments about multiplicative and additive

assumptions. In this study we confine ourselves to additive Rough

Mt. Fuji landscapes, though we note that simulations performed

with multiplicative Rough Mt. Fuji models (and which are not

reported in this study) support the conclusions below. We fine tune

the relative magnitudes of random noise and fixed additive

contribution with a parameter, thereby allowing us to vary Rough

Mt. Fuji landscapes in a manner analogous to varying NK models

with the choice of K.

We will be concerned with the properties of adaptive walks in

our fitness landscapes. We will assume the asymptotic condition of

Strong–Selection–Weak–Mutation (SSWM for short) [18–20], s. It

is assumed that the evolving population remains genetically

monomorphic outside of very short time intervals, during which

a new beneficial mutation sweeps to fixation. Given a genotype g0,

population genetics theory shows that if the selection coefficients of

the fitter mutational neighbors g1, g2, . . . , gn of g0 are

s1, s2, . . . , sn, respectively, then the probability of gi going to

fixation is

siPn
i~1 si

:

(It should be noted that we are sweeping under the rug the fact

that strictly speaking this formula is appropriate only when the

magnitudes of the second or higher powers of the si are negligible.)

For more background about the SSWM assumption, as well as the

fixation probability described, see [21].

An adaptive walk, then, can be viewed as a stochastic path in a

fitness landscape, starting at an initial genotype and ending at a

genotype with locally maximal fitness. For every two steps in such

a walk, three genotypes are traversed, which can be denoted, in

Figure 1. Two biallelic loci corresponds to four genotypes. The
fitness relations between neighbors are illustrated in the graphs, where
each arrow points toward the genotype with higher fitness. There four
possible cases our represented in parts A, B, C and D.
doi:10.1371/journal.pcbi.1003520.g001

Figure 2. A fitness graph for three loci.
doi:10.1371/journal.pcbi.1003520.g002

Author Summary

The main result concerns the changing geometry along an
adaptive walk in a fitness landscape. An adaptive walk is
described by a sequence of genotypes of increasing
fitness, where two consecutive genotypes differ by a point
mutation. We compare patterns of epistasis, or gene
interactions, along adaptive walks. Roughly, epistasis is
antagonistic (rather than synergistic) if the double mutant
combining two beneficial mutations has lower fitness than
expected. In the extreme case that the double mutant has
lower fitness than one (or both) of the single mutants, one
has sign epistasis. We claim that the further one is along an
adaptive walk, the larger the frequency of sign epistasis
and the smaller the relative amount of antagonistic
epistasis relative to synergistic epistasis. We provide a
simple and general argument for our claim, which hence
likely applies to empirical fitness landscapes. Our claims
can readily be checked by empirical biologists. Potential
theoretical progress related to our work includes a better
understanding of the role of recombination in evolution.
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order, ab, Ab, and AB. (Note that we are no longer assuming the

minimality of ab as was done in Figure 1.) These genotypes are

complemented by aB, and the type and magnitude of epistasis for

the quadruple can be determined by their fitnesses. Note that the

configuration in Figure 1 D has no relevance for adaptive walks,

and makes no appearance in subsequent calculations.

In [5], it was noted that the relative frequencies of

sign, antagonistic, and synergistic epistasis varied along adaptive

walks. Our aim is to explore this phenomenon more closely. What

are the relative frequencies of sign, antagonistic, and synergistic

epistasis?

In our notation, we assume that three genotypes ab, Ab and AB

are traversed in some adaptive walk, so that

wabvwAbvwAB,

and consequently waB determines the type of epistasis (again, we

do not assume that wab is minimal). These assumptions hold for

the remainder of this paper. The possibilities are that waB is

ranked first, second, third or fourth in terms of fitness relative to

the other three genotypes. When ranked first or fourth, the quadruple has

Figure 3. 1000 adaptive walks simulated on NK landscapes with N = 15 and K = 10. For each walk, the starting genotype ab was randomly
drawn to have relatively low fitness (see Text S1 for details). A. Intervals covering fitnesses between the 2.5 and the 97.5 percentiles are shown for the
first (ab), second (Ab), and third (AB) genotypes in randomly generated adaptive walks, with dots indicating the medians. The genotype aB is the
remaining genotype in the quadruple as shown in Figure 1. The blue ‘‘Control’’ interval corresponds to randomly selected genotypes. The skew
visible in the ab interval is due to the fact that the initial genotype of a fitness walk is drawn from a lower tail distribution. B. Intervals for the fourth,
fifth, and sixth genotypes in randomly generated adaptive walks. The increased fitness of the aB genotypes in B relative to that of A is due to the fact
that K~10v14, and thus there is some correlation between neighboring genotypes. In both diagrams, the dependency of sign epistasis on
regression to the mean is apparent.
doi:10.1371/journal.pcbi.1003520.g003
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sign epistasis, and not so when ranked second or third. This fact will be

used repeatedly.

We start with a preliminary observation. In the special case

where fitnesses of mutational neighbors are identically and

independently distributed, such as in an NK landscape with

K~L{1, and where the genotypes are chosen randomly, the

probabilities that waB is ranked first, second, third or fourth are

readily calculated. Indeed, the probabilities are equal, since the

fitness of a paticular genotype is independent of mutational

neighbors. Consequently sign epistasis occurs with frequency 0:5.

Similarly, consider a randomly chosen quadruple but in la

andscape where the fitness of mutational neighbors are correlated,

as in NK landscapes with KvL{1. Then we expect the

frequency of sign epistasis to decrease relative to the case of

uncorrelated fitness. This expectation is confirmed by simulations,

the results of which are found in Text S1. The parameter slope in

the Rough Mt. Fuji models is positively associated with correlation

between mutational neighbors. (See Text S1) The simulation

results thus confirm the expectation of lower sign epistasis in

landscapes with correlated mutational neighbors.

The results of our simulations confirm [5], namely that the

further one is along an adaptive walk, the larger the frequency of

sign epistasis and the smaller the amount of antagonistic epistasis

relative to synergistic epistasis. Significantly, a similar evolution of

relative frequencies occurs in the Rough Mt. Fuji landscapes. It is

clear that a more general explanation for this phenomenon is

desirable, since Rough Mt. Fuji fitness landscapes are not defined

in terms of locus–by–locus fitness contributions.

We hypothesize that the observed evolution of epistasis along

adaptive walks is merely the familiar statistical phenomenon of

regression to the mean. This explanation was suggested in [5] as

well. However, the authors’ arguments are restricted to the details

of the NK model. We offer here a simpler and more general

explanation.

We begin with an intuitive explanation for the phenomenon we

seek to explain. This will be followed by evidence from simulations

that support our argument. We consider the type of epistasis that

would be found with respect to a quadruple of genotypes ab, Ab,

aB, and AB, where ab, Ab, and AB form three subsequent

genotypes in an adaptive walk.

Informally, the following extreme example will clarify the

picture somewhat. Suppose that ab belongs to the highest fitness

percentile among genotypes in the fitness landscape. For

uncorrelated fitness, the expected frequency of sign epistasis

would be at least 99 percent. Indeed, one would get waBvwab in

99 percent of the cases. Similarly, for correlated fitness one would

many times get waBvwab as well, provided there is sufficiently

much noise in the landscape. This is because a mean regression

effect will tend to ‘‘pull’’ the fitness of aB below wab, since ab
belongs to the highest fitness percentile.

After the informal example, we now go over the different

possibilities for the quadruple of genotypes in some detail. We will

compare low and high fitness of ab with the ‘‘null’’ condition

where ab is randomly chosen. If we impose the condition that ab

Figure 4. According our simulations, the patterns of epistasis
change along adaptive walks as displayed. The graph depicts NK
landscapes with parameters N~15 and K~1.
doi:10.1371/journal.pcbi.1003520.g004

Figure 5. Assume that the adaptive steps, colored blue,
connect three genotypes with relavatively high fitness. Most
connecting arrows point toward the starting point, as well as the end
point of the adaptive steps. Note that due to the high fitness of the
genotypes along the adaptive walk, the arrows emanating from the
fourth genotype in the quadruple are more likely to point outward. The
result in such a case is sign epistasis.
doi:10.1371/journal.pcbi.1003520.g005
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has lower fitness relative to the mean fitness of the landscape, then

it is likely that Ab and AB will have lower fitness than would have

been expected if ab had been randomly chosen (unless the fitness

landscape is uncorrelated, of course), though the likelihood of large

jumps in the adaptive walk may return AB to more typical fitness

levels. To the extent waB is determined by a stochastic component

independent of wab, wAb, and wAB, mean regression implies that it

is more likely that wabvwaB than in the case where ab is randomly

chosen without condition from the fitness landscape. Note that the

imposed condition of relatively low wab biases the probability

toward non-sign epistasis relative to the ‘‘null’’ condition.

Furthermore, within the region of non–sign epistasis, the bias

toward waBwwab relative in the null situation results in a higher

probability that

D~wABwab{waBwAb

is negative, leading to a bias toward antagonistic epistasis.

Conversely, when an adaptive walk reaches ab after a number

of steps, and continues to Ab followed by AB, it is highly likely ab,

Ab, and AB have high fitness relative to the mean fitness of the

fitness landscape. To the extent that waB is determined by a

stochastic component independent of wab, wAb, and wAB, mean

regression implies that waBvwab is more likely than would be the

case when ab is randomly chosen without condition. Furthermore,

within the interval of non–sign epistasis, the quantity

D~wABwab{waBwAb is biased upward toward positive values,

thus leading to a higher proportion of synergistic epistasis to

antagonistic epistasis. We conclude that the changing balance of

types of epistasis along an adaptive walk is not due to any intrinsic

feature of adaptive walks per se, but rather the result of traversing

from lower to higher fitnesses. Late stage adaptive walks are

‘‘walking along a ridge’’, implying more sign epistasis. In

summary, the pattern of changing epistasis along an adaptive

walk is driven by mean regression due to the fitnesses of ab, Ab,

and AB and the uncorrelated component of the fitness of aB.

We remark that our simulations of adaptive walks reveal an

interesting asymmetry between wab being far below, and far above

the mean (see Figure 3). Indeed, the quantity DwAB{wabD tends to

be relatively large for very low wab and relatively small for very

high wab. In particular, the asymmetry helps explain why the

frequency of sign epistasis depends on the fitness of ab for the

landscapes we simulated. One can ask how general the observed

asymmetry is. Some caution is necessary depending on the fitness

distribution, and it would be interesting to further explore the

problem.

Figure 4 depicts the patterns of epistasis along adaptive walks.

The patterns agree with our intuitive description. The figure

concerns the NK landscape with parameters L~15 and K~1.

See Materials and Methods for a complete description of our

simulations of adaptive walks.

The case of high wab is illustrated somewhat crudely in Figure 5.

The blue arrows form part of an adaptive walk, and the three

vertices they connect correspond to ab, Ab, and AB above. If we

assume that ab has higher than average fitness, then when the

fitness of genotype aB has an uncorrelated component there is a

bias toward wabwwaB, leading to sign epistasis.

We buttressed our intuitive argument above by examining the

results of simulated fitness landscapes and adaptive walks. The

results of these simulations are attached as a supplement to this

article. If our explanation above is correct, two results should

emerge from our simulations. One, if random quadruples of

genotypes as shown in Figure 1 are sampled in a stratified fashion

from different fitness quartiles of the landscape, then the

frequencies of sign, antagonistic, and synergistic epistasis should

change their relative proportions from the lowest quartile to the

highest quartile as they do along an adaptive walk. They do, as

can be seen in Figure 6 and in Text S1. (To clarify, we sampled

ab so that wab belongs to the specified quartile. We did not

impose any conditions on the genotypes Ab and AB beyond

wabvwAbvwAB).

Two, if we simulate adaptive walks under the condition of equal

probabilities among all mutational neighbors, the rate at which

fitness increases should be slowed, and therefore the frequencies of

types of epistasis should change at a slower pace than they do in a

weighted probability model. They do, as can be discerned by

comparing the figures with equally weighted probabilities, to the

figures with probabilities weighted according to the SSWM model

(see Text S1).

Further support for our proposed explanation was obtained by

simulating 1000 NK landscapes with L~15 and K~10. The

result, summarized in Figure 3, confirm our assertions.

For each landscape, a genotype with relatively low fitness was

chosen as the initial genotype of an adaptive walk (see Text S1 for

details). Figure 3 summarizes the important features of the results

of the simulations. In caption A, 2:5%{97:5% percentile intervals

are shown for the first(ab), second(Ab), and third(AB) genotype of

the adaptive walk. The fourth interval corresponds to the

complementary genotype aB. The ranges of the intervals show a

bias toward non-sign epistasis. The blue ‘‘control’’ interval

corresponds to randomly selected genotypes.

Conversely, in caption B, 2:5%{97:5% percentile intervals are

shown for the fourth(ab), fifth(Ab), and sixth(AB) genotypes visited

on an adaptive walk. Again, the fourth interval corresponds to aB.

In this case, the bias is toward high frequency of sign epistasis.

In both cases, the role of mean regression in driving the nature

of epistasis along adaptive walks is apparent. Figures 7 and 8

represent partial views of one simulation as described above. Even

Figure 6. Random quadruples were sampled in a stratified
fashion, where wab belongs to the specified fitness quartile. The
frequencies of sign, antagonistic, and synergistic epistasis should
change their relative proportions from the lowest quartile to the
highest quartile as they do along an adaptive walk.
doi:10.1371/journal.pcbi.1003520.g006
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here, the bias toward or away from sign epistasis depending on the

stage of the adaptive walk is apparent.

We have compared equal weights, and adaptive walks under the

SSWM assumption. For more background and results regarding

lengths of walks, we refer to [22,23] for equal weights, and [21] for

the SSWM case.

As a final remark, the study of epistasis as described was

restricted to pairwise interactions. It would be interesting to extend

the study to higher order interaction, and for instance to consider

shapes as defined in the geometric theory of gene interactions

[2,24].

Empirical support and applications
As mentioned in the introduction, empirical data seem to

support the ‘‘mean regression’’ hypothesis exposited herein. We

add further support with the following empirical results from

investigations of the TEM-family of b-lactamases [25]. The TEM-

enzymes are associated with resistance to several b-lactame

antibiotics, including penicillins. TEM beta-lactamases have been

found in Escherichia coli, Klebsiella pneumoniae and other Gram-

negative bacteria. TEM-1 is considered the wild-type, and

approximately 200 mutant variants have been found clinically,

(see e.g. the record from the Lahey Clinic http://www.lahey.org/

Studies/temtable.asp).

For the 4-tuple mutant TEM-85 (L15F, R164S, E240K,

T265M) the two fitness landscapes defined by Cefotaxime and

Ceftazidime had mutational trajectories (i.e. adapative walks) from

TEM-1 to TEM-85. For Cefotaxime there were three trajectories

to TEM-85, and for Ceftazidime one trajectory. We calculated the

epistasis in the last two steps, as well as in the first two steps, of the

four trajectories. Fitness differences of mutational neighbors were

not always statistically significant in the study, resulting in cases of

‘‘possible’’ sign epistasis. The results for the last two steps were two

cases of sign epistasis, and two cases of possible sign epistasis. The

results for the first two steps were two cases of possible sign

epistasis, and two cases of no epistasis. These findings seem to

support our hypothesis, though we must refrain from drawing any

sweeping conclusions based on a small data set.

Generally speaking, there are two types of empirical studies of

evolution, direct and indirect. A direct study is concerned with an

evolving population, where mutations are observed as they occur.

Examples of this are a population evolved in a laboratory or the

stages of an HIV infection due to drug resistance conferring

mutations. The second type of study is indirect. An investigator

attempts to create a catalog of genotypes with the potential of

being part of an adaptive walk. As an example, a strain of bacteria

that is highly resistant to a particular antibiotic treatment may

differ from the wild-type by L amino acid substitutions in a

relevant enzyme. The investigator in an indirect study will attempt

to produce and study all 2L{2 intermediate mutational stages. It

is non-trivial to relate direct and indirect studies. One wishes to

infer the fitness landscape from an evolving population. Con-

versely, one would like to predict evolution from indirect studies.

As observed in [5], epistasis may influence path choice for evolving

populations, and path choice has an impact on epistasis.

Consequently, it may be difficult to infer the fitness landscape

from a direct study.

As for the converse, it may seem straightforward to predict

evolution from a fitness landscape. However, a practical difficulty

arises; namely, the information one has in an indirect study is often

restricted to the fitness rankings of the genotypes, with no

quantitative measurements of fitness. Consequently, one has very

little knowledge of the probabilities of evolutionary trajectories,

even if the fitness graph is known.

At issue here is the fact that examining epistasis in fitness graphs

and evolving populations may lead to results which seem at odds.

It is a priori not clear if patterns of epistasis along adaptive walks are

easily predicted from fitness graphs. In addition to being used for

confirming the robusticity of our results, we included the equally

weighted adaptive walks (see Text S1) to reflect the point of view of

the results of an indirect study, where only the fitness rankings of

the genotypes in the landscape are discovered, and thus there is no

a priori knowledge of the appropriate weights to be assigned to the

various paths evolution may follow. The pattern of epistasis was

broadly held across the two classes of fitness landscapes considered

here, across a range of parameters for these landscapes, and across

the weighted versus the unweighted versions discussed above. (The

main difference we could find was pace in which proportions of

epistasis changed, which is easily explained by the fact that the rate

of fitness increase is slower in the equally weighted walk.) If we

consider the equally weighted case as corresponding to indirect

studies, and the weighted case to direct studies, then it is

interesting to note while the rate of change of the proportions

varies, the general pattern does not. Naturally it would be

interesting to further investigate the relation between direct and

indirect studies of adaptation.

Discussion

The nature of epistasis varies along an adaptive walk. This

observation has been made in simulations, and has support in some

empirical studies. We have argued that mean regression is a simple and

general explanation for this phenomenon. We support this explanation

with simulations carried out on two classes of fitness landscapes, with

varying parameters. While our simulations were restricted to two

classes, our argument should extend to any fitness landscape where

genotypes vary to any degree independently to each other.

We considered two types of adaptive walks; those with

probability weight corresponding to those used in the SSWM

model, and those with equal probability weights. The similarity of

the results suggests that the pattern of epistasis found along an

adaptive walk is not a result of any specific property of adaptive

walks generated according to the SSWM model. This result is also

relevant for relating direct and indirect studies as defined above.

Further support for our assertion was obtained by sampling

genotypic quadruples of mutational neighbors from simulated

fitness landscapes at different fitness quartiles. The resulting

pattern of increasing sign epistasis and decreasing antagonistic to

synergistic ratio at higher fitnesses relative to lower fitnesses

reinforces our assertion that the same phenomenon seen along

adaptive walks depends on mean regression, and does not depend

on any intrinsic properties of adaptive walks per se.

Our main observation has important consequences for inter-

pretations of empirical data. Consider any fitness landscape where

there is a well defined wild-type, and some beneficial single

Figure 7. A depiction of the fourth (yellow), fifth, sixth, seventh, and eighth genotype of an adaptive walk in an NK landscape, with
N = 15 and K = 10. Only loci affected by mutation during the five adaptive steps are shown in the genotype labels, and the genotypes shown are
restricted to those that differ from the initial genotype only at the five affected loci. The fitness of each genotype is also shown. The adaptive walk is
colored blue, while the opposing arrows in each quadruple are colored red. Note the dominance of sign epistasis along the adaptive walk. The ridge-
like quality of the adaptive walk is clear from the high proportion of ‘‘in’’ arrows emanating from the evolved genotypes.
doi:10.1371/journal.pcbi.1003520.g007
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mutants. For instance, the fitness landscape may be associated with

antimicrobial drug resistance. Some recent papers consider

prevalence of sign epistasis, and related questions for such

landscapes, where the wild-type is used as a starting point (for a

survey article, see e.g. [13]) Our result demonstrate that there are

two factors that influence the prevalence of sign epistasis [26]. The

first is the degree of additivity in the landscape. The second is the

fitness of the wild-type. Ideally, a study should therefore estimate

wild-type fitness as well as additivity in the landscape. Roughly,

one can estimate wild-type fitness from the proportion of single

mutants which are more fit than the wild-type among all

mutational neighbors of the wild-type (see e.g. [Crona et al.,

2013] for more comments).

We have argued that our main observation holds for empirical

fitness landscapes. Most aspects of adaptation are sensitive to

epistasis. In particular, a serious analysis of recombination requires

a fine-scaled understanding of epistasis. It would be interesting to

explore recombination in light of our findings.

Materials and Methods

Throughout this study, loci were considered to be bi–allelic, with

alleles 0 and 1 for each locus. All of the fitness landscapes had 15 loci.

The NK model is classical. The so–called Rough Mt. Fuji

model has been explored.

Some of the features of our fitness landscapes were peculiar for

this study, so we will summarize briefly in this section how they

were constructed.

For the NK fitness landscapes, the contribution of each locus is

a function of the allele at the locus itself as well as the alleles at K
randomly chosen additional loci, or

wj~wj(lj ,lj1 ,lj2 , . . . ,ljK ), j~1,2, . . . ,L; li~0,1

The fitness of a particular genotype l1l2 . . . lL is then the geometric

mean of the individual loci contributions:

w(l1l2l3 . . . lL)~ P
L

j~1
wj(lj ,lj1 ,lj2 , . . . ljK )

� �1=L

, li~0,1 ð1Þ

For each of the possible values of wj , we sampled independently

from a uniform distribution over the interval ½0:05,1�. The 0:05
floor was used to prevent overly large fitness coefficients.

Since calculating the fitness of each genotype in an NK

landscape proved computationally time–consuming, we deter-

mined the fitness quartiles theoretically as follows. Since the

logarithm of the right hand side of (1) is the mean of L identically

distributed independent variables, by way of central limit theorem

we approximated the distribution of fitnesses using a Gaussian

distribution. The quartile boundaries were then determined from

this approximation. Some test simulations showed this to be a

reasonably accurate approximation.

To explore fully the changing nature of epistasis along an

adaptive walk, for the initial genotype we sampled from genotypes

with fitness below the mean minus 1.5 standard deviations

according to the theoretical approximation. This corresponds

(again, theoretically) to the 0:067 quantile of the distribution.

Our Rough Mt. Fuji fitness landscapes were constructed in the

spirit of their namesakes in the wider literature. At first, each genotype

is assigned a deterministic fitness component given as follows:

slope :
# of loci in’ 1’ state

L

where slope is a pre–determined fixed parameter. To each of these

deterministic values a random value drawn from a uniform

distribution on ½0,1� is added.

slope :
# of loci in’ 1’ state

L
zRNgenotype

Finally, we applied a linear transformation making the

minimum and maximum fitnesses 0:05 and 1 respectively. Note

that by our construction the ‘‘expected’’ fitness difference between

the genotypes 000 . . . 0 and 111 . . . 1 will be 0:95 : slope. The

parameter slope determined the relative contributions of the

deterministic component and the noise component in the

landscape, with high values of slope implying a low ratio of noise

component to deterministic component.

Since the computation of empirical quantiles was feasible for

Rough Mt. Fuji landscapes, we used them for determining quartile

boundaries and selecting initial genotypes. The latter were selected

from those genotypes with fitnesses among the bottom 0:067, as

they were chosen in the NK landscape case, but in this case using

the empirical quantile rather than the theoretical quantile.

As for the simulations, it should be pointed out that confidence

intervals and issues with statistical power were ignored in this

article. For each set of parameters, we simulated 10,000 fitness

landscapes with an adaptive walk. It can be seen from the figures

in Text S1 that for most types of landscapes the number of

adaptive walks which evolve to an mth genotype before hitting a

local optimum decreases quite significantly with m after approx-

imately the four steps. Naturally, the low number of adaptive walks

which attain higher steps may raise concerns of statistical power.

Nevertheless, despite this possible shortcoming, we feel that the

general pattern is clear enough.

Let us also remark that our choices of multiplicative or additive

scales were made mostly for convenience throughout the article.

Our main observations are independent of such choices.

All simulations were coded in the programming language R

[27], and we used the R package [28].

Supporting Information

Text S1 Supplementary information.

(PDF)
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Figure 8. A depiction with a description analogous to Figure 7 but in contrast, the yellow colored genotype is the initial genotype
of the adaptive walk. Note the lower frequency of sign epistasis along the walk as compared to Figure 7.
doi:10.1371/journal.pcbi.1003520.g008
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