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Abstract

Nutritional metabolomics is rapidly maturing to use small molecule chemical profiling to support

integration of diet and nutrition in complex biosystems research. These developments are critical

to facilitate transition of nutritional sciences from population-based to individual-based criteria for

nutritional research, assessment and management. This review addresses progress in making these

approaches manageable for nutrition research. Important concept developments concerning the

exposome, predictive health and complex pathobiology, serve to emphasize the central role of diet

and nutrition in integrated biosystems models of health and disease. Improved analytic tools and

databases for targeted and non-targeted metabolic profiling, along with bioinformatics, pathway

mapping and computational modeling, are now used for nutrition research on diet, metabolism,

microbiome and health associations. These new developments enable metabolome-wide

association studies (MWAS) and provide a foundation for nutritional metabolomics, along with

genomics, epigenomics and health phenotyping, to support integrated models required for

personalized diet and nutrition forecasting.

Keywords

Systems biology; microbiome; prevention; mass spectrometry; personalized medicine; exposome

INTRODUCTION

Each person has a unique genome and is an ongoing nutritional experiment from conception

to death. A large number of functional redundancies and adaptive mechanisms serve to

provide homeostasis despite a considerable range of developmental, dietary, infectious and

other environmental challenges. Differences in nutrient intake cause epigenomic changes (9;

56) so that an n = 1 nutritional experiment may not be reproducible even within the context

of an individual over time. Application of scientific method to define nutritional

requirements relevant to an individual therefore requires substantial simplification and many

assumptions. Despite this, modern nutrition has provided a manageable system for nutrition

scientists to understand the mechanistic basis for requirements and clinical nutritionists and
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dietitians to develop dietary and nutritional plans to minimize and remediate nutrition-

related disease. This was achieved using a central assumption that health and disease among

populations and in individuals may be determined by variations of the same biochemical

system with common biochemical requirements. To a first approximation, this assumption is

true; normative descriptions, such as Dietary Reference Intake (DRI) values, accurately

describe the collective needs of individuals; DRI along with Food Guides are useful to

promote health and reduce disease collectively for individuals within the population. From

the standpoint of public health, this approach is effective and successful.

During the past decade, many distinguished scientists have emphasized (26–29; 78; 97; 100;

106) that new technologies in metabolomics, along with genomics, epigenomics,

transcriptomics and proteomics, enable approaches that have the potential to expand this

effective public health strategy with a potentially improved approach for personalized

nutrition, i.e., to address nutrition at n = 1. The full implications of this are only beginning to

be discussed; the transition may not be incremental improvements of current nutritional

science, such as having better ways to study pathways of iron metabolism or more precise

ways to measure phytochemicals in green tea. Instead, personalized nutrition in the future

may require a considerable expansion of the conceptual framework for nutrition science that

has emerged over the past century. Diet and nutrition are inherently complex: hundreds of

foods are derived from heterogeneous plant - and animal-based nutrients and nutrient

substrates; food storage, processing and preparation methods vary; consumption, digestion

and absorption are heterogeneous over the lifespan within individuals; specific nutrients,

such as zinc or vitamin D, impact hundreds of molecular systems; molecular systems are

highly regulated and adaptive. To date, the framework in nutrition science has been largely

reductionist in nature (e.g. by focusing on deviations from the norm, one nutrient at a time).

Examples include single nutrition deficiencies or excesses, and single gene variants (with

variable penetrance), that are useful to predict clinical responses in homogeneous groups of

individuals. However, emerging technologies, including metabolomics approaches now

allow investigation on the complexity of interactions of all of the nutrients within a complex

individual having a unique genome and history of dietary, environmental and behavioral

exposures.

In this review, we define nutritional metabolomics as “use of small molecule chemical

profiling to integrate diet and nutrition in complex biosystems”. This explicitly defines

nutritional metabolomics as an experimental approach that uses chemical profiling in a

global manner, i.e., as a component of a complex systems approach to diet and health. With

this definition, profiling of chemicals, whether targeted or non-targeted, is necessary but

insufficient for the transformation to personalized nutrition. Progress in nutritional

metabolomics is measured by steps to support facile use of chemical profiles to enhance

practice at the level of an individual. For instance, a manageable system for an average

practitioner may be a series of nutrition forecasting models, much like weather forecasting

systems used to predict occurrence, paths, time-course and severity of hurricanes. Such

nutritional models would use metabolic profiles along with genomic, epigenomic and health

phenotyping to predict health outcomes and relevant time frames from dietary and

nutritional practices. The practitioner of the future will evaluate results of computer-based

models and develop interventional plans based upon these results.
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Many reviews and commentaries address the challenges and limitations in application of

metabolomics to nutrition, diet and health (26–29; 78; 97; 100; 106). Much of this has been

focused on use of nutritional metabolomics to discover new biomarkers of nutritional

exposure, nutritional status and nutritional impacts on disease (75). The present review is

focused on recent progress in making nutritional metabolomics tractable for nutritional

scientists to transform nutritional evaluation and management from a normative, population-

based approach to one utilizing individual characteristics in an integrated, complex systems

approach. Progress is ongoing in many scientific disciplines that are peripheral to nutrition

but central to integrated systems biology (88; 90). By necessity, we only briefly summarized

these, focusing on conceptual developments in integrative biology, analytic methods that

support hybrid approaches for targeted (e.g. in identification of potential direct or surrogate

biomarkers of health, disease and mechanistic pathways) and non-targeted metabolic

profiling, and bioinformatic and computational approaches to facilitate interpretation and

use of complex data. While routine use of such approaches in applied nutrition must await

development and testing prior to implementation, an extensive array of metabolic profiling

and computational capabilities are now available to support basic research to enable this

transition. Progress in these areas suggests that nutritional metabolomics has advanced

toward establishing a critical foundation to define the cumulative dietary and nutritional

exposures of an individual impacting personal health.

CONCEPTUAL DEVELOPMENTS

Three important conceptual developments have occurred during recent years that impact the

transition from targeted nutritional biochemical studies describing population averages to

nutritional metabolomics studies describing personalized nutritional needs. These include

the concept of 1) the exposome, in which cumulative exposures throughout life are

incorporated into models of health (99); 2) predictive health, in which nutritional guidance

to prevent disease is replaced by nutrition designed to optimize vitality and well-being (60);

and 3) individual complexity in which models include multiple interacting functional

networks rather than unrealistic “reductionist” cause-effect models (17).

The exposome and nutritional metabolomics

Christopher Wild introduced a bold and visionary concept in 2005 advocating the need for

research to define exposures that complement the genome in defining health risks (99). He

used the term “exposome” to encompass life-course environmental exposures (including

lifestyle factors), from the prenatal period onwards, and proposed the development of a

conceptual grid for exposure research to complement the Human Genome Project. While

relevant for environmental science (74), this also provides a basis for systematic integration

of life-cycle research. Varying nutritional needs during the life cycle are central to

nutritional sciences and provide a foundation for public health policy (59; 69). Thus,

application of nutritional metabolomics to improved life-cycle nutrition research can yield a

central foundation to operationalize the conceptual grid of the exposome (Figure 1).

Food metabolome—In the exposome, diet is probably the greatest single source of

chemical exposures, including nutrients, non-nutritive chemicals, pesticides and others.

Jones et al. Page 3

Annu Rev Nutr. Author manuscript; available in PMC 2014 May 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



About 40 required nutrients are consumed daily in variable amounts by individuals. Among

these, the organic chemicals are converted through intermediary metabolism to more than

1500 chemicals, which are now included in curated databases such as the KEGG human

metabolic pathways (Kyoto Encyclopedia of Genomes and Genomics) (48; 49), Madison

Metabolomics Consortium Database (MMCD) (60) and Metlin database (81). Lipidomics

research shows that the full spectrum of endogenous metabolites is much larger, perhaps

hundreds of thousands of chemical species (39). These nutrients and related products can be

considered operationally as a core nutritional metabolome, which contributes to the pan-

metabolome (Fig 1A). Systematic study of the effects of under-nutrition and over-nutrition

for each of the required nutrients on the core nutritional metabolome under controlled

conditions is feasible with current technologies. Such studies are central to a conceptual grid

for the exposome created by combining exposures of the life cycle (Fig 1B) with the

exposures contributing to the pan-metabolome (Fig 1A).

Most chemicals in food are not nutrients (Fig 1A). Some phytochemicals are biologically

active and important to health, such as inducers of detoxification systems that protect against

cancer-causing reactive electrophiles (52) and antioxidants that protect against damage from

free radical reactions (24). However, these phytochemicals are highly variable within

individual food sources and thus in the diet, and the complexity of diet and overlapping

biologic activities of chemicals has prevented clear understanding of their importance, as

evidenced by the failure of interventional trials based upon extensive experimental and

observational research (34; 46). Goodacre et al (33) estimated that there are more than

200,000 metabolites within the plant kingdom, and new web-based tools to facilitate

research on plant metabolomics have become available (3; 67). Advances relevant to

nutritional metabolomics have been made in food and agricultural sciences (16; 37). Even

though the primary purposes are not nutrition, per se, the use of chemical profiling as a basis

to characterize plants and plant-derived products is of great importance to support detailed

nutritional intervention and epidemiology studies. For instance, characterization of

chemicals in grapes and products such as wine provide an important subset of dietary

chemicals that are relevant to diet and health (25; 76). Common and abundant

phytochemicals are already included in human metabolomics databases, such as KEGG,

Metlin and MMCD, and are readily accessible to nutrition scientists. Other chemicals are

included in more specialized resources (23; 30; 53), some with open access and others that

are proprietary. The task of learning the tools and their respective strengths and weaknesses

for nutrition research remains challenging because food and nutrition are inherently complex

and there are many databases. Critical challenges remain to link crop metabolomics (80)

with food metabolomics (food storage, processing and cooking) (11; 100) and human

nutrition. Considerable scientific information is available concerning loss of nutrient content

and formation of chemical carcinogens, but manual curation of such information into readily

accessible databases is costly and time-consuming. Additionally, characterization of

chemicals formed during storage and handling is mostly limited to highly toxic metabolites

and degradation products. Thus, an alternative approach would be to use the advances in

analytic methods for nutritional metabolomics to create an integrated pipeline for this

complex subject, fostering the critical links between plant science, food science and human

nutrition needed for complex systems models of diet and health (78).
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Microbiome-related metabolome—Important advances have come from the

recognition of the contribution of the enteric microbiome to the mammalian metabolome

(Fig 1A). Martin et al (63) used a top-down metabolomics approach, i.e., one examining all

chemicals detected rather than only a targeted subset, to study the interaction of symbiotic

gut microorganisms with mouse metabolism. Comparisons of germ-free mice colonized by a

human baby flora or a normal flora to conventional mice showed a simple microbiome/

metabolome correlation network, impacting directly on the host’s ability to metabolize

lipids. They concluded that the microbiome modulates absorption, storage and energy

harvest from the diet at the systems level. Association between early nutrition, the

microbiota and the immune system are being actively studied as contributors to obesity and

chronic disease (19; 65). Wang et al (94) used liquid chromatography-mass spectrometry

and a combination of human and mouse studies to generate unbiased small-molecule

metabolic profiles of plasma. They found that three microbiome-dependent metabolites of

diet-derived phosphatidylcholine [choline, trimethylamine N-oxide (TMAO) and betaine]

predict risk for cardiovascular disease. Wikoff et al (98) used a mass spectrometry approach

to study the effect of the intestinal microbiome on plasma metabolites in germ-free mice

compared to conventional mice. Of the chemicals found in both, about 10% significantly

differed between the mice, and hundreds of chemicals were only detected in one group. One

can infer that greater than 10% of the plasma metabolome is directly dependent upon the

microbiome. Specific studies showed that bacteria produced indole-containing metabolites

derived from tryptophan such as indoxyl sulfate and indole-3-propionic acid (98). Together,

these results illustrate significant interplay between bacterial and mammalian metabolism

both at the level of macronutrition and also at the level of specific metabolic pathways

linked to disease.

Environmental metabolome—The food metabolome also contains herbicides,

insecticides, fungicides and other chemicals of interest for environmental health (Fig 1A).

Although not a central component of nutritional metabolomics research, per se, these are

relevant because environmental chemicals are present to variable extents in all

metabolomics studies, and nutrient-chemical interactions could represent a common

determinant of environmental health. High-performance metabolic profiling of human

plasma revealed over 100 chemicals apparently of environmental origin (83). Such

environmental chemicals, as well as other chemicals derived from commercial products

(face creams, soaps, disinfectants, flame retardants, etc) and contaminants in the drinking

water (antibiotics, fertilizers, drugs, etc) can potentially interact with nutrients to impact

health. Environmental contaminants are present in all of the solvents and materials used for

collection and analysis of samples, and precautions and controls for proper interpretation

have been developed (1; 51). Thus, progress in environmental metabolomics provides

information critical to the elaboration and development of the exposome and, ultimately, to

effectively utilize nutritional metabolomics for study of complex interactions that impact

personalized nutrition.

Predictive health and healthcare economics

Nutritional and dietary recommendations are focused on disease prevention and

management, codified as a set of reference values, DRI, defined as the amounts of essential
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nutrients considered sufficient to meet the physiologic needs of practically all healthy

persons in a specified group and the average amount of food sources of energy needed by

the members of the group (58). While maintaining a focus on healthy people, a shift has

occurred in recent years to include recommendations concerning non-nutritive food

components, such as fiber, and also to include recommendations for overweight people to

promote health (87). Although gradual, this shift from a focus on sufficient nutrition to

avoid disease to a focus on nutrition to optimize overall health and function is fundamental.

It redirects nutrition sciences from individual nutrients to eliminate specific disease

symptoms to optimized balances for healthy physical, mental and emotional development.

This advanced concept sets the stage for evolution of complex systems models for

personalized nutrition.

Concept development was advanced in a commentary on predictive health and personalized

medicine (89), in which the authors emphasized that establishing “personalized health

profiles” will be a challenging task that is dependent upon integrated systems approaches.

They suggest that the required shift in thinking by scientists and practitioners will be a

greater challenge than to create mathematical models of complex diseases. They predict,

however, that this shift will ultimately occur because of the cost of the current model of

healthcare. Progress in conceptualizing this shift for nutritional sciences is summarized in

Figure 2, based upon this vision for the transition of medicine from a disease-oriented model

to a health-oriented model.

Normative approach—In this vision, contemporary nutrition uses a normative approach

(Fig 2A) in which average characteristics in populations and model systems support

development of hypotheses, which are then tested in human studies to determine average

response of a selected population to an intervention. Prevention and treatment plans then use

this treatment for an individual who meets the selection criteria, i.e., deviates from

“normal”, with the expectation that the treatment that showed significant benefit in the test

population will be beneficial in the individual.

Integrated biosystems approach—An integrated biosystems approach (Fig 2B) also

uses information from population and molecular studies as above, but this information is

used as a basis for design of integrated systems models that predict behavior (89).

Computational models based upon these integrated designs can then be used to evaluate

effects of varying single or multiple elements within the model, as is needed to predict

outcome for an individual with a unique set of characteristics. As models are refined and

validated with inclusion of information-rich data, such as nutritional metabolomics, they can

be used for personalized health prediction, risk evaluation and treatment. This is

advantageous in the transition from an average (population) model because it can be

individualized as much as the data will allow.

Implementation of integrated systems models in healthcare will face many regulatory

hurdles, and the cost of surmounting these barriers limits incremental improvements. Thus,

even though gradual improvement would appear possible, substantially improved

personalized models are needed to warrant the cost of validation studies. The development

of highly precise personalized models is is not likely to be straightforward, and there is a
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possibility that the interactions of the genome, epigenome, diet and health behaviors, are so

complex that useful integrated systems models will not become available for decades.

Artificial intelligence approach—An alternative (Fig 2C) is to use systems data and

associated detailed health outcomes data with artificial intelligence. For this, data for a large

reference population would be assembled into a cumulative data matrix so that data for an

individual can be queried against the matrix to obtain the best matches to directly predict

outcomes. Although less attractive from a scientific point of view, this may be more

effective in rapidly providing personal predictions for human nutrition because of the

extensive variability of human diet, individual genetics, etc. An advantage of this approach

is that the power of prediction would increase with the number of individuals in the database

and the period of time over which data are collected. Progress with virtual clinical data

warehouses (14; 96) and information systems (36; 105) provide capabilities to use

metabolomics data to support this approach to personalized nutrition. Although there are

many practical issues concerning policy and implementation of such new approaches, the

conceptual development has advanced to enable nutrition scientists to effectively use

nutritional metabolomics toward the long-term goal of improved individual nutritional

assessment, health prediction and therapeutic intervention.

Nutritional metabolomics for complex biosystems research

A third conceptual advance lies in the transition from simple cause-effect models of disease

to ones acknowledging that in complex, adaptive systems, a single cause can have multiple

effects, and multiple causes can have a single effect. Loscalzo et al (57) addressed the

challenging transition from contemporary medical classification of human disease, derived

from conventional reductionism, to one that incorporates a non-reductionist approach to

systems biomedicine. Contemporary nutrition was derived in a manner similar to

contemporary medicine, based upon observed associations between nutrient intake and

clinical syndromes, with supportive mechanistic studies to link nutrients to phenotypes. In

practice, effectiveness of contemporary nutrition depends upon observational skills of a

nutritionist and relatively simple assessment and intervention tools. Although effective, the

approach has limitations in sensitivity to detect early or subclinical nutritional

insufficiencies, accuracy for different clinical presentations and usefulness in therapeutic

interventions for complex phenotypes.

A greater limitation to contemporary approaches, however, is that rational interpretations

based upon a system that excessively relies upon reductionism can be mostly or completely

wrong. Loscalzo et al (57) used failure of secondary interventional trials with folate to

reduce risk of atherothrombotic events with vascular disease and hyperhomocysteinemia to

illustrate the failure of this approach. They used sickle cell disease, in which a single DNA

mutation can have multiple disease phenotypes, as a second example (57). Other examples

are common: cardiovascular disease has multiple nutrition-related components, including

high LDL, low HDL, uncontrolled hypertension, physical inactivity, smoking, obesity, and

uncontrolled diabetes, but none of these is perfect in prediction; phenylketonuria has

multiple phenotypic characteristics that are not uniformly expressed; many diseases have

genetic and non-genetic bases. Nutritional metabolomics studies reinforce the conclusion
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that average population characteristics are not good descriptors of individual characteristics.

In a diurnal variation study, an average variation in the plasma metabolic profile was

identified that discriminated morning, evening and nighttime metabolic patterns (71). No

individual had the average response pattern, i.e., even though an average response was

described, this average was not a good descriptor of an individual. A crossover study of

sulfur amino acid insufficiency similarly showed that while about half of the individuals

showed a common response pattern, no individual had an average response pattern (72).

Thus, nutritional metabolomic data underscore the need to transition to complex biosystems

approaches to transform nutrition to a personalized level.

A study by Deo et al (15) illustrates the important contribution of nutritional metabolomics

toward the goal of complex biosystems models. Nutritional science with an n=1 is practiced

daily with conduct of glucose tolerance tests. Insulin affects many processes in addition to

blood glucose levels, and glucose availability impacts many aspects of metabolism in

different body compartments. Deo et al (15) showed that considerable additional

information about an individual could be obtained by applying nutritional metabolomics

methods in association with a challenge test. They analyzed results of targeted metabolic

profiling in association with an oral glucose tolerance test and found few chemicals

corresponding to those expected from known metabolic pathway metabolites in comparison

of normal glucose tolerance and impaired glucose tolerance. However, using unbiased

approaches with bioinformatics tools, active modules of metabolites were identified that

were naturally grouped according to System A and System L amino acid transporters and

the osmolyte transporter SLC6A12 (15). Additional contribution by the mitochondrial

glutamate-aspartate tranporter SLC25A13 was indicated by changes associated with

pyrimidine biosynthesis (OMP, ribose-1-phosphate), purine biosynthesis (ribose-1-

phosphate, xanthine, hypoxanthine, xanthosine), triglyceride biosynthesis (glycerol,

glycerol-3-phosphate), urea cycle (citrulline, ornithine), bile salt accumulation

(taurochenodeoxycholate, glycocholate, glycochenodeoxycholate), glycolysis (lactate,

pyruvate), gluconeogenesis (ala, ser), malate shuttling (glutamate, malate, alpha-

ketoglutarate) and aspartate biosynthesis (asparagine). The data illustrate an important

conceptual advance in nutritional metabolomics, namely, transitioning from a mono-

dimensional view of metabolism involving only substrate clearance or enzymatic

conversions to a multi-dimensional view in which biochemical reactions occur in different

subcellular compartments linked by transport systems (Figure 3). In such multidimensional

models, movement between compartments can compensate for changes within

compartments. Because volumes, concentrations and enzyme contents of compartments

differ, response of a complex system is often not a simple function. Similarly, differences in

gene copy number, alleles, gene expression, epigenomic regulation, microRNAs, cell

populations and a number of other mechanisms contribute to the multidimensional character

of complex systems. Hence, the use of nutritional metabolomics in integrated biosystems

research represents a critical advance in addressing complex issues of diet and health.

PROFILING METABOLITES FOR NUTRITIONAL METABOLOMICS

The small-molecular weight metabolites within an organism cannot all be measured due to

the practical limit of sensitivity, i.e., detection methods are inadequate to measure all
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individual small molecules. Human metabolic databases include approximately 2,500

metabolic intermediates, hormones and other signaling molecules, over 1000 drugs and over

3500 food components (60; 81; 101). Many analytic methods are available to acquire

extensive metabolic information and the strengths and weaknesses of these have been

recently reviewed (10; 40). No single method has achieved a level of standardization or

widespread use to warrant consideration as a uniform platform for nutritional metabolomics.

Although thousands of chemicals can be measured by current technologies, it is humbling to

recognize that today’s analytic platforms for targeted measurement of biochemicals cannot

quantify more than 10-times the number of chemicals measured by Moore and Stein half a

century ago using automated amino acid analysis (64). Nutrition research favors rigorous

analytic procedures in which individual analytes are quantified in absolute amounts relative

to authentic standards. In amino acid analysis, the amine moiety allowed chemical

modification and quantification in terms of an added molecular tag. Because metabolites

differ considerably in physical and chemical properties, this approach is inherently limited to

capture the entire metabolome. Consequently, a central challenge remaining for nutritional

metabolomics is the development of comprehensive profiling capabilities.

Mass spectrometry

All molecules have mass, and advanced mass detectors in mass spectrometry (MS) currently

provide the best methods to detect the broad range of chemicals. MS detects chemicals as

ions in the gas phase, and this presents practical limitations to obtain absolute quantification

of a spectrum of chemicals. Chemicals differ considerably in the conditions required for

ionization in the gas phase. The energy required to create ions can result in reactions that

convert metabolites to different chemical species. Furthermore, a single chemical can form

multiple ionic forms, and relative amounts of these forms can vary due to the presence of

other chemicals. These limitations are controlled by standardized separation techniques (gas

chromatography, liquid chromatography, capillary electrophoresis), which simplify the

mixture of chemicals introduced into the mass spectrometer, and ionization methods

(electrospray ionization, ESI; atmospheric pressure chemical ionization, APCI; desorption

electrospray ionization, DESI), which ionize a broad range of chemicals (78). Currently,

targeted analysis of more than known 300 metabolites in biological samples is widely

available with reliable relative quantification within sample sets. Gas and liquid

chromatography separations are most commonly used, with ion dissociation using tandem

mass spectrometry (MS/MS) to facilitate chemical identification. Ongoing improvements in

MS/MS databases (60) (National Institute of Standards http://chemdata.nist.gov/mass-spc/

amdis) continue to enhance capabilities, and advances in ultra-high pressure liquid

chromatography support separation of thousands of chemicals in relatively short analysis

times (95). Absolute quantification by mass spectrometry requires standardization relative to

authentic standards and is often readily achieved only for small numbers of metabolites. The

limited ability to obtain absolute quantification of large numbers (>2000) of metabolites

remains a major obstacle for nutritional metabolomics.

An important practical advance that makes metabolic profiling tractable for nutritional

sciences is the availability of the mass spectral analyses in academic cores and commercially

(e.g., Metabolon, Research Triangle Park, NC). Although absolute quantification is not
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achieved, relative quantification is sound for samples collected, stored and analyzed together

in sample sets. If one uses the 2500 metabolic intermediates in the Human Metabolome

Database (101) as a reference, analytic methods are widely available to gain information on

10% of the metabolites of intermediary metabolism for nutrition studies.

High-resolution mass spectrometry

High-resolution mass spectrometry (62) has been used to facilitate measurement of large

numbers of chemicals based upon mass resolution and mass accuracy (Figure 4). These

characteristics allow prediction of elemental composition of a chemical using the accurate

mass/charge (m/z) values; >90% of the metabolites in the MMCD or KEGG human

metabolite databases have unique elemental compositions so that m/z matching to the

databases provides a fairly effective approach to map metabolism. Using this approach, a

single 10-min analysis by LC-FTMS (83) with data extraction by apLCMS (104) detects

about 4000 m/z, which include matches to about 25% of the metabolites in KEGG human

metabolic pathways (Figure 5). Targeted quantification can be obtained by stable isotope

dilution (44; 45) and by concurrent MS/MS analysis, matched back to authentic standards

and MS/MS databases. Greater coverage (about 7000 m/z) is obtained with a dual-

chromatography-FTMS approach (83), and data extraction by apLCMS with multiple

parameter settings and data merger can further increase the number of m/z features detected

in a single sample. Importantly, the coverage can, in principle, be increased to detect over

10,000 chemicals, including representative chemicals of each of the components of the pan-

metabolome. Such coverage enables studies similar to genome-wide association studies, in

which abundance of individual chemicals are tested for association with health phenotypes.

These metabolome-wide association studies (MWAS), will be very important to link dietary

chemicals with disease. Related analyses can support metabolome-genome association and

metabolome-epigenome association studies. Improved classification of the pan-metabolome

as outlined in Figure 1 will further allow more specific analyses of the nutritional

metabolome and food metabolome.

Other analytic approaches

Many additional approaches are available for nutritional metabolomics, such as capillary

electrophoresis as an alternative to chromatography (82) and electrochemical detection as an

alternative to mass spectrometry (55). A common approach to improve detection of

metabolites that differ in characteristics of ionization or separation is to combine results

from multiple analytic platforms. Innovative approaches include biosensor arrays,

microfluidics, and alternate spectral methods, such as Fourier-transform infrared

spectroscopy (13; 54; 107). An important advance from the commercial sector (Metabolon,

Research Triangle Park, NC) is the introduction of a hybrid approach for metabolomics,

consisting of targeted analysis of 300 to 500 known chemicals and untargeted analysis of an

additional 3000 unidentified m/z. This hybrid approach allows one to test specific

hypotheses using targeted analysis while simultaneously performing untargeted testing for

other associations among unidentified chemicals.

In summary, progress in development of analytic tools for nutritional metabolomics has

made targeted (biomarker or mechanistic discovery) and untargeted metabolite analysis
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practical for routine inclusion into laboratory, clinical and epidemiological nutrition

research. Limitations remain for absolute quantification, but relative quantification of ≈ 10%

of the core nutritional metabolome of humans is readily available to support integrated

studies of diet and health. Non-targeted analyses using high-resolution mass spectrometry

provides relative quantification of thousands of chemicals, over half of which are currently

unidentified. These include bioactive phytochemicals and products of the microbiome.

Hybrid approaches for targeted and untargeted analyses provide information-rich data sets to

enable bionformatic and computational research to address complex interactions of diet and

the microbiome as they impact individual nutritional needs.

BIOINFORMATICS AND COMPUTATIONAL SCIENCES

Biostatistical, bioinformatic and computational tools to analyze chemical profiles have been

developed over several decades and used extensively for nutritional biomarker discovery

(7). In the past several years, important advances have been made in tools and applications

to use information-rich metabolomics data to integrate diet and nutrition in complex

biosystems. These tools can be used in both “bottom-up” and “top-down” approaches (4; 45;

63; 74). Bottom-up approaches start with known molecular reactions and add known steps

with targeted metabolic analyses to create models of complex behavior. Important advances

have been made in metabolic flux and contributions of discrete biochemical pathways to

complex processes. For example, Wopereis et al (102) studied the effect of the anti-

inflammatory drug, diclofenac, on 343 plasma metabolites during an oral glucose tolerance

test. Metabolites that change grouped into patterns, one of which included increases in

neutral amino acids (Ile, Leu, Thr) over the entire challenge time course and the other

including metabolites (5-oxoproline, Gly, Glu) related to glutathione biosynthesis that were

increased only after 90–120 min. Diclofenac was found to selectively increase the latter

group. Wang et al (93) studied a panel of >60 amino acids, amine and other polar

metabolites in a case-control study of normoglycemic individuals followed over 12 years

and found branched-chain and aromatic amino acids as predictors of future diabetes.

Isotopic tracer methods in nutritional metabolomics have also contributed to a number of

important nutritional requirements of disease. Marrero et al (61) used 13C carbon tracer

kinetics to study gluconeogenesis in Mycobacterium tuberculosis, which relies on this

metabolic process to establish and maintain infection. Beste et al (6) used tracer studies to

identify a novel pathway for pyruvate dissimilation requiring CO2 fixation. Ferrara et al (22)

combined transcriptomic data for 40,000 probe sets with targeted analysis of 67

intermediary metabolites (amino acids, organic acids, acyl-carnitines) to construct causal

networks of metabolic processes in liver. Such examples provide clear evidence of the

progress in application of bioinformatics and computational approaches to address complex

nutritional questions.

Database tools

Developments for study of specific nutrient effects on metabolism include substantial

advances in biosystems databases. The confluence of genome sequencing and bioinformatics

has led to the development of thousands of metabolic databases such as the MetaCyc,

KEGG, Reactome, Model SEED, and BiGG families (50). These are developed using

Jones et al. Page 11

Annu Rev Nutr. Author manuscript; available in PMC 2014 May 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



manual curation of scientific data, often focusing on humans and model organisms, such as

Escherichia coli, Saccharomyces cerevisiae, Mus musculus, and Arabidopsis thaliana, and

are available through a number of web sites. Software tools for querying and visualizing

metabolic networks support description and prediction of metabolic pathways for a wide

variety of organisms and constitute an important resource for nutrition research. Such

developments have occurred as a consequence of genome sequencing efforts and algorithms

for predicting the presence of metabolic pathways in organisms with a sequenced genome.

These are mostly non quantitative at the present time, but combination with enzyme

databases containing kinetic information (35; 79) is beginning to provide more

comprehensive modeling capabilities, such as are required to describe nutrient effects.

As an example, MetaCyc is a database of non-redundant, experimentally elucidated

metabolic pathways from >1000 organisms (mostly microorganisms and plants) that has

begun to capture enzyme kinetics data. The database includes more than 1500 metabolic

pathways and associated 8,600 enzymatic reactions. Such systems can support

computational metabolic network prediction, integrate experimental data into metabolic

pathways and create metabolic models for simulation (8; 50). An important advance for

nutritional metabolomics is the development of a complementary experimental approach to

use stable isotopes to elucidate metabolic pathways in a non-targeted manner (41). This

method uses the isotopomer distribution and computation analysis for global analysis of flux

into all detectable metabolite pools. Such methods remain limited by metabolic cycles, loss

of label as CO2, and an assumption that the system is at a steady state. Despite these

limitations for precise systems biology descriptions, however, the methods provide means to

elucidate new metabolic pathways and could be especially valuable for studies of nutrition

and the microbiome.

These database tools support genome-scale models of metabolism as needed to address the

effects of diet and nutrition on health of an organism. While review of research on metabolic

reconstructions (18; 20) is beyond the scope of the present review, an example of advanced

computational methods illustrates the applicability for complex nutritional modeling.

Metabolic network reconstruction from genomic and gene expression data is composed of a

set of biochemical reactions and provides insight into the hierarchical regulation of

metabolic flux at a genome-scale. However, enzyme activity and metabolomics data are

needed to provide information on metabolic flux. Yizhak et al (103) used computational

modeling to predict metabolic flux distribution for genome-scale models by determining a

steady-state flux distribution in which flux through reactions with measured proteomic and

metabolomic data is as consistent as possible with kinetically derived flux estimations. Such

approaches provide a foundation for nutritional studies where high-throughput

metabolomics data are becoming available for nutritional deficiency and excess models.

While limited high-throughput flux measurement capabilities exist, such modeling

approaches can support understanding of complex nutritional interactions at the level of an

entire organism.
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Top-down approaches complement bottom-up metabolomics

With time, such approaches will yield an understanding of responses of mammals to

changes in the endogenous microbiome. At present, however, the variability of the

microbiome introduces a complication in mammalian nutrition that is difficult to address

using a bottom-up approach to nutrition at a personalized level. Each microorganism has a

metabolome, and the metabolomes of these organisms interact with each other as well as

with the host mammalian metabolome. Thus, even though rapid progress is currently being

made to understand normative characteristics of the human and mouse microbiomes,

individual nutritional modeling becomes unwieldy without a priori knowledge of the

contributions of thousands of microbial species within an individual. For such purposes, top-

down nutritional metabolomics approaches provide a critical complement to the bottom-up

computational frameworks.

Top-down nutritional metabolomics approaches are analogous to a whole body physical

examination in medicine, e.g., an elevated blood LDL concentration provides important

information about cardiovascular disease risk, but total CVD risk is better evaluated within

the context of obesity, hypertension, exercise and other risk factors. While there are no ideal

top-down nutritional metabolomics methods currently available, important advances have

been made with several analytic platforms. Proton nuclear magnetic resonance (1H-NMR)

spectroscopy and phosphorous-31 NMR (31P-NMR) spectroscopy provide spectral

measurements that are directly and quantitatively related to abundance of chemicals (12;

92). Many of the signals overlap and are difficult to relate unambiguously to individual

chemicals, but the methods are useful to measure abundant chemicals, such as

macronutrients in energy metabolism, including fatty acids, sugars and some amino acids

(68). Inouye et al (42) used 1H-NMR metabolomic data along with transcriptomic and

genomic variation to show concurrent association of metabolites, inflammation and

adiposity. Importantly, gene co-expression in circulating leukocytes was dependent upon

plasma metabolites, showing networks linkage with lipoproteins, lipids and amino acids.

Stringer et al. (86) showed that quantitative metabolomics was potentially useful in sepsis-

induced acute lung injury, and Park et al (70) showed a progressive trajectory of the

principal component analysis (PCA) of plasma metabolites in albumin-treated patients

toward a normal healthy metabolic profile. The most discriminatory regions by PCA

consisted of parts of the spectra in which amino acids, glucose and other metabolites are

present, suggesting utility to evaluate nutritional imbalance of critical illness and to assess

recovery from critical illness (70).

Tracer methods using carbon-13 NMR (13C-NMR) spectroscopy also provide ability to

measure flux in pathways containing high abundance metabolites, such as metabolic

interactions of pathogenic and commensal bacteria (66). Analogous magnetic resonance

spectroscopy (MRS) methods measure metabolites in vivo, and such studies were used many

years ago to study nutrient effects on muscle energy metabolism (2) and more recently to

show that 3 days of a sulfur amino acid-free diet has no detectable effect on brain GSH, but

increases midbrain glutamate and has effects on other high-abundance metabolites in

humans (73)
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High-resolution mass spectrometry methods provide capabilities for comprehensive top-

down analysis by supporting measurement of thousands of metabolites, with relatively high

throughput and minimal sample processing. Associated limitations are the capability to only

support relative quantification of most species and the inclusion of large numbers of

unidentified chemicals. Moreover, statistical methods must be applied with caution because

of the large number of comparisons in associated datasets. Methods based upon the

principles of false discovery rate (FDR)(5), and positive FDR (85), are valuable for analysis,

but these methods are limited in that metabolic adaptation can result in an appearance of no

effect when substantial pathway effects are present. For instance, proteolysis and

gluconeogenesis maintain blood amino acid and glucose concentrations during starvation,

with some, but not all, related metabolites significantly altered (21; 38). Consequently, for

nutritional metabolomics, there remains a need for robust statistical methods to complement

those for individual metabolites and test for pathway and network effects involving multiple

metabolites.

Bioinformatics for top-down metabolomics

Common approaches for top-down nutritional metabolomics rely upon bioinformatics

methods, which include both statistical and non-statistical methods. The broader approach of

chemometrics, developed over several decades (7), uses multivariate statistics, applied

mathematics, and computer science to address chemistry, biology and medicine. Methods

are widely available to characterize metabolic patterns associated with nutritional variables

and other data-analytic needs in nutritional metabolomics research (78). Clustering

algorithms to simplify complexity or select a smaller subset of chemicals or subpopulations

for targeted investigation are widely available in biostatistical software packages;

hierarchical cluster analysis (HCA) is commonly used in nutrition research in gene

expression analysis and can similarly be used to subgroup metabolites or individuals

according to metabolic characteristics without a priori knowledge of metabolic pathways or

health phenotype. Principal component analysis (PCA) and partial least squares (PLS) are

also widely available to reduce complexity by extracting information on factors contributing

to differences among the samples. Both HCA and PCA are also widely considered unbiased

in the sense that they classify samples without assignment of identifiers to the samples.

However, both can be biased in complex biosystems analyses because analytic methods can

omit lower abundance metabolites. Furthermore, higher abundance metabolites often

contribute more to the total variance so that mean-centering and autoscaling of abundance

data can be important to evaluate metabolomic profiles in an unbiased manner. A limit to

this approach is that lower abundance chemicals often have greater analytical variability, so

scaling and normalization procedures commonly used in statistics can introduce bias in

bioinformatics. Critical reviews and commentaries on sample collection, metabolic profiling

and data analysis provide important progress in nutritional metabolomics (78).

Advances in probability-based clustering (84) allow co-regulated metabolites to be

identified, moving forward capabilities for delineation of the hierarchical structure of

metabolic organization. Such approaches are not always reliable because genes of the same

pathway can be regulated very differently (91). None-the less, advances in these methods

enable sub-classification of the pan-metabolome based upon associations of unidentified
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metabolites with known metabolites and metabolic pathways (83). In the context of carefully

designed nutritional intervention studies, such data will support genome-scale nutritional

metabolomics models as needed for personalized nutrition. Toward this goal, important

advances have been made in standardization of metabolomics data to support nutrition

research (77), but cumulative databases of quantitative human metabolomics data are not yet

well developed or widely available.

Artificial intelligence: Fractal analysis

Artificial intelligence methods have been applied to nutritional metabolomics and may be

particularly useful to quantify metabolic adaptability. An example is the use of fractal

dynamics to measure irregularity and unpredictability in biological systems, as introduced

by Goldberger (31). Fractal analysis shows that irregularity of serial physiologic data are

important features of health and adaptation; in contrast, characteristics of disease are

associated with greater regularity of such data. This is illustrated by fractal analysis of the

human heartbeat, where a higher Hurst exponent (H), indicative of greater heartbeat

regularity, was associated with cardiovascular disease, while a more irregular heartbeat

pattern, with a lower H value, was observed in healthy individuals as an indicator of greater

adaptability to ambient conditions (31; 32). Although not developed for nutritional

assessment, fractal analysis of diurnal metabolic variation using wavelet transformed 1H

NMR spectra of human plasma showed that H was predictive of the plasma concentration of

cysteine (47). More powerful multifractal approaches are also available to improve

description of metabolic regularity/irregularity by decomposing data into subsets

characterized by multifractal spectra with Holder exponent values that quantify local

behaviors, i.e., subregions of higher regularity and irregularity (43). Application of such

methods to information-rich datasets could be useful to detect metabolic consequences of

suboptimal nutrition that may warrant more detailed clinical follow up or to provide

quantitative means to monitor clinically-relevant responses to specific nutritional

interventions.

CONCLUSIONS AND NEW PERSPECTIVES

Nutrition sciences have a rich tradition of dealing with food and nutrient requirements for

heterogeneous populations, simplifying the inherent complexity into manageable

recommendations in the form of dietary guidance for the purpose of avoiding disease. While

using rigorous experimental designs and sophisticated analytic and biostatistical methods,

this approach has inherent limitations due to assumptions that metabolic organizational

structure is uniform among individuals and that direct cause-effect relationships exist. In

addressing this complexity, Ziesel et al (106) introduced the concept that nutritional

phenotype could be defined as an integrated set of genetic, proteomic, metabolomic,

functional, and behavioral factors that, when measured, could provide the basis for

assessment of human nutritional status. The nutritional phenotype was proposed as a means

to integrate the effects of diet on disease/wellness and provide a quantitative indication of

the paths by which genes and environment exert their effects on health. As summarized

here, advances in available technologies and databases support use of nutritional

metabolomics as a central component to define and measure the nutritional phenotype,
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initially across populations with various states of health and disease, and ultimately at the

level of individuals.

Several key advances have been made to transition from cross-sectional descriptions of

populations to useful models that are relevant for individuals. Complex biosystems models

must accommodate single or multiple nutritional deficiencies and/or excesses as having

different health phenotypic consequences among individuals, as well as different nutritional

variations among individuals contributing to common health phenotypes. Such

characteristics cannot be reliably predicted from normative responses with single cause-

effect relationships. Advances that enable use of nutritional metabolomics to support

complex biosystems models include the delineation of a conceptual grid for the exposome, a

transition from disease-oriented to health-oriented nutrition and transition from a

reductionist approach to one that incorporates non-reductionist complex biosystems

approaches. These conceptual advances are enhanced by improved analytic techniques

allowing relative quantification of thousands of metabolites, encompassing the core

nutritional metabolome, the broader food metabolome, a microbiome-associated

metabolome, and a range of chemicals derived from pharmaceutics, commercial products

and other environmental exposures (Figure 1). Rapid adaptation of chemometric methods to

nutritional metabolomics, and evolution of new bioinformatic and computional methods, as

well as artificial intelligence, have set the stage to focus nutrition research on requirements

of complex biosystems within individuals. These advances in nutritional metabolomics

portend a major shift in nutritional assessment and intervention from those based upon

normative characteristics of populations to ones utilizing complex biosystems approaches

that may better account for individual nutritional needs.
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Acronyms

KEGG Kyoto Encyclopedia of Genes and Genomes

MMCD Madison Metabolomics Consortium Database (MMCD)

DRI Dietary Reference Intakes

MS Mass Spectrometry

FTMS Fourier-transform mass spectrometry

apLCMS adaptive processing of high-resolution liquid chromatography/mass

spectrometry data

NMR nuclear magnetic resonance spectroscopy
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FDR false discovery rate

PCA principal component analysis

MWAS metabolome-wide association studies

Terms/Definitions

Nutritional
metabolomics

use of small molecule chemical profiling to integrate diet and

nutrition in complex biosystems

Exposome life-course environmental exposures (including lifestyle factors)

from the prenatal period onwards

Reductionist description of complex system behavior in terms of simple cause-

effect relationships

Pan-metabolome All small molecular weight chemicals in a biologic system

Microbiome Microorganisms associated with a metazoan organism

Predictive Health A healthcare concept using lifestyle approaches, including nutrition,

to optimize vitality and well-being rather than to serve primarily as

a means to prevent disease

Normative Description of characteristics and responses in terms of population

averages

Integrated
Biosystems

Models incorporating functional relationships of component parts to

describe overall behavior of a biological system

Artificial
Intelligence

Use of machine learning for classification or decision-making

purposes without regard for underlying mechanisms or relationships

of component parts

Fractal analysis An approach to quantify the regularity in behavior of a

characteristic of a biologic system as a means to discriminate

unhealthy (more regular) and healthy (more irregular) individual
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SUMMARY POINTS

1. Available technologies and databases support use of nutritional metabolomics as

a central component to define and measure the nutritional phenotype

2. The nutritional metabolome is a critical component of the conceptual grid of the

exposome, i.e., incorporating nutrition exposures from conception onward

3. Nutritional metabolomics is rapidly maturing as an experimental approach in the

field of nutrition science to support integration of diet and nutrition in complex

biosystems research

4. Personalized computational models can be developed to use nutritional

metabolomics to forecast health risks and treatment outcomes, thereby

facilitating the transition from population-based to individual-based nutrition.

5. High-resolution mass spectrometry provides sufficient sensitivity and metabolic

coverage to support metabolome-wide association studies (MWAS) of nutrition

and disease

6. An array of chemical and metabolic databases, bioinformatic methods and

computational approaches are available to enhance metabolomics use in

nutrition research

FUTURE ISSUES

1. Systematic application of metabolomics to life-cycle nutrition research provides

a logical, central foundation for the elaboration of the conceptual grid of the

exposome

2. Mechanistic information is available to use with nutritional metabolomics data

to support design and development of integrated systems models for nutrition

health prediction

3. Reference high-performance metabolic profiles and associated health outcomes

data will be needed as a resource for nutrition scientists to provide real tests of

computational models

4. Application and utility of nutritional metabolomics in both targeted (e.g.

identification of potential direct or surrogate biomarkers of health and disease)

and untargeted analysis in nutrition science
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Figure 1. The nutritional metabolome as a component of the exposome
A. The summation of all chemicals found in an organism can be considered a “pan-

metabolome”. Although no method is available to measure all chemicals, the pan-

metabolome can be conceptualized to contain a core nutritional metabolome derived from

required nutrients and related biochemicals derived from these nutrients in reactions

catalyzed by enzymes encoded in the organism. The food metabolome contains many

components of this core nutritional metabolome and also a large number of other non-

nutritive chemicals. The pan-metabolome also contains microbiome-related chemicals

derived from food metabolites, drugs and other environmental agents acted upon by the

intestinal microbes. Other components of the pan-metabolome are derived from dietary

supplements and pharmaceuticals, commercial products such as sun screen and face creams,

and environmental chemicals. B. The exposome is defined as the cumulative exposures from

conception onwards. Life cycle nutritional requirements can be viewed within the

conceptual grid of the exposome, including the core nutritional metabolome and food

metabolome as in Panel A. Together, Panels A and B provide a conceptual grid for the

exposome. Consequently, nutritional metabolomics represents a central and critical

component of exposome research, impacting expression of the genome and modification of

the epigenome through the lifecycle.
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Figure 2. Nutritional metabolomics to support personalized nutrition
A. Contemporary nutritional recommendations and interventions use a normative approach

based upon the characteristics of a healthy population. Hypotheses are based upon

experimental and epidemiologic studies, and tested in clinical trials to determine outcomes

in individuals meeting certain phenotypic or nutritional criteria. Importantly, the criteria are

based upon population-based norms. A person with a predefined deviation from the norm is

prescribed an intervention based upon clinical trials which show that this intervention has a

significant beneficial effect in at least some of the individuals in the trial. While cost-

effective for the population, the approach does not work for all individuals. B. An integrated

biosystems approach utilizes the hypotheses of Panel A along with information-rich

nutritional metabolomics (systems data) for humans and model organisms to develop

computational models. The computational models are tested and refined to correctly

describe responses to differences in diet, genetics or other factors. The computational

models are used with nutritional metabolomics data for an individual to provide personal

health models for health prediction, risk profiling and treatments. The approach takes
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advantage of the knowledge base as in Panel A but refines this for personalized use. C. An

artificial intelligence approach can take advantage of nutritional metabolomics (systems

data) as in Panel B but does not require mechanistic development. In this case, artificial

intelligence approaches are used to compare personal profiles to profiles and outcomes

within a reference population to obtain the best matches for prediction. This has advantages

that there is no delay in building models and the power increases with the size of the

reference population. On the other hand, due to the correlative nature of these statistical

models, there is has no scientific foundation to facilitate development of new interventional

strategies. Based upon Voit and Brigham (89).
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Figure 3. Development of multidimensional models for nutritional metabolomics
Recent use of unbiased pathway models (15) have revealed an important multidimensional

character to nutritional metabolomics. Differences in plasma metabolite profiles in

individuals with impaired glucose tolerance and normal glucose tolerance were associated

with transporters functioning in mitochondrial/cytoplasmic balance of NAD+ and NADH

(SLC25A13), and with cell membrane transporters involved in amino acid transport (System

A and System L) and osmotic regulation (SLC6A12). In this schematic representation based

upon the KEGG human metabolic pathway map, the plasma metabolome (bottom) is linked

to KEGG biochemical pathways in the cytoplasm (middle) through System A, System L and

SLC6A12, and a subset of metabolites in the cytoplasm is linked to the mitochondrial matrix

though the glutamate-aspartate transporter (SCL25A13). Based upon findings of Deo et al

(15). Some metabolites are not labeled due to lack of space.
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Figure 4. Comparison of mass spectrometry (MS) based metabolic profiling approaches for
chemicals have similar but not identical mass
A. Analysis with gas chromatography (GC) or liquid chromatography (LC) with a single

low resolution mass detector requires separation of chemicals prior to detection. B. Analysis

with a tandem mass spectrometer using either GC or LC often does not require complete

separation because ion dissociation and detection of product ions supports identification

without separation. However, quantification typically requires a stable isotopic form of

chemicals of interest for internal standardization. C. LC coupled to high-resolution mass

spectrometry supports high throughput analysis because chemicals are resolved by mass and

have less demand for chromatographic separation. High resolution instruments include

Fourier-transform ion cyclotron resonance, Orbitrap (Thermo) and newer time-of-flight

(TOF) instruments (62).
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Figure 5. Intermediary metabolites detected in 10-min liquid chromatography-Fourier
transform mass spectrometry (LC-FTMS) analysis of human plasma
Matches for ions detected by LC-FTMS with high-resolution mass/charge (m/z) in human

plasma to metabolites in the KEGG human metabolic pathways. MS data were extracted

using apLCMS (104). Larger dots represent matches for 745 metabolites found in plasma

from human, rhesus macaque, common marmoset, rat, mouse, pig and sheep. Metabolites

are present for 136 out of 154 pathways in the database.
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