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Abstract

Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat 

pathologies where excessive MMP activity contributes to adverse tissue remodeling. While MMP 

inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical 

application due to the dose-limiting side effects following systemic administration of the drugs. 

Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected 

into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP 

activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions 

and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/

rTIMP-3 construct to regions of MMP over-expression following a myocardial infarction (MI) 

significantly reduced MMP activity and attenuated adverse left ventricular remodeling in a porcine 

model of MI. Our findings demonstrate that local, on-demand MMP inhibition is achievable 

through the use of an injectable and bioresponsive hydrogel.

Excessive extracellular matrix (ECM) proteolysis by matrix metalloproteinases (MMPs) is a 

hallmark of many human disease states including chronic inflammation, tumor progression, 

and cardiovascular disease 1. MMPs hydrolyze peptide bonds with a high level of amino 

acid specificity, and under normal physiological conditions MMP activity is precisely 

controlled - such as through tissue inhibitors of MMPs (TIMPs) - to maintain a low level of 
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structural protein, cell receptor, and growth factor turnover. However, under 

pathophysiological conditions, there is a persistence of MMP activity which causes 

maladaptive changes to tissue architectures and functions, contributing to disease 

progression 2. Towards the development of therapies to treat this, the design and 

development of molecules that inhibit MMP activity has been a widely explored area of 

research over the past 25 years 1,3; however, none have translated to clinical application due 

to the dose-limiting side effects following systemic administration of these pharmacological 

MMP inhibitors4. To limit off-target effects of therapeutics, biomaterials – including 

injectable and water-swollen polymer networks or hydrogels – have acted as depots to 

locally deliver therapeutics based on diffusion and degradation mechanisms 5-7. Typically, 

these material systems are engineered to achieve a release profile to adequately dose patients 

within a therapeutic window specific to a disease. However, the absolute magnitude and 

temporal variation of MMP activity in patients is highly variable8,9; therefore, one hydrogel 

formulation and inhibitor dose may not be widely applicable across patient populations.

As an alternative to passive delivery, the recent development of stimuli responsive polymers 

have improved our ability to deliver therapeutics based on a trigger, such as light, pH, 

temperature, or the presence of an enzyme 10, including MMPs 11-16. We present here the 

development of an MMP-degradable hydrogel that is both injectable and sequesters TIMPs 

through charge interactions, so that local MMP activity regulates the release of a 

recombinant TIMP. This approach has not been previously used; yet, it has implications in 

numerous applications where MMP dysregulation leads to disease progression and where 

heterogeneity in MMP levels makes uniform therapeutic dosing difficult.

One specific area where MMP induction is associated with disease progression is the 

adverse left ventricle (LV) remodeling in patients following a myocardial infarction 

(MI) 17,9. Experimental models involving transgenic deletion of specific MMPs and 

systemic administration of pharmacologic MMP inhibitors have demonstrated that MMPs 

are important contributors to adverse global LV remodeling including LV wall thinning, 

chamber dilation, and ultimately dysfunction 18-21. While systemic administration of 

pharmacologic MMP inhibitors has shown efficacy in attenuating post MI remodeling in 

pre-clinical animal models of MI20,22, off-target effects have limited their success in recent 

clinical trials 23,24. Further, recent studies have shown that MMP elevation is highly 

localized to ischemic tissue within the MI region following experimental MI in large animal 

models 25,26. While MMP levels increased dramatically, levels of TIMPs decreased 

significantly within the MI region 26. With the exception of TIMP-1, TIMPs are known to 

inhibit all of the 25 known MMPs, and studies have identified unique roles and 

functionalities of each of the four TIMPs 27. Regarding TIMP-3, myocardial TIMP-3 levels 

were significantly reduced in contradistinction to elevated myocardial MMP levels in 

patients with end-stage heart failure 28 and transgenic TIMP-3 deletion in experimental 

animal models caused adverse LV remodeling and accelerated progression to heart failure 

following MI 29,30,31. Therefore, strategies that localize TIMP-3 to regions of MMP 

overexpression and limit spill over into the systemic circulation could safely target post MI 

remodeling by restoring MMP/TIMP imbalance within the MI region.
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Hydrogels that form upon injection into the myocardium have recently been developed and 

applied post MI 32-36. Building on these advances, we designed an injectable hydrogel with 

MMP-degradable crosslinks to encapsulate a recombinant TIMP-3 and release the inhibitor 

in response to elevated MMP expression within the myocardium following MI. One 

challenge towards realizing on-demand TIMP-3 delivery is to minimize passive TIMP-3 

release from the hydrogels (i.e., in the absence of MMP activity). TIMP-3 is unique among 

the TIMPs in that it is found bound to the ECM of tissues while the other three TIMPs are 

presented as soluble proteins 37. Specifically, TIMP-3 binds to sulfated 

glyocosaminoglycans with a high affinity through an abundance of positively charged lysine 

and arginine residues exposed on the protein surface 38,39. TIMP-3 binding to the ECM is 

thought to facilitate local MMP inhibition in tissues, and recent studies have shown that 

sulfated polymers enhance TIMP-3 binding affinity for specific MMPs 40. Therefore, we 

developed injectable hydrogels with a negatively charged polysaccharide backbone to mimic 

native TIMP-3/ECM interactions and minimize passive diffusion of TIMP-3 from the 

hydrogels. MMP-cleavable crosslinks were incorporated to liberate bound TIMP-3 in the 

presence of local MMP activity. Further, we utilized conjugation and crosslinking 

chemistries to form hydrogels rapidly upon injection into the myocardium that are stable in 

the absence of MMP activity to further prevent the passive release of TIMP-3 from the 

injection site. We demonstrate that this TIMP-3 delivery strategy is responsive to elevated 

MMP activity post MI, and effectively inhibits MMP activity within the MI region without 

raising systemic TIMP-3 levels. Importantly, locally inhibiting MMP activity within the 

myocardium attenuated post MI remodeling as evidenced through significant improvements 

in LV geometry and function in a large animal model of MI.

Injectable and bioresponsive hydrogel design

The main criteria used in designing a hydrogel formulation for rTIMP-3 delivery were to 1) 

form hydrogels upon injection of macromolecules through a syringe, 2) have the hydrogels 

degrade only in the presence of MMPs, and 3) minimize passive release of encapsulated 

rTIMP-3 (i.e., in the absence of MMP activity). Towards this goal, we developed a three-

macromer system that utilizes the chemical versatility of polysaccharide backbones (Fig. 

1a). Polysaccharides were chemically modified to contain either aldehyde (ALD) or 

hydrazide (HYD) functional groups to form hydrogels in a one-step condensation reaction, 

with water as the only byproduct (Fig. 1b). Hyaluronic acid (HA) was used as a template for 

both ALD and HYD modifications due to the well-defined size ranges of commercially 

available HA, the previous use of HA in biomedical applications, and the abundance of diol 

and carboxylic acid groups necessary for ALD and HYD modifications, respectively 41. 

Dextran sulfate (DS) was also incorporated into the hydrogels through ALD modification of 

its diol groups to act as a heparin mimetic to immobilize encapsulated heparin-binding 

TIMP-3 42.

ALD modification of HA and DS were evaluated separately as each polysaccharide contains 

a different number of diol groups amendable to aldehyde modification (Fig. S1). Further, 

converting diols to aldehydes through periodate oxidation is known to degrade 

polysaccharides, so a large molecular weight (MW) HA (~350kDa) was chosen to provide 

sufficient HA-ald MW to allow formation of robust hydrogels for rTIMP-3 encapsulation. 
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Reaction conditions for HA-ald were chosen to balance aldehyde modification and 

macromer MW as periodate concentration both increased aldehyde modification and 

decreased HA MW in a dose-dependent manner (Fig. S2). Reaction conditions for DS-ald 

were chosen to provide sufficient aldehyde modification to crosslink DS-ald into the 

hydrogel.

MMP-sensitivity was incorporated into the hydrogels by generating the MMP-cleavable 

peptide GGRMSMPV with functional groups at both ends for chemical conjugations using 

solid phase peptide synthesis. The peptide was synthesized with a HYD group at the N 

terminus to react with ALD containing polymers for hydrogel crosslinking, and a thiol group 

at the C terminus through incorporation of a cysteine amino acid to facilitate thioether 

linkage to a maleimide functionalized HA (MAHA) in a one-step click reaction (Fig. 1a). 

Finally, to improve solubility for passage of the polymer solution through a syringe, 

hydrophilic serine (S) and asparagine (N) spacers were incorporated between the functional 

groups and the MMP-cleavable sequence. Successful synthesis of the designed peptide was 

verified with mass spectroscopy (Fig. S3) and peptide coupling to MAHA was verified by 

complete consumption of the characteristic maleimide peak from 1H NMR (Fig. S4). The 

thioether coupling chemistry was chosen for its stability in water to prevent non-specific 

hydrolysis of the hydrogels.

The designed macromers rapidly formed hydrogels upon mixing ALD and HYD modified 

macromers over a range of macromer weight percents (1-5 wt%) as evidenced by 

development of the elastic component (G’) of the complex modulus using rheometry (Fig. 

S5). The time to gelation and the ultimate modulus decreased and increases, respectively, 

with an increase in macromer concentrations. At 3.5 wt%, the hydrogels formed solid gels 

(G’ > G’’) in less than 1 minute and reached a final G’ of approximately 1.5 kPa within 10 

minutes, at which point the hydrogels were robust, nearly elastic solids (Fig. 1c). To 

demonstrate MMP-sensitivity, hydrogels were incubated in buffer with varying 

concentrations of active MMPs and uronic acid content in the buffer was measured over 

time to calculate hydrogel mass loss. In the absence of active MMPs, the 3.5 wt% hydrogels 

were stable over the 12-day study (Fig. 1d). However, with 20 U/mL enzyme concentration, 

the hydrogels degraded in a near-linear fashion with very little hydrogel remaining after 12 

days, and with 200 U/mL, the hydrogels completely degraded in 2 days. In addition to 

enzyme concentration, hydrogel degradation rate was also controlled by macromer 

concentration (Fig S6). Hydrogel degradation rates scaled inversely with macromer 

concentration and therefore the number of crosslinks in the hydrogel. To evaluate the 

applicability of the hydrogels for MMP-triggered release of encapsulated molecules, FITC-

BSA was encapsulated in 3.5 wt% hydrogels and release was quantified in buffer with 

varying concentrations of active MMPs. Encapsulated FITC-BSA release followed the 

hydrogel degradation behavior in a similar MMP-dependent manner (Fig. 1e).

MMP triggered rTIMP-3 release

TIMP-3 was chosen for local delivery post-MI in part because of its unique ECM-binding 

property. This allowed us to design ECM mimetic hydrogels to encapsulate and bind 

rTIMP-3 until released by MMP-mediated hydrogel degradation. To this end, DS was 
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incorporated into the hydrogel formulation to mimic sulfated GAGs, the major component 

of the ECM responsible for TIMP-3 binding, due to its susceptibility to aldehyde 

modification through diol oxidation. Binding of rTIMP-3 to DS-ald was evaluated using a 

solid-phase binding assay. rTIMP-3 bound to DS-ald with a much greater capacity than to 

HA-ald, and approached the capacity of rTIMP-3 binding to heparin (Fig. 2a). Importantly, 

rTIMP-3 binding to DS-ald did not reduce rTIMP-3 inhibition of active MMPs (Fig. 2b). 

rTIMP-3 inhibited 4nM rMMP-2 with a half maximal inhibitory concentration of 17±4 

ng/mL (0.7±0.2 nM) with 50 μg/mL DS-ald in solution compared to 28±7 ng/mL (1.2±0.3 

nM) without DS-ald in solution (p=0.07). Previous studies found that a stretch of basic 

amino acids responsible for TIMP-3 binding to sulfated GAGs is opposite to the TIMP-3 

reactive site that interacts with MMPs 39. Therefore, utilizing polysaccharides that mimic 

sulfated GAGs allows localization of TIMP-3 without altering its inhibitory properties. 

Indeed, incorporating the sulfated DS-ald polymers into the hydrogels drastically reduced 

passive release (from ~95 to 20%) of encapsulated rTIMP-3 over the 14 day study, allowing 

for MMP-triggered release of the rTIMP-3 remaining in the hydrogel over a range of MMP 

activities and durations (Fig. 2c). In addition, increasing the weight percent of the 

macromers beyond 3.5 wt% did not further reduce passive rTIMP-3 diffusion from the 

hydrogel (Fig S7).

To investigate the responsiveness of the rTIMP-3 containing hydrogels to MMP-2 activity, 

hydrogels with and without encapsulated rTIMP-3 were incubated in 20 nM active rMMP-2. 

MMP-2 is ubiquitously expressed in all tissue types, is robustly upregulated in pathological 

remodeling, and degrades common ECM structural proteins. Thus, recombinant MMP-2 was 

utilized as the “prototypical MMP” for the purposes of in vitro validation studies. Hydrogels 

without rTIMP-3 degraded within 2 days in the MMP buffer, while hydrogels with 

encapsulated rTIMP-3 degraded in a linear fashion for over 14 days (Fig. 2d). This reduction 

in hydrogel degradation rate observed with rTIMP-3 encapsulation indicates that 

encapsulated rTIMP-3 remains active and is inhibiting rMMP-2 activity as rMMP-2 is 

degrading the hydrogel (Fig. 2e). Further, since rMMP-2 was refreshed every 2 days to 

account for enzyme stability (Fig. S8), a sufficient amount of active rTIMP-3 remained 

bound in the hydrogel for the entire 14 day study, otherwise the hydrogel would rapidly 

degrade in similar fashion to the hydrogels without rTIMP-3. These results demonstrate a 

novel approach of locally delivering rTIMP-3 in response to MMP activity by designing 

injectable hydrogels containing MMP-cleavable crosslinks and sulfated GAGs, where the 

local presence of active MMPs controls the release of matrix-bound rTIMP-3, and therefore 

local MMP inhibition.

Hydrogel formation and degradation in vivo

To assess the effectiveness of our rTIMP-3 delivery system in the setting of pathological 

MMP overexpression, a large animal model of MI was employed that allows for regional 

quantification of MMP expression and activity, along with functional outcomes of post MI 

LV remodeling 20,21. Hydrogels with encapsulated rTIMP-3 were injected at 9 equally 

spaced sites (100 μL of hydrogel per injection site) within a 2 cm × 2 cm grid in the 

ischemic, MI region of the myocardium (Fig. 3a). A dual-barreled syringe was utilized to 
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blend ALD and HYD polymers in equal ratios immediately prior to entering the tissue for in 

situ crosslinking.

Hydrogels were first injected into myocardium with either elevated MMP activity (MI 

myocardium) or normal MMP activity (non-MI myocardium) and hearts were harvested 

after 0 or 14 days to evaluate hydrogel crosslinking and degradation in response to MMP 

activity. Using a magnetic resonance imaging (MRI) technique to visualize hydrogels in the 

myocardium 43, dense regions of hydrogel were observed throughout the myocardial wall 

immediately after injection (Fig. S9). The hydrogel chemical composition produces a higher 

MR signal compared to myocardial tissue, resulting in brighter regions on the MRI image. 

Three-dimensional reconstruction of the hydrogel from the MRI images indicates that the 

hydrogels formed pockets as they were injected into the myocardium, and some extravasated 

(~10 μL per injection) back along the needle track as the hydrogel crosslinked from a liquid 

into a solid (Fig. 3b). The presence of solid hydrogel pockets was confirmed with histology 

as the negatively charged hydrogel stained dark purple with hematoxylin and eosin staining 

(Fig. 3c). The presence of the hydrogels was also confirmed with hyaluronidase treatment of 

the tissue sections, as HA is the major component of the hydrogels (Fig S10).

After 14 days in vivo in myocardium with a normal, low level of MMP activity (sham 

instrumented pigs), pockets of hydrogel were still visible with MRI (Fig. 3c). Some regions 

of hydrogel appeared to be remodeled with infiltrating cells and tissue. In contrast, 14 days 

following injection into hearts with pathological levels of MMP activity (MI instrumented 

pigs), pockets of hydrogel were no longer visible with MRI or histology (Fig. 3c-d). Instead, 

a more disperse signal from the scar tissue was visible with MRI and very little remnants of 

hydrogel was observed with histology. Quantification of the hydrogels with histology 

showed a drastic and significant reduction of hydrogel in MI hearts after 14 days in vivo 

compared to day 0 (Fig. 3e). In addition, there was significantly less hydrogel in the MI 

hearts compared to sham hearts after 14 days in vivo (Fig. 3e). This indicates that hydrogel 

degradation was responsive to increased MMP activity in infarct tissue following MI 

compared to normal tissue, and therefore the injected hydrogel released encapsulated 

rTIMP-3 in proportion to MMP activity within the tissue. This is an important observation 

as MMP expression varies both spatially and temporally from patient to patient post MI8,9, 

and therefore bioresponsive constructs such as this one could be used to release MMP 

inhibitors based on local MMP triggers instead of relying on a “one-size fits all” approach to 

inhibitor dosing.

Therapeutic efficacy post MI

Next, to assess the biological effects of this bioresponsive delivery system post MI, 

hydrogels containing rTIMP-3 were injected immediately following MI and 14-day 

outcomes were compared to sham controls, MI only, and MI with hydrogel only injection. 

Endogenous TIMP-3 concentrations in the MI region were restored to normal non-MI levels 

14 days following MI induction and hydrogel/rTIMP-3 injections (Fig. 4a). To assess 

systemic spillover of delivered rTIMP-3, blood samples were taken after 1, 3, 7, and 14 days 

following myocardial injections and analyzed for TIMP-3 concentrations. Importantly, there 

was no observed increase in systemic TIMP-3 levels with hydrogel delivery of rTIMP-3 to 
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the MI region compared to control groups (Fig. 4b). Together, these TIMP-3 analyses 

confirm local delivery of rTIMP-3 to the myocardium while limiting spillover into the 

circulation. To quantify the effects of locally delivered rTIMP-3 on MMP activity, 

interstitial MMP activity within the MI region was quantified in vivo using a previously 

validated microdialysis technique 8. Using this technique, interstitial MMP activity was 

observed to significantly increase in the MI region 14 days following MI induction (Fig. 4c). 

Interestingly, injection of the MMP degradable hydrogels alone significantly reduced 

interstitial MMP activity within the MI region, due to the peptide crosslinks in the hydrogel 

being cleaved by MMPs, reducing substrate hydrolysis elsewhere. However, rTIMP-3 

delivery from the MMP degradable hydrogels further reduced interstitial MMP activity 

within the MI region. To further quantify MMP activity, myocardial extracts isolated 14 

days post MI were digested and subjected to MMP activity assays in vitro22. Substrates for 

both global MMP activity and membrane type-1 (MT1-MMP) specific activity, an important 

activator of other MMPs2, were significantly increased in the MI region in the MI only and 

MI/hydrogel injection groups; however, there was no significant increase in global or MT1-

MMP activity in the MI region following rTIMP-3 delivery from the hydrogels (Fig. 4d). 

MMP activity levels in remote myocardium (non-MI region) showed no change from 

normal levels following MI or hydrogel treatment. Gene expression of MMPs 14 days 

following MI and hydrogel treatments showed a significant reduction in the expression of 

membrane type MMPs (MMP-14) with hydrogel and hydrogel/rTIMP-3 injections, while 

only hydrogel/rTIMP-3 injections showed a significant reduction in collagenase (MMP-13) 

expression compared to MI and hydrogel injection alone (Fig. S11). MMP-13 is expressed at 

very low levels in normal tissue such as myocardium, but is robustly expressed in both 

animal models and humans with heart failure 26,44. The expression and activation of 

MMP-13 is considered to be associated with pathological remodeling processes 45, and thus 

the reduction in this MMP type with hydrogel/rTIMP-3 injections holds relevance. In 

addition, MMP expression was not altered compared to sham in remote myocardium 

following hydrogel/rTIMP-3 treatment (Fig. S11).

To assess myocardial tissue structure, tissue sections were stained for collagen content and 

α-smooth muscle actin (SMA) (Fig. S12). There was a significant increase in collagen 

content following MI in all groups, and no significant effect of hydrogel or hydrogel/

rTIMP-3 delivery on collagen content. This is an important observation as increased 

collagen content induced by rTIMP-3 delivery would suggest acceleration of fibrosis, rather 

than a stabilization of the matrix within the MI region. Further, there was a significant 

increase in SMA content in all groups following MI indicating the typical 

transdifferentiation of fibroblasts to myofibroblasts46, and no significant effect of hydrogel 

or hydrogel/rTIMP-3 delivery on SMA content. In addition, there were comparable gene 

expression levels of fibronectin variant, extra domain-1 (EDA) across all groups 14 days 

following MI indicating a consistent myofibroblast transdifferentiation within the MI region 

(Fig. S13) 47,48; however, there was only a significant increase in the gene expression of a 

myosin heavy chain isoform (MYH14) in the hydrogel/rTIMP-3 group. As MYH14 is 

associated with a more mature, contractile myofibroblast 47,48, rTIMP-3 delivery appears to 

have driven fibroblast transdifferentiation to a more contractile phenotype, over and above 

that of MI and hydrogel injection alone.
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To assess the effects of rTIMP-3 delivery on global LV remodeling, serial 

echocardiographic measurements were made for 14 days following experimental MI 

induction in all groups (Fig 5a). MI induction caused a gradual reduction in LV function, as 

indicated by a declining ejection fraction (EF) and a progressive increase in chamber 

dilation (left ventricular end-diastolic volume, LVEDV) and MI thinning - all key events in 

the progression of adverse post MI remodeling (Fig. 5a-c). A pathophysiological 

determinant of worsening LV function and progression to heart failure post MI, is an 

increase in pulmonary capillary wedge pressure (PCWP)17, and indeed this index increased 

in a time dependent manner post MI (Fig. 5d). With the injection of the MMP sensitive 

hydrogels and rTIMP-3 release, LV EF was improved, chamber dilation reduced, MI 

thickness increased and the progressive increase in PCWP attenuated. Thus, during this 

early and critical time point of post MI remodeling (14 days), a significant beneficial effect 

on LV function and geometry was demonstrated with the hydrogel and TIMP-3 delivery 

when compared to appropriate control systems. Further, echocardiographic assessment of 

another group of pigs was performed out to 28 days and showed that the therapeutic benefit 

of hydrogel/rTIMP-3 injections was maintained (Fig. 5f, S1). Significantly attenuating LV 

wall thinning and dilation to this time point is expected to have a significant lasting benefit 

on LV function as the fastest rate of LV dilation occurs in patients within the first 28 days 

post MI 9.

Collectively, these results demonstrate the utility of injectable and bioresponsive hydrogels 

to locally deliver TIMPs in response to excessive MMP activity. This is the first proof-of-

concept demonstration of designing MMP-degradable hydrogels to release an MMP 

inhibitor in the presence of MMP activity to limit off-target effects of MMP inhibitors, 

which have been clinically problematic, and to provide on-demand presentation of an 

inhibitor based on local MMP activity. The successful demonstration of this technology in 

attenuating post MI remodeling in a large animal model warrants further pre-clinical 

investigation as it could ultimately provide a safe and effective therapy to treat patients in 

the clinical setting of acute MI. Ultimately, this strategy can be used for any disease where 

the local imbalance of MMPs and their inhibitors leads to disease progression.

Methods

Solid-phase peptide synthesis

Peptides were synthesized with the MMP-cleavable sequence GCNSGGRMSMPVSNGG-

Hyd where C is the cysteine containing a thiol group that was used for coupling to a 

maleimide functionalized HA and Hyd is the hydrazide for hydrogel crosslinking with an 

aldehyde functionalized HA (see Supplemental Methods).

Synthesis and characterization of polymers

HA-peptide-hydrazide polymers were synthesized by coupling a cysteine terminated peptide 

to HA-maleimide (see Supplemental Methods) by mixing in a 4:1 molar ratio, 

cysteine:maleimide in PBS for 4hrs at 4°C. The polymer was purified by dialysis against a 

20 mM NaCl solution for 5 days and then DI water for 3 days, frozen and lyophilized. HA-

aldehyde was synthesized by mixing NaHy (350kDa, Lifecore) at 1 % (w/v) and sodium 
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periodate (IO4) in DI water at a molar ratio of 1:2 HA:IO4 for 2hrs at RT. The reaction was 

stopped by adding 10% (v/v) ethylene glycol to the reaction, dialyzing against DI water for 

5 days, freezing and lyophilizing. DS-ald was synthesized in a similar fashion except DS 

(Sigma) was reacted with IO4 at a molar ratio of 2:1 DS:IO4 for 5hrs at RT. Percent 

aldehyde modification was quantified using a TNBS colorimetric assay as previously 

described 49.

Rheometry

To form 3.5 wt% hydrogels, ALD (2.4% HA-ald, 1.4% DS-ald (w/v)) and HYD (3.2% (w/v) 

HA-MMP-hyd) modified polymers were dissolved in PBS, mixed 1:1 (v/v) for 1:1 

ALD:HYD and gelation characteristics were quantified by monitoring the storage (G’) and 

loss (G’’) moduli with time using an AR2000ex Rheometer (TA Instruments) at 37°C under 

1% strain and 1 Hz.

Hydrogel degradation and molecule release studies

FITC-BSA or rTIMP-3 was mixed with the ALD precursor solution and hydrogels were 

formed as described above in cylindrical molds for 30 min at 37°C. Hydrogels were 

incubated in PBS supplemented with 1% BSA for FITC-BSA studies or TTC buffer (50mM 

Tris-HCl, 1mM CaCl2, 0.05% triton x-100, pH 7.5) for rTIMP-3 studies at 37°C. Enzymes 

(collagenase type 4, Worthington or rMMP-2, R&D Systems) were added every 2 days and 

buffers were collected and stored at −20°C prior to analysis. Uronic acid content was 

analyzed to calculate hydrogel mass loss 33, FITC-BSA fluorescence was analyzed to 

measure release, and an ELISA was used to measure rTIMP-3 content (R&D Systems).

rTIMP-3 activity and binding assays

rTIMP-3-His (Amgen, Inc.) activity was quantified by its ability to inhibit rMMP-2 (R&D 

Systems) activity using an MMP cleavable fluorogenic substrate (R&D Systems). Serial 

dilutions of rTIMP-3 were added to 4 nM activated rMMP-2 in TTC buffer, incubated for 2 

hrs at 37°C, then the fluorogenic substrate was added and fluorescence kinetics were 

measured over 5 min with a microplate reader (Tecan). rTIMP-3 binding to polysaccharide 

polymers was evaluated with a solid-phase binding assay (See Supplemental Methods).

MI induction and hydrogel injections

Yorkshire pigs (n=43, 25kg, Hambone Farms, Orangeburg, SC) were anesthetized with 

isoflurane (2%) and the LV free wall was exposed through a left thoracotomy. All animals 

were treated and cared for in accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals, and all protocols were approved by the University of 

South Carolina’s Institutional Animal Care and Use Committee. A square calibrated grid 

was sutured below the origin of the first two obtuse marginal arteries of the circumflex 

artery (OM1 and OM2), which provided for a total of 9 distinct injection sites within a 

targeted 2×2 cm region of myocardium (Fig. 3a). OM1 and OM2 were ligated to induce an 

MI, and characteristic ECG changes occurred, but electrical cardioversion and/or 

defibrillation were not required. Past studies demonstrated that this technique creates a 

uniform and consistent MI 20. Sham controls were instrumented in a similar fashion with the 
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exception of coronary artery ligation. In addition, vascular access catheter placed in the 

descending aorta and connected to a subcutaneous port (6 Fr., SlimPort, Bard Access 

Systems, Salt Lake City). Pigs were randomized to receive injections of saline, hydrogel 

alone, or hydrogel with rTIMP-3 immediately following MI induction. For hydrogel 

injections, the ALD (2.4% HA-ald, 1.4% DS-ald (w/v)) and HYD (3.2% (w/v) precursors 

solutions were mixed in a sterile fashion, drawn into separate 1mL syringes, and injected 

into the mid-myocardium of each target site using a FibriJet blending connector (Nordson 

Micromedics, SA-3670) with a 27G needle. Hydrogels were injected immediately following 

MI induction. For the MI/hydrogel/rTIMP-3 group, rTIMP-3 was mixed into the ALD 

precursor (20μg rTIMP-3/100μL ALD). Successful injections were confirmed by 

visualization of an opacification of the epicardial surface at the point of myocardial 

injection.

Blood analysis

Blood samples (5 mL) were collected from the subcutaneous port 1, 3, 7 and 14 days post 

MI. The collected blood samples were centrifuged and the decanted plasma subjected to 

ELISA for TIMP-3.

LV assessment with echocardiography

Animals were sedated (20 mg valium, PO, Elkin-Sinn) and two-dimensional 

echocardiographic studies (GE VIVID 7 Dimension Ultrasound System: M4S 1.5-4.3 MHz 

active matrix array sector transducer probe) were performed to calculate LV dimensions and 

ejection fraction. Echocardiography measurements were taken 1 day prior to MI induction, 

and then again 1, 3, 7 and 14 days following MI in a subset of animals (n=27), and 3, 7, 14 

and 28 days following MI in another subset of animals (n=9).

Interstitial MMP activity

After 14 days post MI, the pigs were anesthetized with sufentanyl (2μg/kg IV, Baxter 

Healthcare), morphine sulfate (3mg/kg/h IV, Elkin-Sinn), and isoflurane (1%, 3 L/min O2, 

Baxter Healthcare), and mechanically ventilated. The LV was exposed through a 

sternotomy, a microdialysis probe (20 kDa, outer diameter of probe shaft 0.77mm; CMA/

Microdialysis, North Chelmsford, MA) placed within the MI region, and infused with the 

MMP fluorescent substrate (5 μL/min) as previously validated 8,9. The dialysate was then 

subjected to fluorometry, which reflected interstitial MMP activity, and these values were 

normalized to referent control values and expressed as a percent. Following these 

measurements, the LV was harvested, separated into MI and remote regions (area served by 

left anterior descending artery), and prepared for biochemical analysis.

Myocardial biochemical analysis

Immunoblotting was performed for total myocardial TIMP-3 using approaches described 

previously 20 (See Supplemental Methods). To determine ex-vivo MMP activity, LV 

myocardial extracts (50 μg) were incubated with the global MMP substrate described in the 

previous section. The steady-state maximal fluorescence units (FU) were recorded and all 
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assays were performed in triplicate. Expression of key determinants of ECM remodeling 

were analyzed via PCR (see Supplemental Methods).

MRI analysis

Full thickness LV myocardial sections were cut from cardiac explants around the 2 cm 

hydrogel injection grid and imaged on a 9.4T MRI Scanner (Siemens). A T2 weighted spin 

echo pulse sequence was employed with the following imaging parameters: echo time (TE) 

= 40 ms, repetition time (TR) = 4000 ms, averages = 4, matrix size = 256 × 256 × 88, field 

of view = 35 × 35 mm2, voxel size = 0.14 × 0. 14 × 0.25 mm3. MRI images were converted 

into NIFTI files using ImageJ software and imported into ITK-SNAP segmentation software 

as a stack of 2D images. 3D reconstructions of the hydrogel was performed using an 

automated segmentation algorithm in ITK-SNAP50. Briefly, the images were contrasted and 

hydrogel pockets were seeded for the algorithm (Fig. S9). Presence of the hydrogel was 

confirmed with histology (see Supplemental Methods).

Data and statistical analysis

Statistical analyses were performed using STATA statistical software (See Supplemental 

Methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The fabrication of injectable and MMP-sensitive hydrogels for therapeutic delivery
(a) Hyaluronic acid (HA) and dextran sulfate (DS) polymers were modified with aldehyde 

(ALD) groups through periodate oxidation of diols along the polysaccharide backbone. ALD 

modifications for HA and DS were ~15% and 5% of the repeat disaccharides, respectively. 

A separate HA batch was modified with complimentary hydrazide (HYD) groups through 

conjugation of the peptide GCNSGGRMSMPVSNGG-hyd where C is a thiol containing 

cysteine to couple to a maleimide functionalized HA through a thiol-maleimide click 

reaction, hyd is the terminal hydrazide for hydrogel crosslinking, NS are hydrophilic 

spacers, and GGRMSMPV is the MMP-cleavable sequence. (b) Hydrogel crosslinking was 

designed through hydrazone bond formation of complimentary ALD and HYD groups to 

form hydrogels under physiologic conditions. (c) Upon mixing ALD (2.4 wt% HA-ald, 1.4 

wt% DS-ald) and HYD (3.2 wt% HA-MMP-hyd) polymers, robust hydrogels formed rapidly 

as evidenced by development of storage (G’) and loss (G’’) moduli within minutes. (d-e) 3.5 

wt% hydrogels were incubated with or without active MMPs (collagenase type 4). MMPs 

were refreshed every 2 days to maintain enzyme activity throughout the study. (d) 

Hydrogels were stable in the absence of enzyme activity (0 U/mL) and degraded in response 

to increasing enzyme concentration (20 and 200 U/mL collagenase type 4). (e) Encapsulated 

FITC-BSA released in proportion to hydrogel degradation with higher rates of molecule 

release corresponding with higher levels of MMP activity. (mean±SD, n=3 hydrogels per 

condition).
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Figure 2. The non-covalent incorporation of rTIMP-3 into hydrogels and on-demand release in 
response to MMP activity
Release of encapsulated rTIMP-3 was controlled through incorporation of sulfate groups (in 

DS polymers) to bind rTIMP-3 via electrostatic interactions and MMP-cleavable crosslinks 

to release encapsulated rTIMP-3 as the hydrogel degrades in the presence of MMPs. (a) 

rTIMP-3 bound to polymer-coated wells and was detected with ELISA. rTIMP-3 bound to 

DS-ald with a greater capacity than HA-ald, and approached rTIMP-3 binding to heparin. 

(b) rTIMP-3 activity measured by its ability to inhibit a 4 nM rMMP-2 solution. rTIMP-3 

binding to DS-ald did not significantly reduce rMMP-2 inhibition. (c) Passive release of 

rTIMP-3 (no MMP) encapsulated in 3.5 wt% ALD/HYD crosslinked hydrogels was 

drastically reduced by incorporation of sulfated DS-ald polymers into the hydrogels. (d) 

Hydrogels with (filled symbols) and without (open symbols) encapsulated rTIMP-3 (10 

μg/50 μL gel) were incubated with (squares) or without (triangles) 20 nM rMMP-2. rMMP-2 

was refreshed every two days to maintain enzyme activity (indicated by green arrows). 

Encapsulated rTIMP-3 attenuated MMP-2 mediated hydrogel degradation, confirming 

activity of rTIMP-3 across the 14-day study. (e) In this hydrogel system, rMMP-2 degrades 

the hydrogel crosslinks (1), liberating polysaccharide bound rTIMP-3, which inhibits local 

rMMP-2 activity (2), and attenuates further hydrogel degradation (3).
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Figure 3. The visualization of injected hydrogel distribution and degradation within porcine 
myocardium
(a) A pig model of myocardial infarction (MI) was utilized to investigate the responsiveness 

of hydrogels post MI. Hydrogels (3.5 wt%) containing rTIMP-3 were injected into the 

myocardium at 9 equally spaced sites (100 μL per injection) within a 2 cm by 2 cm grid. 

Hydrogels were formed in situ by blending ALD and HYD modified polysaccharides 

immediately prior to entering the tissue using a dual barrel syringe. Hydrogels were injected 

into tissue with normal MMP activity (sham) and pathological MMP activity (experimental 

MI) and hydrogels were analyzed immediately after injection and after 14 days in vivo. 

Transmural myocardial explants of the injection grid were imaged with MRI, which allowed 

visualization of hydrogels within the myocardium. (b) Three-dimensional reconstruction of 

the MRI images using ITKsnap software shows pockets of hydrogel throughout the 

myocardium (scale bars = 2 cm). (c) Representative MRI images of injection grid tissue 

immediately following hydrogel injection and 14 days following injection in sham and MI 

animals (scale bars = 10 mm). Hydrogel pockets are still visible 14 days following injection 

in sham pigs but not in MI animals (d) Representative histological sections of injection grid 

tissue following hematoxylin and eosin staining. Pockets of hydrogels were visible in sham 

pigs 14 days following injection but not in MI animals (scale bars = 2 mm). Black arrows 

indicate regions of hydrogel identified by dark purple staining. Inset indicated by black box 

(scale bars = 200 μm). (e) Quantification of hydrogels within tissue across groups showed 

significantly less hydrogel in the myocardium from MI pigs compared to sham pigs after 0 

and 14 days following injection (mean±SEM, n=3 pigs per group, pairwise t-test with 

Bonferroni correction).
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Figure 4. Hydrogel delivery of rTIMP-3 delivery alters the MMP/TIMP imbalance post MI
Hydrogels with and without encapsulated rTIMP-3 were injected immediately following 

experimental MI and myocardial MMP/TIMP levels were assessed 14 days post MI. (a) 

Hydrogel delivery of rTIMP-3 restored TIMP-3 levels within the MI region to normal, non-

MI levels. (b) Blood samples revealed no significant increase in systemic TIMP-3 levels 

with hydrogel mediated rTIMP-3 delivery to the MI region. (c) Interstitial microdialysis of a 

fluorogenic MMP substrate into myocardium at 14 days post MI showed a significant 

increase in MMP activity within the MI region following MI induction. Injection of the 

MMP-cleavable hydrogels significantly inhibited MMP activity, and rTIMP-3 encapsulation 

further inhibited MMP activity. (d) Myocardial tissue extracts were harvested 14 days post 

MI and subjected to MMP activity assays using substrates for global MMP activity and 

membrane type-1 MMP (MT1-MMP) activity. A significant increase in both global MMP 

activity and MT1-MMP activity was observed following MI induction. This increase was 

abrogated with hydrogel/rTIMP-3 delivery. All values are mean±SEM; sham n=5, MI n=6, 

MI/hydrogel n=7, MI/hydrogel/rTIMP-3 n=7; pairwise t-test with Bonferroni correction; 

*p<0.05 vs. sham, +p<0.05 vs. MI, #p<0.05 vs. MI/hydrogel.
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Figure 5. Hydrogel delivery of rTIMP-3 attenuates adverse LV remodeling and improves 
cardiac function post MI
Hydrogels with and without encapsulated rTIMP-3 were injected immediately following 

experimental MI and LV geometry and function was assessed with echocardiography. (a) 

MI induction caused a gradual decline in ejection fraction (EF) over 14 days which was 

significantly attenuated by hydrogel/rTIMP-3 delivery. (b) MI induction caused a gradual 

dilation of the LV end diastolic volume (LVEDV). Hydrogel/rTIMP-3 delivery significantly 

attenuated LVEDV compared to hydrogel delivery alone. (c) MI induction caused 

progressive thinning of the LV posterior wall thickness at diastole (LVPWThd) which was 

significantly attenuated by both hydrogel and hydrogel/rTIMP-3 injections at early 

timepoints, but only hydrogel/rTIMP-3 injections significantly attenuated wall thinning by 

day 14. (d) MI induction caused a steady increase in pulmonary capillary wedge pressure 

(PCWP) which was significantly attenuated by hydrogel/rTIMP-3 delivery. (e) 

Representative short axis views (top) and m-mode targeted images (bottom) for each 

treatment group 14-days post MI (scale bars = 1 cm). The posterior wall (PW) at the site of 

the infarct induction is shown by the arrows. Significant chamber dilation and wall thinning 

occurred following MI-consistent with the adverse remodeling process, which was 

unaffected by hydrogel injection only. However, the degree of LV dilation and wall thinning 

was attenuated in the hydrogel/rTIMP-3 group. (f) Hydrogel/rTIMP-3 injections continued 

to show a therapeutic benefit 28 days following MI induction, a critical time in the 

progression of adverse LV remodeling. All values are mean±SEM; (a-d) sham n=5, MI n=6, 

MI/hydrogel n=7, MI/hydrogel/rTIMP-3 n=7; (f) n=3 for all groups; pairwise t-test with 

Bonferroni correction; *p<0.05 vs. sham, +p<0.05 vs. MI, #p<0.05 vs. MI/hydrogel.
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