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Abstract

Background—The National Lung Screening Trial (NLST) demonstrated that low-dose CT

screening is an effective way of reducing lung cancer (LC) mortality. However, optimal screening

strategies have not been determined yet and it is uncertain whether lighter smokers than those in

NLST may also benefit from screening. To address these questions, it is necessary to first develop

LC natural history models that can reproduce NLST outcomes and simulate screening programs at

the population level.
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Methods—Five independent LC screening models were developed using common inputs and

calibration targets derived from NLST and the Prostate, Lung, Colorectal and Ovarian Cancer

Screening Trial (PLCO). Imputation of missing smoking, histology and stage information for a

small fraction of individuals and diagnosed LCs in both trials was performed. Models were

calibrated to LC incidence, mortality or both outcomes simultaneously.

Results—Initially, all models were calibrated to NLST and validated against PLCO. Models

validated well against PLCO individuals who would have been eligible to NLST. However, all

models required further calibration to PLCO to adequately capture LC outcomes in PLCO never

and light smokers. Final versions of all models produced incidence and mortality outcomes in the

presence and absence of screening consistent with both trials.

Conclusions—We developed five distinct LC screening simulation models based on the

evidence in NLST and PLCO. Our analyses demonstrate that NLST and PLCO have produced

consistent results. The resulting models can be important tools to generate additional evidence to

determine the effectiveness of low-dose CT lung cancer screening strategies.
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Introduction

The National Lung Screening Trial (NLST) found a significant lung cancer (LC) mortality

reduction in its low-dose computed tomography (CT) screening arm in comparison with its

chest-radiography (CXR) screening arm1, suggesting that screening heavy smokers with

low-dose CT can be effective in early detection of LC. Meanwhile, the Prostate Lung

Colorectal and Ovarian Cancer Screening Trial (PLCO) found no statistical difference in LC

mortality when comparing a no-screen control arm versus a chest radiography screening

arm2. Consequently, several health policy groups have made recommendations endorsing

low-dose CT LC screening based on the NLST entry criteria and LC screening programs are

being established across the US3. However, there is still uncertainty about the optimal

screening strategies, since the NLST evaluated only the impact of three consecutive annual

screens among current- and former-smokers between the ages of 55 and 74 at enrollment

with an exposure of at least 30-pack years and with no more than 15 years since quitting. It

is unknown whether current- and former-smokers with lower levels of exposure would also

benefit from screening. Furthermore, screening effectiveness may vary by gender, number

of screens and periodicity. In the absence of results from other randomized control trials

evaluating these questions, mathematical modeling of the natural history of LC may be the

only approach to integrate available evidence and estimate the effectiveness and cost-

effectiveness of different LC screening strategies in the general population3, 4.

Mathematical models of cancer natural history have been shown to be valuable in assessing

and determining optimal cancer prevention and control strategies. Recent examples include

analyses of the impact of tobacco control on LC mortality rates5, comparative studies

assessing the effects of different screening modalities in colorectal cancer6, cost-

effectiveness analyses of breast cancer screening strategies7, and studies evaluating the
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impact of PSA screening in reducing prostate cancer rates8, 9. All of these examples used a

comparative modeling framework by which researchers across institutions can directly

compare and contrast results from distinct models10–12. The conclusions arising from

comparative modeling analyses are more robust and reliable than single-model studies and

this approach has been cited as an example of Good Modeling Practices13.

To estimate the potential impact of LC screening at the US population level, a consortium of

NCI-sponsored investigators, the Cancer Intervention and Surveillance Modeling Network

(CISNET, www.cisnet.cancer.gov), developed five independent natural history models of

LC and screening. Here we describe the models’ development and calibration approach to

NLST and PLCO, the common shared-inputs and calibration targets, and the differences and

similarities between models. We compare model predictions versus observed trial outcomes

and highlight advantages and challenges of developing natural history models based on

large-scale randomized controlled trials (RCTs).

Methods

Data

De-identified data from all NLST and PLCO participants were provided to CISNET after

obtaining IRB approvals from each institution. These data included smoking history

variables such as the age at the start of smoking, the average number of cigarettes smoked

per day (CPDs), and the age at quitting for ex-smokers. Screening variables included the

individual’s age at entry into the study, and, for screened-individuals, age at each screen,

outcomes of each screen, and the follow-up procedures for positive screens. For each

individual the age at death or censoring, and (if applicable) the cause of death were

available. For individuals diagnosed with LC, the age at diagnosis, LC histology, and LC

stage (AJCC 6th edition) were provided, as well as information about the screen associated

with LC diagnosis for screen-detected cancers.

NLST—The NLST was a RCT that compared the impact of low-dose CT versus chest

radiography (CXR) screening on LC mortality. From August 2002 through April 2004,

53,454 individuals aged 55–74 years were recruited; follow-up occurred through December

31, 2009. Entry criteria included a minimum exposure of 30 pack-years and no more than 15

years since quitting for ex-smokers. Individuals in both arms received up to three annual

screens. The trial found a 20% LC mortality reduction in the low-dose CT versus the CXR

arm1.

A small fraction of LCs (50 cases=2.4%) had missing histology and/or stage. To complete

the missing data, a multi-step imputation procedure based on observed histology and stage

distributions, tumor sizes, and expert opinion was conducted. Final analyses included data

from 53,342 individuals, due to exclusion of 112 subjects who died or were diagnosed with

lung cancer prior to the first screen (110), or with missing smoking information (age at start

and/or time since quitting).

PLCO—The PLCO was a RCT that compared the impact of CXR screening (intervention

arm) versus usual care (no-screening control arm) on LC mortality. The trial recruited
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154,901 individuals aged 55–74 between November 1993 and July 2001. Participants were

followed through December 31, 2009 or for 13 years from enrollment, whichever came first.

No minimum smoking exposure was required to enroll. Individuals in the intervention arm

received up to four annual CXR screens. The study found no difference in LC mortality

between the intervention and control arm2. Contamination (CXR screening) in the control

arm was limited (11% contamination rate2)

Additional smoking variables came from a supplemental questionnaire implemented towards

the middle of the trial. Missing baseline data about the age at the start of smoking or CPDs

for ever-smokers were imputed according to the corresponding US distributions by birth-

cohort and age. Final analyses included data from 148,025 individuals, after exclusion of

individuals with missing baseline smoking status or (if applicable) age at quitting.

Models

Models were developed by investigators at five institutions: Erasmus Medical Center (model

E), Fred Hutchinson Cancer Research Center (model F), Massachusetts General Hospital

(model M), University of Michigan (model U), and Stanford University (model S). The

models were developed independently but the groups collaborated to develop common

inputs and define standardized analyses.

Smoking-Dose Response Module—All models simulate individual LC natural history

and include a dose-response module that translates personal cigarette exposure to LC risk.

This smoking dose-response module can be used to simulate age-specific LC outcomes

given an individual’s smoking history5. Model M uses as dose-response module a

probabilistic LC risk model previously calibrated to SEER and US LC data14, 15 and

recalibrated to NLST and PLCO, whereas all other groups use multistage carcinogenesis

models 16–18. Both multistage 5, 16, 17, 19 and probabilistic models have been used

extensively to investigate the effects of smoking on LC risk12, 20, 21. Model E uses a

multistage model based on the Nurses’ Health Study (NHS) and Health Professionals’

Follow-up Study (HPFS)16. Model S uses a modified version of this model. Model U uses a

LC multistage model by histology, also calibrated to the NHS/HPFS. Model F uses a

multistage model calibrated to NLST and PLCO. Three models (F/M/U) use histology-

specific smoking dose-response modules, and three models (E/F/M) recalibrated their

smoking dose-response to NLST and PLCO. More details are given in Table 1. All models

are capable of accommodating detailed individual-level smoking histories, including

temporal factors such as age at start, age at cessation, and age-specific changes in CPDs.

The variability across dose-response modules reflects the modelers’ judgment regarding the

best available data and approaches to capture the complex relationship between smoking and

LC. The NHS and HPFS are arguably the best prospective cohorts to investigate smoking-

related LC. They have more than 30 and 20 years of follow-up, respectively, and collect

smoking information every two years. However, their LC histology information is much less

comprehensive than NLST’s and PLCO’s, and staging information was not available. NLST

and PLCO are excellent data sources with thorough information about LC histology and

staging, but have more limited follow-up and less extensive smoking data than NHS/HPFS.
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Also, NLST includes only ever-smokers and people in both arms were screened for LC. Half

of PLCO was also screened.

Histology distribution—Three models (F/M/U) have smoking dose-response modules

that are histology specific. In these models, the LC histology distribution is a model

outcome that depends on the dose-response module and the participants’ smoking histories.

Two models (E/S) have smoking dose-response modules that are not histology-specific, so

they calibrated their histology to NLST and PLCO. Histology categories varied by model

(Table 1). Differences in histology categorization across models are due partly to differences

in dose-response modules, which are based on different datasets that vary in their LC

histology classifications (NHS/HPFS, NLST/PLCO, SEER). But they are also due to

variations in model structure, and the modelers’ judgment regarding the histology detail

needed to characterize screening efficacy.

Stage progression—All models assume that stage progression rates vary by gender and

histology. Models E and U use Markov state-transition processes to model stage

progression22. Model U further assumes that the progression rate at each stage is dependent

on tumor size (cell number). Models F, M and S model stage as a function of tumor size and

the presence or absence of metastasis. Variability in stage categorization (Table 1) is due to

the underlying data inputs, model structure, and the modelers’ criteria about the stage detail

needed to capture the effects of screening on LC mortality.

LC survival—All models assume that LC survival varies by histology and stage. Models F,

M, S and U also assume that survival varies by gender. Model U further assumes that

survival varies by age at diagnosis.

Models E, M, and U use LC survival modules calibrated to the SEER 17 (2004–2008)

survival. Survival in model S was calibrated to SEER 17 (1988–2003) survival. Model F LC

survival was calibrated to NLST and PLCO.

Other-cause mortality (OCM)—Model E uses an OCM module based on the NCI’s

smoking history generator, which produces OCM rates consistent with the US

population23, 24. All other models use OCM based on NLST and PLCO (Table 1).

Screening and follow-up—Screening sensitivities vary by model. In Model E, screen

sensitivity varies by modality, stage and histology. Models F and U have screen sensitivities

that also vary by tumor size (cell number). Sensitivities in models M and S depend on

screening modality, tumor size (mm) and lung nodule location (central vs. peripheral).

Model S also considers histology. The variability in assumption is primarily due to

differences in model structure (e.g., models that do not model tumor size explicitly, cannot

have size-dependent sensitivities). Follow-up exams are defined as those received after a

positive screen but prior to diagnosis, if it occurred. Algorithms for following-up a positive

screen are simulated with varying detail: models M and S include detailed algorithms based

on nodule size thresholds and risk factors (explicit), while models E, F, and U incorporate a

global probability of receiving a number of follow-up exams (implicit) based on the

observed frequency of imaging exams per positive screen in NLST. Since NLST and PLCO
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did not specify a follow-up regimen, Models M and S specify less-aggressive protocols than

Fleischner guidelines25, to approximate the observed follow-up rate in NLST.

Trial simulations—Four models (E/M/S/U) generate individual LC outcomes using

microsimulations26. The simulation depends on individual smoking history, gender, age at

enrollment, and arm. The specific simulation approach depends on the model’s structure.

Three models (E/M/S) simulate onset ages of lung tumors via their smoking dose-response

module and then simulate each tumor’s natural history, including malignant conversion,

stage progression (E/M/S), tumor growth (M/S), and clinical and screen detection (E/M/S).

Model U simulates the initiation of tumors via mutations of normal cells, and then the

premalignant and malignant tumor cell dynamics (cell division, death, stage progression,

clinical and screen detection). Model F uses a likelihood-based approach to estimate LC

outcomes and death via a longitudinal multistage-observation model18. All models simulate

all trial participants and then compare their aggregate modeled outcomes with the trials’ (LC

incidence and mortality and OCM by arm, gender, histology and stage).

Screening effectiveness and mortality reduction—All models evaluate screening

effectiveness, but based on different assumptions that depend on model structure. Model M

assumes that patients with early-stage non-small cell LC (NSCLC) would undergo resection

(lobectomy, consistent with practice guidelines), which removes the primary cancer. In

model M, therefore, for patients without undetected distant metastases or additional primary

LCs in another lobe, resection is curative for LC. In Model U, the benefit of screening is due

to early detection of LC, leading to improved cure probabilities and survival times, which

depend on histology, stage, gender, and diagnosis age, but not on detection mode. Model F

assumes that screen-detected cancers are treated according to clinical practice guidelines

with cure rates that vary by tumor stage and histology. In Model E, screen-detected cases

experience a reduced risk of LC mortality versus clinically detected cases. This improved

prognosis is represented as a cure fraction (dependent on stage and screening modality for

stages IA, IB and II) calibrated to the trials. Model S estimates probabilities of lethal

metastases as function of tumor size, histology and gender. All advanced-stage LCs are, by

definition, detected after the onset of lethal metastases. Some early-stage cancers may have

occult lethal metastases at detection. For early- and late-stage tumors detected after the onset

of lethal metastases, LC survival is not affected by screening. However, with screening,

patients are more likely to be detected at early stages before the onset of lethal metastases,

thus cured of their disease following standard care.

Model calibration and validation approach

Models were first calibrated to the NLST LC incidence and mortality by arm, gender,

histology, stage, and detection mode. Models were then validated against PLCO by first

comparing model predictions and observed LC incidence and mortality by gender and arm

in the subset of PLCO individuals who would have been eligible for NLST (PLCO-NLST-

eligible). Model predictions were consistent with the observed outcomes in the PLCO-

NLST-eligible group, demonstrating the consistency between the two trials. However,

model outcomes did not consistently match against observed outcomes among PLCO

participants not eligible for the NLST (never- and lighter-smokers). As a result, models were
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further calibrated to fit the whole PLCO dataset to ensure that they could be used with

confidence to extrapolate the effects of CT screening to smokers with lower exposure

(below 30 pack-years). Calibration methods (targets, measures of goodness of fit and

optimization algorithms) varied by model and are described in Table 1.

Results

After final calibration, all models produced LC outcomes consistent with both trials (within

the confidence intervals of the data). We show several measures of LC incidence and

mortality in NLST and PLCO for both genders combined and compare observed and model

outcomes. Calibration targets varied by model, so the modeling results shown in each figure

include combinations of calibrated outcomes and model predictions/extrapolations. Modeled

outcomes were computed using the ‘final’ version of each model.

Figure 1 shows NLST observed and modeled incidence and mortality by arm and year since

randomization (YSR). The figure shows that as previously reported1 the observed

cumulative LC incidence was higher in the CT arm, whereas the cumulative mortality was

higher in the CXR arm. Figures 2 and 3 display observed versus modeled LC cases and

deaths in NLST by detection modality (screen vs non-screen detected), arm and YSR. The

figures show the contrasting pattern between screen and non-screen-detected cancers, with

an early increase and peaking by YSR for screen-detected cancers in both arms, in contrast

with the slow progressive rise for non-screen detected cancers. The figures show that the

models reproduce the general patterns of incidence and mortality by arm, detection modality

and YSR.

Figure 4 shows observed versus model predicted LCs in NLST by histology. Because

models have varying LC histology categories, we grouped them here as small cell (SCLC)

and non-small cell LCs (NSCLC). The figure shows that the observed NSCLC incidence

was higher in the CT arm, whereas the SCLC incidence was roughly similar in both arms.

Modeled histology distributions match well with the observed. Figure 5 shows NLST

observed versus predicted NSCLC incidence by clinical stage and arm. The figure

demonstrates the shift to earlier stages in NSCLC incidence in the CT versus CXR arm.

Figures 6 and 7 show full PLCO and PLCO-NLST-eligible observed and modeled deaths by

arm, detection mode (CXR arm), and YSR. The figures display the early increase and

peaking of screen-detected cancers in the CXR arm by YSR, and the slower increase of

otherwise-detected cancers in the CXR arm and for all cancers in the control arm. The

figures show a decrease in the non-screen detected CXR and control arm cancers towards

the end of the trial, likely due to the weeding-out and loss to follow-up of high-risk

individuals. All models reproduce the general patterns of incidence and mortality in PLCO.

Discussion

Main Findings

We derived five independent LC and screening natural history models calibrated to the two

largest screening trials to date, NLST and PLCO. The five models are diverse in structure,
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assumptions, and additional data inputs. All models produce outcomes that are generally

consistent with the trial results. We found that models calibrated only to NLST validated

well against the PLCO-NLST-eligible population, demonstrating the consistency between

the two trials. However calibrating only to NLST may be insufficient for the purposes of

evaluating screening protocols allowing for lower smoking exposures and making

projections for the US population. This is particularly true for models that base their

smoking dose-response fully on NLST and also for models with histology distributions

based on observed trial data, since NLST only includes information about heavy-current and

former smokers and it is well-documented that smoking LC risk varies greatly by

histology27, 28. To derive models that could be used with confidence to extrapolate the

impact of low-dose CT screening to smokers with lower exposures (<30 pack-years) and to

the US population, it is essential to calibrate such models to datasets with information on LC

risk for light and never smokers, such as NHS/HPFS or PLCO.

Study limitations and strengths

The study has some limitations. First, as in any mathematical modeling approach, our

models are simplifications of the biological complexity of lung carcinogenesis and neglect

the influence of various endogenous and exogenous LC risk factors such as family history,

COPD, residential radon, occupational exposures, race, and socio-economic status.

However, it is well-known that smoking still accounts for the large majority of LC deaths

(≥90%29) and our models do capture the complex relationship between smoking and LC via

their smoking dose-response module. Furthermore, in contrast with most LC risk models in

the literature, several of our models do account explicitly for the differential impact of

smoking on LC risk by histology. The diversity in model structure, assumptions, and data

sources provides additional strength (and an assessment of model uncertainty) to the

conclusions of our comparative modeling analysis, as does the long-history of collaboration

between the CISNET groups.

Another potential limitation is that the screening mortality reductions predicted by each

model are largely dependent on the findings of NLST and PLCO. NLST and PLCO are

currently the best existing studies of LC screening reporting on the main outcome of LC

mortality (reduction), so calibrating models to these trials is the best available option. Some

other studies, particularly in Europe, have been underpowered to show benefits of low-dose

CT screening while others are still ongoing30. Once data from other trials becomes

available, not expected for a few years, the models could be validated against new trials and

if deemed necessary, further calibrated particularly if applied to non-US populations. In any

case, the models will be helpful to compare trial results and, if needed, to investigate the

reasons behind any potential discrepancies.

Finally, this work highlights the benefits of modeling as a way to synthesize information

coming from diverse and complex data sources. The models developed use individual data

from RCTs (NLST and PLCO), prospective cohort studies (e.g., NHS/HPFS), and cancer

registry data (NCI-SEER). These data sources are extremely valuable on their own, and

provide information about different aspects of LC. However, it is only through modeling
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that they can be integrated and jointly inform the biology and epidemiology of LC, as well

as the potential benefits of LC screening at the population level.

Implications and future research

Our analyses demonstrate that the NLST and PLCO-Trial produced consistent results, and

suggest that it is critical to use data covering a wide-range of smoking histories (never, light,

and heavy smokers) to develop models that can extrapolate the effects of screening to the

general population. The five models presented here are currently being used to evaluate the

impact of alternative low-dose CT screening protocols on LC mortality in the US.

Specifically, we are assessing the effectiveness of screening programs with varying age-

eligibility, exposure criteria, and screening frequency31. In the near future, we will use the

models to predict the potential levels of overdiagnosis due to LC screening and determine

optimal screening strategies at the US and state level. Using models calibrated to NLST and

PLCO will enhance the validity of effectiveness and cost-effectiveness analyses of LC

screening.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding sources: This report is based on research conducted by the NCI’s Cancer Intervention and Surveillance
Modeling Network (CISNET) through support from an interagency agreement with the Agency for Healthcare
Research and Quality (AHRQ) (Administrative Supplement to NCI U01-CA152956).

References

1. Aberle DR, Adams AM, et al. National Lung Screening Trial Research Team. Reduced lung-cancer
mortality with low-dose computed tomographic screening. N Engl J Med. 2011; 365:395–409.
[PubMed: 21714641]

2. Oken MM, Hocking WG, Kvale PA, et al. Screening by chest radiograph and lung cancer mortality:
The prostate, lung, colorectal, and ovarian (PLCO) randomized trial. JAMA. 2011; 306:1865–1873.
[PubMed: 22031728]

3. Bach PB, Mirkin JN, Oliver TK, et al. Benefits and harms of CT screening for lung cancer: A
systematic Review Benefits and harms of CT screening for lung cancer. JAMA. 2012:1–12.

4. Bach PB, Gould MK. When the average applies to no one: Personalized decision making about
potential benefits of lung cancer screening. Ann Intern Med. 2012

5. Moolgavkar SH, Holford TR, Levy DT, et al. Impact of reduced tobacco smoking on lung cancer
mortality in the united states during 1975–2000. J Natl Cancer Inst. 2012; 104:541–548. [PubMed:
22423009]

6. Zauber AG, Winawer SJ, O’Brien MJ, et al. Colonoscopic polypectomy and long-term prevention
of colorectal-cancer deaths. N Engl J Med. 2012; 366:687–696. [PubMed: 22356322]

7. Mandelblatt JS, Cronin KA, Bailey S, et al. Effects of mammography screening under different
screening schedules: Model estimates of potential benefits and harms. Ann Intern Med. 2009;
151:738–747. [PubMed: 19920274]

8. Etzioni R, Gulati R, Tsodikov A, et al. The prostate cancer conundrum revisited : Treatment
changes and prostate cancer mortality declines. Cancer. 2012; 118:5955–5963. [PubMed:
22605665]

9. Heijnsdijk EA, Wever EM, Auvinen A, et al. Quality-of-life effects of prostate-specific antigen
screening. N Engl J Med. 2012; 367:595–605. [PubMed: 22894572]

Meza et al. Page 9

Cancer. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



10. Feuer EJ, Etzioni R, Cronin KA, Mariotto A. The use of modeling to understand the impact of
screening on U.S. mortality: Examples from mammography and PSA testing. Stat Methods Med
Res. 2004; 13:421–442. [PubMed: 15587432]

11. Kuntz KM, Lansdorp-Vogelaar I, Rutter CM, et al. A systematic comparison of microsimulation
models of colorectal cancer: The role of assumptions about adenoma progression. Med Decis
Making. 2011; 31:530–539. [PubMed: 21673186]

12. McMahon PM, Hazelton WD, Kimmel M, Clarke LD. Chapter 13: CISNET lung models:
Comparison of model assumptions and model structures. Risk Anal. 2012; 32 (Suppl 1):S166–78.
[PubMed: 22882887]

13. Weinstein MC, O’Brien B, Hornberger J, et al. Principles of good practice for decision analytic
modeling in health-care evaluation: Report of the ISPOR task force on good research practices--
modeling studies. Value Health. 2003; 6:9–17. [PubMed: 12535234]

14. McMahon PM, Kong CY, Johnson BE, et al. Estimating long-term effectiveness of lung cancer
screening in the mayo CT screening study. Radiology. 2008; 248:278–287. [PubMed: 18458247]

15. McMahon PM, Kong CY, Johnson BE, et al. The MGH-HMS lung cancer policy model: Tobacco
control versus screening. Risk Anal. 2012; 32 (Suppl 1):S117–24. [PubMed: 22882882]

16. Meza R, Hazelton WD, Colditz GA, Moolgavkar SH. Analysis of lung cancer incidence in the
nurses’ health and the health professionals’ follow-up studies using a multistage carcinogenesis
model. Cancer Causes Control. 2008; 19:317–328. [PubMed: 18058248]

17. Hazelton WD, Clements MS, Moolgavkar SH. Multistage carcinogenesis and lung cancer mortality
in three cohorts. Cancer Epidemiol Biomarkers Prev. 2005; 14:1171–1181. [PubMed: 15894668]

18. Hazelton WD, Goodman G, Rom WN, et al. Longitudinal multistage model for lung cancer
incidence, mortality, and CT detected indolent and aggressive cancers. Math Biosci. 2012;
240:20–34. [PubMed: 22705252]

19. Schollnberger H, Manuguerra M, Bijwaard H, et al. Analysis of epidemiological cohort data on
smoking effects and lung cancer with a multi-stage cancer model. Carcinogenesis. 2006; 27:1432–
1444. [PubMed: 16410261]

20. Tammemagi MC, Lam SC, McWilliams AM, Sin DD. Incremental value of pulmonary function
and sputum DNA image cytometry in lung cancer risk prediction. Cancer Prev Res (Phila). 2011;
4:552–561. [PubMed: 21411501]

21. Spitz MR, Hong WK, Amos CI, et al. A risk model for prediction of lung cancer. J Natl Cancer
Inst. 2007; 99:715–726. [PubMed: 17470739]

22. Siebert U, Alagoz O, Bayoumi AM, et al. State-transition modeling: A report of the ISPOR-
SMDM modeling good research practices task force-3. Med Decis Making. 2012; 32:690–700.
[PubMed: 22990084]

23. Jeon J, Meza R, Krapcho M, Clarke LD, Byrne J, Levy DT. Actual and counterfactual smoking
prevalence rates in the U.S. population via microsimulation. Risk Anal. 2012; 32 (Suppl 1):S51–
68. [PubMed: 22882892]

24. Rosenberg MA, Feuer EJ, Yu B, et al. Cohort life tables by smoking status, removing lung cancer
as a cause of death. Risk Anal. 2012; 32 (Suppl 1):S25–38. [PubMed: 22882890]

25. MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules
detected on CT scans: A statement from the fleischner society. Radiology. 2005; 237:395–400.
[PubMed: 16244247]

26. Rutter CM, Zaslavsky AM, Feuer EJ. Dynamic microsimulation models for health outcomes: A
review. Med Decis Making. 2011; 31:10–18. [PubMed: 20484091]

27. Haiman CA, Stram DO, Wilkens LR, et al. Ethnic and racial differences in the smoking-related
risk of lung cancer. N Engl J Med. 2006; 354:333–342. [PubMed: 16436765]

28. Kenfield SA, Wei EK, Stampfer MJ, Rosner BA, Colditz GA. Comparison of aspects of smoking
among the four histological types of lung cancer. Tob Control. 2008; 17:198–204. [PubMed:
18390646]

29. Centers for Disease Control and Prevention (CDC). Smoking-attributable mortality, years of
potential life lost, and productivity losses--united states, 2000–2004. MMWR Morb Mortal Wkly
Rep. 2008; 57:1226–1228. [PubMed: 19008791]

Meza et al. Page 10

Cancer. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



30. Humphrey LL, Deffebach M, Pappas M, et al. Screening for lung cancer with low-dose computed
tomography: A systematic review to update the u.s. preventive services task force
recommendation. Ann Intern Med. 2013; 159:411–420. [PubMed: 23897166]

31. de Koning, HJ.; Meza, R.; Plevritis, SK., et al. AHRQ Publication No 13-05196-EF-2. Rockville,
MD: Agency for Healthcare Research and Quality; 2013. Benefits and harms of computed
tomography lung cancer screening programs for high-risk populations.

Meza et al. Page 11

Cancer. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
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