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Abstract

This paper investigates an approach to model the space of brain images through a low-dimensional

manifold. A data driven method to learn a manifold from a collections of brain images is

proposed. We hypothesize that the space spanned by a set of brain images can be captured, to

some approximation, by a low-dimensional manifold, i.e. a parametrization of the set of images.

The approach builds on recent advances in manifold learning that allow to uncover nonlinear

trends in data. We combine this manifold learning with distance measures between images that

capture shape, in order to learn the underlying structure of a database of brain images. The

proposed method is generative. New images can be created from the manifold parametrization and

existing images can be projected onto the manifold. By measuring projection distance of a held

out set of brain images we evaluate the fit of the proposed manifold model to the data and we can

compute statistical properties of the data using this manifold structure. We demonstrate this

technology on a database of 436 MR brain images.

1 Introduction

Recent research in the analysis of populations of brain images shows a progression: from

single templates or atlases [1], to multiple templates or stratified atlases [2], mixture models

[3] and template free methods [4–6] that rely on a sense of locality in the space of all brains.

This progression indicates that the space of brain MR images has a structure that might also

be modeled by a relatively low-dimensional manifold as illustrated by Figure 1. The aim of

this paper is to develop and demonstrate the technology to learn the manifold structure of

sets of brain MR images and to evaluate how effective the learned manifold is at capturing

the variability of brains.

Manifold learning [7] refers to the task of uncovering manifolds that describe scattered data.

In some applications this manifold is considered a generative model, analogous to a

Gaussian mixture model. In this context, we assume that the data is sampled from a low-

dimensional manifold embedded in a high-dimensional space, with the possibility of noise

that sets data off the surface. For this work, we consider the space of all images which can

be represented as smooth functions. Virtually all manifold learning techniques published to

date assume that the the low-dimensional manifold is embedded in a Euclidean space.

Nearby samples lie in the tangent space of the manifold, and thus their differences can be

evaluated by Euclidean distance in the ambient space. The space of brain images on the

other hand does not fit directly into this paradigm. A great deal of research on brain image

analysis shows that the L2 distance is not suitable for measuring shape changes in images

[8], but that the metric for comparing brain images should account for deformations or shape
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differences between images. For example, computational anatomy, used for population

analysis and atlas building, is based on a metric between images derived from coordinate

transformations [2, 9, 3].

The low-dimensional manifold of brain images we aim to learn is embedded not in

Euclidean space, but in the space of images with a metric based on coordinate

transformations. For this work we adapt the image metric based on diffeomorphic coordinate

transformations [10–12] to manifold learning. Often the stratification induced by the

diffeomorphic image metric is described as a manifold—in this paper we refer to the

manifold of brain images as described by the data. Our hypotheses are that the space of brain

images is some very small subspace of images that are related by diffeomorphisms, that this

subspace is not linear, and that we can learn some approximation of this space through a

generalization of manifold learning that accounts for these diffeomorphic relationships.

Figure 1 illustrates these concepts on a simple example.

A manifold learning algorithm of particular interest to this work is isomap [13]. Isomap is

based on the idea of approximating geodesic distances by the construction of piecewise

linear paths between samples. The paths are built by connecting nearest neighbors, and the

geodesic distance between two points is approximated on the the linear segments between

nearest neighbors. Thus, isomap requires only distances between nearby data points to

uncover manifold structure in data sets. The reliance on only nearest neighbor distances is

important for this paper. The tangent space to the space of diffeomorphic maps is the set of

smooth vector fields. Thus, if the samples from the manifold are sufficiently dense, we can

compute the distances in this tangent space, and we need only to compute elastic

deformations between images.

Isomap, and several other manifold learning algorithms, assign parameters to data points

that represent coordinates on the underlying manifold. This paper introduces several

extensions to this formulation, which are important for the analysis of brain images. First is

an explicit representation of the manifold in the ambient space (the space of smooth

functions). Thus, given coordinates on the manifold, we can construct brain images that

correspond to those coordinates. We also introduce a mechanism for mapping previously

unseen data into the manifold coordinate system. These two explicit mappings allow to

project images onto the manifold. Thus we can measure the distance from each image to the

manifold (projected image) and quantitatively evaluate the efficacy of the learned manifold.

In comparison with previous work, on brain atlases for example, this work constructs, from

the data itself, a parametrized hyper-surface of brain images, which represents a local atlas

for images that are nearby on the manifold.

2 Related Work

The tools for analyzing or describing sets of brain image demonstrate progressively more

sophisticated models. For instance, unbiased atlases are one mechanism for describing a

population of brains [14–16]. Blezek et al. [2] propose a stratified atlas, in which they use

the mean shift algorithm to obtain multiple templates and shows visualizations that confirm

the clusters in the data. In [3] the OASIS brain database is modeled through a mixture of
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Gaussians. The means of the Gaussians are a set of templates used to describe the

population. Instead of assuming that the space of brain images forms clusters, we postulate

that the space of brains can be captured by a continuous manifold.

An important aspect of our work is the ability to measure image differences in a way that

captures shape. It is known that the L2 metric does not adequately capture shape differences

[8]. There are a variety of alternatives, most of which consider coordinate transformations

instead of, or in addition to, intensity differences. A large body of work [10–12] has

examined distances between images based on high-dimensional image warps that are

constrained to be diffeomorphisms. This metric defines a infinite dimensional manifold

consisting of all shapes that are equivalent under a diffeomorphism. Our hypothesis,

however, is that the space of brains is essentially of significantly lower dimension.

Several authors [17, 9, 6] have proposed kernel-based regression of brain images with

respect to an underlying parameter, such as age. The main distinction of the work in this

paper is that the underlying parametrization is learned from the image data. Our interest is to

uncover interesting structures from the image data and sets of parameters that could be

compared against underlying clinical variables.

Zhang et al. use manifold learning, via isomap, for medical image analysis, specifically to

improve segmentation in cardiac MR images [18]. Rohde et al. [19] use isomap in

conjunction with large deformation diffeomorphisms to embedded binary images of cell

nuclei in a similar fashion to the proposed approach. In addition to the embedding we

provide a generative model that allows to quantitatively evaluate the manifold fit.

3 Formulation

We begin with a description of the image metric between nearest neighbors in the space of

smooth images. A diffeomorphic coordinate transformation between two images is ϕ(x, 1),

where , and υ(x,t) is a smooth, time varying vector field. The

diffeomorphic framework includes a metric on the diffeomorphic transformation

 which induces a metric d between images yi and yj:

(1)

The metric prioritizes the mappings and, with an appropriate choice of the differential

operator L in the metric, ensures smoothness. We introduce the constraint that the

transformation must provide a match between the two images:

(2)

where ε allows for noise in the images.
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For two images that are very similar, ϕ and υ are small, and because the velocities of the

geodesics are smooth in time [20], we can approximate the integrals for the coordinate

transform and geodesic distance:

(3)

Thus, for small differences in images the diffeomorphic metric is approximated by a smooth

displacement field. In this paper we use the operator L = αI + ∇, where α is a free parameter

and the resulting metric is ∥υ(x)∥L = ∥Lυ(x)∥2. To minimize deformation metric for a pair of

discrete images, we use a gradient descent. The first variation of (3) results in a partial

differential equation, which we solve with finite forward differences to an approximate

steady state. For the constraint, we introduce a penalty on image residual with an additional

parameter λ, which we tune in steady state until the residual condition in (2) is satisfied or

until the deformation metric exceeds some threshold that disqualifies that pair of images as

nearest neighbors. We use a multiresolution, coarse to fine, optimization strategy to avoid

local minima.

Next we present a formulation for representing the structure of the manifold in the ambient

space and for mapping unseen data onto this intrinsic coordinate system. First, we propose

the construction of an explicit mapping f :  →  from the space of manifold parameters 

to the high dimensional ambient space . Let X = {x1, …, xn} be the parameter values

assigned to the image data sets Y = {y1, …, yn}; isomap gives the discrete mapping xi =

ρ(yi). Inevitably there will be a distribution of brain images away from the manifold, and the

manifold should be the expectation [21] of these points in order to alleviate noise and

capture the overall trend in the data. That is f(x) = E(Y |ρ(Y ) = x). In the discrete setting the

conditional expectation can be approximated with Nadaraya-Watson kernel regression:

(4)

which we compute, in the context of diffeomorphic image metrics using the method of [9],

which iteratively updates f(x) and the deformation to f(x) from the nearest neighbors starting

with identity transformations. This kernel regression requires only the nearest neighbors

Xnn(x) of xi ∈ X. This constrains the regressions to images similar in shape since locality in

X implies locality in Y. Using this formulation, we can compute an image for any set of

manifold coordinates, and thus we have an explicit parametrization of the manifold.

For the assignment of manifold parameters to new, unseen images we use the same strategy.

We represent this mapping as a continuous function on the ambient space, and we compute

it via a regression on parameters given by isomap

(5)
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with Ynn(y) the nearest neighbors of y. The projection of a new image onto the manifold is

the composition of these mappings p(y) = f(ρ′(y)).

For K we use a Gaussian kernel for the mappings with a bandwidth selected based on

average nearest neighbor distances. The number of nearest neighbors for the regression is

selected based on the resulting bandwidth for the kernel K, such that all points within three

standard deviations are included.

4 Results

In section 1 we illustrated the idea of the paper on a simple examples on 2D images of spiral

segments. The image data set used consists of 100 images of segments with varying length

and location of the spiral in Figure 1. Figure 2 shows images constructed by the proposed

approach by sampling the learned manifold representation of the image data. Thus the

images depict samples on the manifold embedded in the ambient space. Figure 1 also shows

the Fréchet means for the diffeomorphic space and for the manifold learned from the data.

We apply the proposed approach to the open access series of imaging studies (OASIS)

cross-sectional MRI data set. The images are gain-field corrected and atlas registered. We

use 380 of the 436 images to learn the manifold and evaluate reconstruction errors on the

left out 56 images.

Figure 3 (a) shows axial slice 80 for a 2D parametrization (manifold coordinates) obtained

by the proposed method. A visual inspection reveals that the learned manifold detects the

change in ventricle size as the most dominant parameter (horizontal axis). It is unclear if the

second dimension (vertical axis) captures a global trend. Figure 3 (b) shows reconstruction

errors on the held out images against the dimensionality of the learned manifold. The

reconstruction error is measured as the mean of the distances between the original brain

images and their projection on to the learned manifold scaled by the average nearest

neighbor distance, i.e. . The reconstruction errors are smaller than

the average one nearest neighbor distance. An indication that the learned manifold

accurately captures the data. The reconstruction errors suggest that the data set can be

captured by a 3D manifold. We do not postulate that the space of brains is captured by a 3D

manifold. The approach learns a manifold from the available data and thus it is likely that

given more samples we can learn a higher dimensional manifold for the space of brains.

Figure 4 shows axial slices of brain images generated with the proposed method on a

regularly sampled grid on the 2D representation shown in figure 3(c), i.e. we have sampling

of the learned brain manifold. The first dimension (x1) clearly shows the change in ventricle

size. The second dimension (x2) is less obvious. A slight general trend observable from the

axial slices seems to be less gray and white matter as well as a change in lateral ventricle

shape (from elongated to more circular).

The method is computationally expensive because of the pairwise distance computations,

each requiring an elastic image registration. The registration takes with our multiresolution

implementation about 1 minute on a 128 × 128 × 80 volume. Pairwise distances
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computations for the OASIS database running on a cluster of 50, 2Ghz processors, requires

3 days. The reconstruction by manifold kernel regressions requires about 30 minutes per

image on a 2 Ghz processor.

5 Conclusions

Quantitative evaluation illustrates that the space of brains can be modeled by a low

dimensional manifold. The manifold representation of the space of brains can potentially be

useful in wide variety of applications. For instance, regression of the parameter space with

clinical data, such as MMSE or age, can be used to aid in clinical diagnosis or scientific

studies. An open question is whether the manifolds shown here represent the inherent

amount of information about shape variability in the data or whether they reflect particular

choices in the proposed approach. In particular implementation specific enhancements on

image metric, reconstruction, and manifold kernel regression could lead to refined results.
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Fig. 1.
(a) Illustration of image data on a low-dimensional manifold embedded in a diffeomorphic

space. (b) A set of images consists of random length/position segments form a spiral. (c) The

Fréchet mean in the diffeomorphic space is not like any example from the set. (d) Fréchet

mean on data-driven manifold reflects the image with average parameter values.
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Fig. 2.
Reconstructed images along the first dimension of the manifold learned from spiral

segments as illustrated in Figure 1.
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Fig. 3.
(a)2D parametrization of OASIS brain MRI. The insets show the mean (green), median

(blue) and mode (red) of the learned manifold and the corresponding reconstructed images.

(b) Reconstruction errors against manifold dimensionality.
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Fig. 4.
Reconstructions on a grid on the 2D representation shown in figure 3(c).
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