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Abstract

Osteoarthritis (OA) is characterized by remodeling and degradation of joint tissues. Microarray

studies have led to a better understanding of the molecular changes that occur in tissues affected

by conditions such as OA; however, such analyses are limited to the identification of a list of

genes with altered transcript expression, usually at a single time point during disease progression.

While these lists have identified many novel genes that are altered during the disease process, they

are unable to identify perturbed relationships between genes and gene products. In this work, we

have integrated a time course gene expression data set with network analysis to gain a better

systems level understanding of the early events that occur during the development of OA in a

mouse model. The subnetworks that were enriched at one or more of the time points examined (2,

4, 8, and 16 weeks after induction of OA) contained genes from several pathways proposed to be

important to the OA process, including the extracellular matrix-receptor interaction and the focal

adhesion pathways and the Wnt, Hedgehog and TGF-β signaling pathways. The genes within the

subnetworks were most active at the 2 and 4 week time points and included genes not previously

studied in the OA process. A unique pathway, riboflavin metabolism, was active at the 4 week

time point. These results suggest that the incorporation of network-type analyses along with time

series microarray data will lead to advancements in our understanding of complex diseases such as

OA at a systems level, and may provide novel insights into the pathways and processes involved

in disease pathogenesis.
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1. Introduction

In order to generate new hypotheses and obtain a better understanding of complex disease

processes, investigators have used a systems biology approach to complement the more

traditional reductionist approach. A systems approach has been facilitated by the availability

of technologies which allow for interrogation of the entire genome, proteome and/or

metabolome in an organism or tissue of interest. One of the most widely available and

commonly used approaches is analysis of gene expression using microarrays. The analysis

and interpretation of gene expression data generated by microarrays most commonly

involves grouping or clustering genes based on the measured changes in expression,

followed by identification of over-represented annotations in each of the gene clusters using

various commercial or publically available bioinformatics tools. Although this methodology

can elucidate processes and pathways that are differentially regulated in diseased cells or

tissues, it does not incorporate information needed to define the relationships between

specific genes or proteins to discover interacting networks and pathways important to a

disease process.

In this work, we integrated microarray gene expression data into a network-based analysis to

identify the signaling and metabolic pathways most highly regulated during the development

of osteoarthritis (OA). OA is a condition of increasing public health interest. The most

common form of arthritis affecting over 27 million people in the US1 with similar

prevalence worldwide, OA results in significant pain and loss of function making it the most

common cause of chronic disability in adults2. A major limitation in the treatment of OA is

the lack of any intervention proven to directly impact the disease process, either in the early

or late stage of the disease. A better understanding of the molecular changes that occur

during the development of OA will improve our knowledge of how this disease progresses

and will help identify new targets needed to develop therapies to improve clinical outcomes.

Microarray studies using RNA extracted from joint tissues affected by OA have been

reported in the literature. Many of these studies have focused on a single tissue, like articular

cartilage3, 4, subchondral bone5 or synovium6, 7 most often at single time points. While these

approaches have identified many novel genes with altered expression in OA, there is no

information on how the gene product interactions may be altered to influence the

development of the disease process.

We recently generated a microarray dataset that assessed gene expression changes over time

during the early stages of OA in a commonly used mouse model8. In this model, OA

develops after surgical destabilization of the medial meniscus (DMM model). We evaluated

changes in gene expression and histological evidence of OA at 2, 4, 8, and 16 weeks after

DMM surgery with a sham surgery group serving as control. In order to be able to take a

more systems level approach, we examined gene expression changes in the joint as an organ

by extracting RNA from a pool of tissues including cartilage, subchondral bone, meniscus
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and the joint capsule with synovium. Using this dataset, we previously filtered a total of 371

genes into 27 clusters with various temporal gene expression patterns8. These clusters

included many genes previously associated with OA—such as COMP, MMP14, TIMP2,

SDC1, DDR2, TGFB2, MMP13, FMOD, BGN, LECT1, S100B and multiple collagen genes

—and elucidated their expression kinetics during the onset of OA. However, the cluster

analysis was unable to identify connections between the genes needed to better understand

how particular pathways are regulated during the disease process.

Utilizing the data from this time course microarray experiment, in the present study we were

able to discover how perturbed pathways change over time by observing which transcripts

are active (differentially expressed between DMM and sham controls) or inactive at each

time point. Subnetworks relevant to the OA disease process were found, along with novel

genes within these networks that have not been previously studied in OA. The results of this

network-based analysis demonstrate that an improved comprehensive systems level

understanding of OA can be obtained by incorporating pathway-level information into the

analyses of gene expression microarray data.

2. Methods

2.1 Normalization and processing of microarray data

The gene expression microarray dataset used for the present analysis was obtained from our

recently published study8. In brief, 12 week-old male C57BL/6 mice underwent DMM

surgery to induce OA or sham surgery as control. After sacrifice, RNA was isolated from the

medial side of the joint (n=9 mice per surgical group per time point) pre-surgery (time 0)

and at 2, 4, 8 and 16 weeks after surgery. RNA from 3 mice were pooled for each array

performed using the Affymetrix Mouse 430 2.0 chips (3 independent arrays run for each

time point and group). Microarray data was processed as previously described8. Briefly,

microarrays were imaged and raw data was normalized using systematic variation

normalization (SVN)9, 10 with the log2 intensity and detection p-value being reported.

Relative gene expression changes due to the DMM-induced changes in the joint were

calculated by using the time-matched average sham values as the control. The signal log

ratio (SLR) of control versus each DMM replicate for each time point was then calculated

and used as the DMM-induced gene expression changes.

2.2 Filtering and clustering of microarray data

The relative gene expression data was filtered and clustered as previously described8.

Briefly, replicate time courses were first filtered individually on detection p-value (p-value ≤

0.06) and SLR (SLR ≤0.5 or ≥0.5). The resulting lists of genes were then intersected and

further filtered for consistency of gene expression over time by using the Euclidean distance

(≤0.6) and Pearson correlation coefficient (≥0.7) scores between replicate time course

profiles. The final set of differentially expressed genes was then clustered using the

consensus clustering option provided by SC2ATmd11.
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2.3 Network analysis

Network analysis was performed using the jActiveModules version 2.23 (JAM) plugin for

Cytoscape12, 13. Prior to performing a network analysis using JAM, a known protein

interaction and reaction network had to be obtained and gene expression data had to be

converted for compatibility with JAM. Additionally, a consensus approach to the original

JAM algorithm (cJAM) was implemented to obtain active subnetworks that appeared at a

statistically significant number of times in multiple runs of JAM. Obtaining known

interactions, processing of gene expression data, and the implementation of cJAM are

detailed below.

2.4 Obtaining Known Network Interactions

The Cytoscape plugin BioNetBuilder v2.0 was used to query the Kyoto Encyclopedia of

Genes and Genomes (KEGG)14 for all known mouse interactions and reactions present

between any two genes represented on the Affymetrix Mouse 430 2.0 chip13, 15. The list of

probe sets was imported into BioNetBuilder, and all associated nodes (representing gene

products present on the chip) and edges (representing molecular interactions and reactions)

for the Mus musculus genome were downloaded into Cytoscape version 2.8.1, and

visualized as a network. Self-edges and edges labeled as “Shared Compound” were deleted

from the network because self-edges resulted in JAM returning single-node results, which

were not biologically meaningful, and Shared Compound edges were determined to be

biologically irrelevant for the system under study. The resulting mouse network contained

2,393 nodes uniquely identified by Entrez ID that also had genes represented on the

microarray chip with 32,342 edges (Cytoscape File available upon request). Interactions and

reactions between gene products included 15,240 edges labeled as Enzyme-Compound

interactions (EC), 440 edges labeled as Gene Expression interactions (GE) and 16,662 edges

identified as Protein-Protein interactions (PP). JAM used this “global network” as the

background for identifying active subnetworks.

2.5 Data Conversion and Mapping to the Global Network

Gene expression data was converted for compatibility with JAM12 using an in-house script

written in MATLAB (MathWorks Inc.). Briefly, the DMM SLRs for each replicate and time

point were independently filtered by detection p-value, where all 3 sham control p-values

plus the respective DMM p-value had to be ≤0.06, to identify those genes that were

significantly detected on the chip. At this point, the mean DMM SLR and standard deviation

for each replicate and time point filtered list was calculated for future use. Next, the

remaining Affymetrix probe set ID's for each replicate were mapped to the corresponding

Entrez ID based on the Affymetrix annotations file downloaded from NetAffx (http://

www.affymetrix.com). On occasion, several probe sets would map to a single Entrez ID, or

one probe set would map to several Entrez IDs creating a many-to-many relationship. The

later relationship was considered trivial; however, having several probe sets mapping to a

single Entrez ID was a problem because only one SLR value could be represented in the

network per Entrez ID. To resolve this issue a “summary SLR” was calculated as the average

SLR value across all probe sets mapping to the same Entrez ID for a given replicate at a

given time point. Finally, the SLR and summary SLR values were converted to the exclusive
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range of (0,1) by integrating the cumulative distribution function (Equation 1)16 over each

replicate for each time point (a normal distribution was assumed). Integration was done

relative to the respective mean and standard deviations calculated earlier for each replicate

and time point for a given gene's SLR value. SLR values represented a z-score on the

distribution where in Equation 1, Φ represents the fraction of SLR values below a given

gene's SLR, and Equation 2 yields the fraction of genes with a greater absolute z-score than

that of a given gene's SLR for the given replicate and time point.

(1)

(2)

In Equations 1 and 2, μ and σ are the mean and standard deviation, respectively, of all p-

value filtered SLR values for each replicate i, and x is the SLR value for gene j under

replicate i.

Once array data was converted into a format acceptable by JAM, data were mapped onto the

global network obtained from KEGG using the Entrez IDs. Due to the p-value filter, not all

genes represented in the network contained converted expression values for every time point

and replicate. Thus, missing data was given a converted value of 0.5, which gave that gene a

50% chance of showing up in subnetwork results for the respective replicate and time point.

2.6 Consensus jActiveModules (cJAM) Analysis

Network analysis using JAM was performed using the described global mouse network and

converted DMM gene expression data. Details of the original JAM algorithm have been

described previously12, 17. Briefly, converted gene expression data is overlaid onto the

known network, and an annealing search algorithm with a random initial start is used to

search the network space by adding or removing nodes one at a time from the current

selection. Subnetworks are scored by JAM using the average of the selected z-scores after

each iteration. Once subnetwork scores no longer significantly improve, the search is halted

and the current selection of subnetworks are those deemed as active (active subnetworks). A

known issue with this approach is that it is impossible to search the entire subnetwork

space12, so only part of the network space is searched with random initialization. The

stochastic nature of this approach can result in different subnetworks each time it is run.

Therefore, a consensus approach was implemented to identify those subnetwork nodes that

appeared as active a significant number of times over multiple runs of JAM, which we have

termed Consensus JAM (cJAM).

Consensus JAM was performed on the DMM time course as shown in Fig. 1. Each replicate

DMM SLR data set was overlaid onto the global network individually and was run through

JAM 10 times, using a different starting seed for each run (see Fig. 1 legend for JAM

settings). Subnetwork results from each of the 10 runs were filtered to remove those with a

score less than 3.018. The remaining subnetworks for each DMM SLR data set were

analyzed using an in-house script that calculated the probability of each node appearing in
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the search results a given number of times (described below). Once the set of nodes that

appeared a statistically significant number of times was determined, edges connecting those

nodes were mined from the global network to create the consensus subnetwork. This was

done for each replicate and each time point. To determine biological consensus, the

consensus subnetworks for each replicate were intersected to obtain one subnetwork for

each time point. These subnetworks were then unioned to generate an active subnetwork

where any given node was deemed active in all replicates for at least one time point.

2.7 Node significance calculation in cJAM

Statistical significance for each node returned by cJAM was calculated as follows. Assume

that Gi = (Vi, Ei) represents the collection of graphs (G), made up of a set of nodes (vertices

V) and edges (E), returned from the ith of k total runs of JAM over the global network with t

total nodes. Let max be the number of nodes in the largest node set Vi returned by JAM for

any one run. Let U be the union of all node sets, thereby defining the set of nodes seen

across any run of JAM with its size represented as |U|. For each node u in the union U, a

count of how many node sets the node appeared in was recorded. High values for this count

would reveal if a node were seen in many of the repeated searches. To quantify how often a

node should appear to be statistically significant, the following process is employed.

Assume that max/t, the maximum number of nodes returned from any run divided by the

total number of nodes searched in the global network represents the probability of a node

being selected by chance. This value corresponds to the probability of a node being selected

under the most “aggressive” searcher. Given this, the probability of a node being selected

was computed using the binomial distribution, with parameters of k trials and probability,

max/t, of success within a trial. The nodes in U can then be rank ordered by this probability

to identify those that are statistically significant. Since hundreds or thousands of nodes are

being evaluated under the binomial distribution, a Bonferroni correction for repeated tests is

employed. To apply the Bonferroni correction, the cutoff probability for statistical

significance is divided by the number of repeated tests being employed, which in this

scenario is |U|, the number of nodes seen across all runs of the search algorithm.

2.8 Enrichment Analysis

The Database for Analysis, Visualization, Integration and Discovery (DAVID)19 was used

for all gene-annotation enrichment analyses, which identify annotations that are significantly

over-represented in an input list of genes. Briefly, a list of gene symbols (from clusters or

active subnetworks) was imported into DAVID with the Mus musculus genome used as

background. All default annotation-term sources were turned off except

KEGG_PATHWAY. All other settings were left at their default value. The Annotation

Chart tool was used to identify KEGG pathways14 that were significantly overrepresented in

the input list. A Benjamini corrected p-value of 0.05 was used to determine significance.
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3. Results and Discussion

3.1 Identification of subnetworks actively regulated during the time course of OA
development

Our approach was to identify actively regulated subnetworks from a known background

global network. We defined an active subnetwork as a collection of interacting gene

products (proteins/nodes in the network) for which the majority of the genes are regulated

across the time course. For this method, a threshold for significant gene expression is not

required. This process is summarized in Fig. 1. Briefly, we constructed a background global

network of 2,393 nodes, from the Kyoto Encyclopedia of Genes and Genomes (KEGG)14 as

detailed in the Methods. The consensus JAM (cJAM) algorithm was then run using this

global network and the converted time course gene expression data for each replicate dataset

and each time point independently. Identified subnetworks were intersected to obtain one

active subnetwork for each time point. The active subnetworks across the entire time course

were unioned to obtain a single subnetwork where a node (gene product) was deemed active

for at least one of the four time points (2, 4, 8 and 16 weeks after DMM surgery). The total

number of nodes in this single “union” subnetwork was 116 (Fig. 2). The number of active

nodes in the subnetworks at each time point varied considerably with the 2 and 4 week time

points having the highest (65 and 72 nodes respectively) followed by a reduction to 29 nodes

at 8 weeks and then an increase to 59 active nodes at 16 weeks (Fig. 3 and Supplemental

File 1).

The nodes included in an active subnetwork for a given time point were next analyzed using

DAVID for gene-annotation enrichment in order to determine which specific pathways were

actively regulated during the development of OA. Table 1 summarizes the primary active

pathways for each time point, with specific gene names and the complete results of the

DAVID analysis provided in Supplementary File 1. Most notably, the extracellular matrix

(ECM)-receptor interaction pathway (KEGG_PATHWAY mmu04512) and the focal

adhesion pathway (KEGG_PATHWAY mmu04510) were found to be enriched in the

subnetworks identified in all four time points (Table 1). These pathways included the classic

OA-associated gene COMP (cartilage oligomeric matrix protein), multiple collagen genes

(COL1A1, COL2A1, COL3A1, COL4A1, COL4A2, COL4A4, COL5A1, COL5A2,

COL6A1, COL6A2 and COL11A2), syndecans (SDC1, SDC2, SDC3, SDC4),

thrombospondins (THBS2, THBS3, THBS4), FN1 (fibronectin 1), IGF1 (insulin-like growth

factor-1), CD36, CD47, and TNR (tenascin R). These genes and/or members of these gene

families have been implicated in the OA process in previous studies (for review see20–22)

which helps to validate that this approach is finding relevant networks.

By examining the level of gene expression in the subnetworks at the various time points, it

can be seen that many of the genes in the subnetworks were up-regulated in the DMM joints

at the 2 and 4 week time points and then returned to levels similar to the sham control joints

at 8 weeks (Fig. 3). At 8 weeks, the only two KEGG pathways that reached significance

were the ECM-receptor interaction pathway and the focal adhesion pathway consistent with

the importance of altered cell-matrix interactions in the OA process. Some of the genes in

these pathways were down-regulated below the controls, including COL2A1 and COL11A1.
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These are both genes coding for fibrillar collagens found primarily in the articular cartilage.

The decreased expression of these genes in the OA joints relative to controls could be due to

a loss of articular cartilage as OA develops. However, at 16 weeks expression of COL2A1

along with COMP, THBS3, THBS4, COL3A1, COL5A1, COL5A2, COL6A1, and COL6A2

were increased, along with members of Wnt, Hedgehog and TGF-β signaling pathways,

suggesting that a phasic process of active joint tissue remodeling was at play, as we had

suggested previously8, rather than just a progressive loss of matrix as had been thought to

occur in OA.

The Wnt signaling (KEGG_PATHWAY mmu04310), Hedgehog signaling

(KEGG_PATHWAY mmu0430) and TGF-β signaling (KEGG_PATHWAY mmu04350)

pathways were identified as actively regulated subnetworks at all time points except for 8

weeks (Table 1 and Fig. 3). Genes included in the Wnt signaling pathway were Wingless-

type MMTV integration site family, member 5A (WNT5A), Frizzled family receptors

(FZD1, FZD2, FZD6, FZD7) and secreted frizzled-related proteins (SFRP5, SFRP1, SFRP2,

SFRP4). Genes in the Hedgehog signaling pathway included the transcriptional regulator

Glioma-Associated Oncogene Family Zinc Finger 3 (GLI3) as well as WNT5A, and genes in

the TGF-β signaling pathway including transforming growth factors (TGFB3, TGFB2),

thrombospondins (THBS2, THBS3, THBS4), inhibin (INHBA), latent transforming growth

factor beta binding protein (LTBP1) and COMP.

Although altered Wnt, Hedgehog, and TGF-β signaling has been previously implicated in

the OA process21, 23–26, our analysis provided additional information on how genes in these

pathways may interact during the development of OA. For example, there were multiple

collagen genes in a subnetwork that connects to syndecans through the ability of collagens

to activate syndecans which can also be activated by fibronectin, thrombospondins, tenascin

and COMP that were found in the same subnetwork. COMP and thrombospondins can bind

and inhibit latent TGF-binding protein 1 (Ltbp1) which in turn regulates activity of members

of the TGF-β family. Although the Wnt and Hedgehog pathway members are in a separate

subnetwork, studies have shown that Wnt signaling and cell-ECM adhesion pathways cross-

talk via integrin and syndecan regulation of Wnt signaling (reviewed in27).

A small subnetwork that consisted of three isoforms of the same chemokine,

CCL21A,CCL21B, and CCL21C, was unique in that it was up-regulated in DMM relative to

sham control joints at all of the time points studied, even 8 weeks, but with the higher

expression at 2 and 4 weeks (Fig. 3). We had previously reported up-regulation of CCL21

expression in a study where we compared expression of genes at 8 weeks after DMM

surgery in young (12 week-old) and older adult (12 month-old) mice and localized CCL21

to chondrocytes and meniscal cells using immunohistochemistry10. CCL21 had been found

in human OA synovial tissue and synovial fluid although at levels below that seen in

rheumatoid arthritis where it is thought to promote angiogenesis28. The identification of the

CCL21 subnetwork in the present analysis indicates that further studies on its role in OA are

warranted.
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3.2 Riboflavin subnetwork is active at 4 weeks

As noted above, the 4 week time point contained the largest number of nodes (72) of any

time point included in the active subnetworks (Fig. 3). This time point included 5 genes in

an active subnetwork identified by gene-annotation enrichment as the riboflavin metabolism

pathway (KEGG_PATHWAY mmu00740). These genes included ENPP1 (Ectonucleotide

Pyrophosphatase/Phosphodiesterase 1), which was the most upregulated of the 5 genes,

ENPP3 (Ectonucleotide Pyrophosphatase/Phosphodiesterase 3), RFK (riboflavin kinase),

ACP5 (Acid Phosphatase 5, Tartrate Resistant) and ACP2 (acid phosphatase 2, lysosomal).

Although some of these genes, in particular ENPP1, have been individually associated with

OA in previous studies29–31, the riboflavin metabolism pathway has not been specifically

implicated in OA. However, supplements that include riboflavin have been found to reduce

the severity of spontaneous OA in male STR/1N mice32 and C57 black mice33, and older

adults with knee OA have been found to consume a diet that may be deficient in foods that

contain riboflavin34. These reports, combined with the present network analysis, point to a

possible role for the metabolism or deficiency of riboflavin in OA that deserves further

investigation.

3.3 Overlap and comparison of active subnetworks with temporal gene expression
clusters

In our previous analysis of this gene expression dataset, we clustered the genes based on

their temporal expression patterns into 27 gene clusters8. We intersected the previous

clustering results with the set of genes identified in the active subnetworks in the present

study to identify the genes that appeared in both analyses and to examine the relationship

between the clusters and the active subnetworks. The genes appearing in both the

subnetworks and the temporal expression clusters included COMP, SDC1, SDC4, COL4A2,

COL3A1, COL5A1, SFRP4, FZD6, GLI3, MMP14, EGFR, TGFB3, TGFB2, VKORC1,

HIF1A, ENPP3, PAPSS2 and IGF1 which were present in clusters 1–4, 6, 8, 9, 13–15 and

27 from the previous work8. Fig. 4 summarizes the temporal gene expression profiles of

clusters relevant to this work. Genes present in the temporal clusters and also found in the

actively regulated subnetworks are indicated in Fig. 3 by the cluster number shown in square

brackets after the gene name.

With the exception of the Hedgehog signaling pathway, each of the identified pathways

from the network analysis contained genes that had been previously placed in 2 or more

clusters based on temporal gene expression. For example, the ECM-receptor interaction

pathway in the subnetwork analysis contains genes from temporal clusters 1, 2, 8, 14, 15 and

27 while the TGF-β signaling pathway contains genes from clusters 6 (TGFB2,TGFB3) and

8 (COMP). The advantage to using the subnetwork analysis to identify KEGG pathways that

were actively regulated at various time points during the OA time course can be seen when

comparing the DAVID gene-annotation enrichment analysis results from the temporal

clusters to that from the subnetworks. Analysis of temporal clusters 1, 2, 8, 14, 15 and 27

that included the genes identified as the ECM-receptor interaction pathway in the

subnetwork analysis had revealed that clusters 8 and 15 had some ECM and cell adhesion-

related enriched annotations based on gene ontology (GO) terms, but returned no significant

KEGG pathways, while clusters 14 and 27 had no significant ECM annotations or
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pathways8. Cluster 2, the largest of the group, did contain significant annotations related to

cell adhesion and the ECM, and the only significant KEGG_PATHWAY was that of Focal

Adhesion—which is closely related to the ECM-receptor interaction pathway. It is not until

you combine this group of clusters that you get the ECM-receptor interaction

KEGG_PATHWAY as the most significantly enriched pathway (p-value=2.86E-4) for this

set of genes (Supplemental File 1). This demonstrates that performing temporal clustering

followed by enrichment analysis cannot reveal all the pathways regulated during the

development of OA as each pathway has genes that are regulated differently over time, and

thus will appear in several temporal clusters.

4. Conclusions

Network-based analysis of a time course gene expression dataset revealed the signaling and

metabolic pathways that were actively regulated at one or more time points during the

development of OA in a commonly used mouse model of the disease. The major pathways

identified included the extracellular matrix-receptor interaction and the focal adhesion

pathways along with the Wnt, Hedgehog and TGF-β signaling pathways. A newly identified

pathway active at the 4 week time point was riboflavin metabolism. Members of these

pathways have been examined for their role in OA in previous studies that have most often

focused on one or a few genes in an individual pathway. However, the present study

uniquely demonstrates how these pathways may interact with each other as subnetworks

active at specific time points during the development of OA.

The predominance of ECM, focal adhesion and growth factor genes in the largest active

subnetworks is consistent with an attempt of the joint tissues to repair or replace damaged

and lost matrix as OA develops. This process appears to be driven by the Wnt, Hedgehog

and TGF-β signaling pathways as well as by IGF-1. Although matrix degrading enzymes,

such as the MMPs, and inflammatory mediators, such as cytokines and chemokines, are

known to also be involved in the development of OA, only a few genes from these groups,

including MMP-2, MMP-14, IL-1β and Ccl21, were found in the actively regulated

subnetworks. This reflects a limitation of this type of network analysis which was mostly

focused on identifying genes in signaling and metabolic pathways. Also, identification of

active subnetworks requires that they contain genes already identified as part of that network

in previous studies of known signaling or metabolic pathways. Despite these limitations, the

network analysis enhanced and extended the information about the OA process gained from

the previous cluster analysis of temporal gene expression and suggested additional genes

within the key pathways that should be further studied.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

COMP cartilage oligomeric matrix protein

DAVID Database for Analysis, Visualization, Integration and Discovery

DMM destabilization of the medial meniscus

EC Enzyme-Compound interactions

IGF-1 insulin-like growth factor-1

JAM jActiveModules

cJAM consensus jActiveModules

KEGG Kyoto Encyclopedia of Genes and Genomes

OA Osteoarthritis

PP Protein-Protein interactions

SLR signal log ratio

SVN systematic variation normalization
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Highlights

• Network-based analysis of time course gene expression data identified pathways

active during the development of osteoarthritis.

• Active pathways included extracellular matrix-receptor interaction, focal

adhesion, Wnt, Hedgehog and TGF-β signaling.

• A unique pathway active early in the development of OA was riboflavin

metabolism.
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Fig. 1. Flow chart of the Consensus jActiveModules (cJAM) process
cJAM was performed on the replicates of each time point independently. Processed gene

expression data was imported into the JAM plugin and overlaid onto the global network

extracted from KEGG. The annealing algorithm was run on each replicate 10 times using the

following settings: number of modules = 20; Adjust score for size was turned OFF; Regional

Scoring was turned ON; Iterations = 100,000; Start Temp = 2.0; End Temp = 0.0001;

Quenching was turned OFF; Hubfinding = 10; and a random seed was chosen for each run

based on time (used same seed for same run in all time points). Next, the consensus network

for all runs was obtained for each replicate, and these were then intersected to identify the

final subnetwork that showed up consistently in all replicates for a given time point. Lastly,

the resulting active subnetworks were unioned to create one network that represented the

activity of all time points (details of the nodes in this network can be seen in Fig. 2). Refer to

the Methods section for specific process details. Disclaimer: All the network images, except

the last one, are not from this analysis—they are just used to demonstrate the cJAM

workflow.

Olex et al. Page 15

Gene. Author manuscript; available in PMC 2015 May 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. Union of active subnetworks identified by cJAM
The nodes present in the active subnetworks identified by cJAM for each time point were

unioned to generate a composite network image. Edge types were obtained from KEGG and

are described in the legend. Node labels are gene symbols.
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Fig. 3. Actively regulated subnetworks identified for each time point
Active subnetwork, gene expression and cluster membership information is overlaid on the

unioned, composite network from Fig. 2. Nodes considered active by cJAM (i.e. part of the

active subnetwork) for each time point are indicated by hexagons. Node color represents

gene expression as indicated by the color bar (orange is up-regulation, blue is down-

regulation). Nodes that overlap with the previously described cluster analysis have the

associated cluster numbers in square brackets after the gene symbol in the node label. Edge

types are as described in the legend for Fig. 2.
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Fig. 4. Summary of temporal profiles for relevant clusters
Replicate gene expression values for each cluster at each time point were averaged and

plotted for those clusters that overlapped with the network analysis.
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Table 1

Summary of actively regulated pathways for each time point. Active genes for each pathway are detailed in

Supplementary File 2.

KEGG Pathway
Time Points

2wks 4wks 8wks 16wks

ECM-receptor interaction X X X X

Focal adhesion X X X X

Wnt signaling pathway X X X

Hedgehog signaling pathway X X X

TGF-beta signaling pathway X X X

Riboflavin metabolism X
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