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Abstract

Introduction—Diagnosis and therapy of cancer remain to be the greatest challenges for all

physicians working in clinical oncology and molecular medicine. The statistics speak for

themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly

577,190 patients passed away due to cancer in the USA in 2012.

For practicing clinicians, who treat patients suffering from advanced cancers with contemporary

systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side

effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients,

these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic

outcomes of systemic therapies may include genomic mutations and their consequences.

Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed

the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy:

genetically engineered stem cells’ guided gene therapy.

Review of therapeutic strategies in preclinical and clinical trials—Stem cells have the

unique potential for self renewal and differentiation. This potential is the primary reason for

introducing them into medicine to regenerate injured or degenerated organs, as well as to

rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have

*Corresponding Author: Marek Malecki MD PhD, Phoenix Biomolecular Engineering Foundation, San Francisco, CA 94105-191111,
USA, telephone: 4157134370; fax: 4157134371; skype: mm_pbmef; mm@pbmef.org.

Conflict of interest statement
The authors have no conflict of interest.

Authors’ Contributions
MM and PZ wrote the manuscript; KP, IK, SL, LY, RM, KZ edited the manuscript; MM wrote and applied for the grants, edited the
manuscript.

Authorship statement
All authors agree with the content of the article and the transfer of copyrights to the “Open Access” publisher.

NIH Public Access
Author Manuscript
J Cancer Res Ther (Manch). Author manuscript; available in PMC 2014 May 23.

Published in final edited form as:
J Cancer Res Ther (Manch). 2014 ; 2(1): 22–33. doi:10.14312/2052-4994.2014-4.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



created the foundations for genetic engineering of stem cells as the vectors for delivery of

therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to

deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the

transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various

strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review

results of the main preclinical studies and clinical trials. However, the main risk for therapeutic

use of stem cells is their cancerous transformation. Therefore, we discuss various strategies to

safeguard stem cell guided gene therapy against iatrogenic cancerogenesis.

Perspectives—Defining cancer biomarkers to facilitate early diagnosis, elucidating cancer

genomics and proteomics with modern tools of next generation sequencing, and analyzing

patients’ gene expression profiles provide essential data to elucidate molecular dynamics of cancer

and to consider them for crafting pharmacogenomics-based personalized therapies. Streamlining

of these data into genetic engineering of stem cells facilitates their use as the vectors delivering

therapeutic genes into specific cancer cells. In this realm, stem cells guided gene therapy becomes

a promising new frontier in personalized and targeted therapy of cancer.
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Introduction

Diagnosis and therapy of cancer remain to be the greatest challenge for all of us – physicians

working in clinical oncology and molecular medicine. The statistics speak for themselves

with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly

577,190 patients passed away due to cancer in the USA in 2012 [1–3].

For practicing clinicians, who treat patients suffering from advanced cancers with

contemporary systemic therapies, the challenge is to attain therapeutic efficacy, while

minimizing side effects. Unfortunately, all systemic therapies, including chemotherapy,

radiation therapy, and radio-immunotherapy, affect to some extent also healthy cells; thus

cause side effects [4–26]. In treated patients, these side effects may range from nausea to

tissue damage. In cancer survivors, the iatrogenic outcomes may include consequences of

genomic mutations in patients themselves or their children. Therefore, there is an urgent

need for the patients’ personalized and the cancers’ targeted therapies. Recently, we

reviewed the current status and future perspectives of gene therapy for cancer [27–28].

Herein, we discuss genetically engineered stem cells guided gene therapy for cancer as a

new frontier in personalized and targeted gene therapy. We provide a short summary in

Table 1.

Stem cells have the unique potential for self renewal and differentiation. This potential is the

primary reason for introducing them into medicine to regenerate injured or degenerated

organs, to correct congenital disorders, or to rejuvenate aging tissues [29–51]. Recent

advances in genetic engineering and stem cell research have created the foundations for

genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes.
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Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide

inducing transgenes selectively to the cancer cells. Expression of the transgenes kills the

cancer cells, while leaving healthy cells unaffected [52–63]. Herein, we present various

strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review

results of the main preclinical studies and clinical trials. However, the main concern for

therapeutic use of stem cells is a risk of their cancerous transformation [64–70]. Therefore,

we discuss in depth various strategies safeguarding stem cell therapy against iatrogenic

cancerogenesis.

Stem cells are defined as undifferentiated cells that have the capacities of self-renewing and

differentiation into specialized cell types and tissues [29–51]. These cells can be classified

according their potency to differentiate into: unipotent stem cells that can produce only one

cell type, multipotent cells able to form all cells of one particular lineage, pluripotent stem

cells capable to differentiate into any of the embryonic germ layers and totipotent cells that

can give rise to an entire organism. In general, stem cells are classified as embryonic stem

cells (ESCs) and adult (ASCs) or non embryonic stem cells [32–36].

Embryonic stem cells

Embryonic stem cells feature totipotency [32–33]. This ability is retained in mammals by

the zygote and up to at least 4-cell stage embryos. The embryonic stem cells are derived

from the inner cell masses of blastocysts. They have ability to proliferate in an

undifferentiated state through multiple passages in culture, as well as to generate any cell of

the body. However, the use of ECSs has generated legal, ethical, scientific, and religious

opposition, because these cells can only be obtained from human embryos [39].

Adult stem cells

Adult stem cells (ACSs) are self-renewing, multipotent cells obtained from adult tissues.

They can be further classified as hemopoietic stem cells (HSCs) and mesenchymal or non-

hemopoietic stem cells, stromal, or mesenchymal stem cells (MSCs), based on their origin

[35–39]. Bone marrow contains a heterogeneous population of stem cells (BMSCs).

Hemopoietic stem cells are derived from bone marrow, peripheral blood, or umbilical cord

blood and are capable to differentiate into all blood cells, dendritic cells, lymphocytes and

macrophages, so are responsible for the blood renewal each and every day. MSCs are of

mesodermal origin and are present in a large number of tissues such as bone marrow, liver,

skin, dental pulp, adipose tissue, brain, skeletal muscle. Bone marrow stem cells are able to

differentiate into different lineages such as chondrocytes, adipose cells, osteoblasts and

muscle cells (12–21).

Human pluripotent induced stem cells

To the repertoire of the natural stem cell therapeutics, human pluripotent induced stem cells

have been added [30–39]. They are generated by introducing vectors carrying coding

sequences for the transcription factors or the transcription factors themselves, which re-

program the adult fully differentiated cells into the undifferentiated state. These induced

cells open new therapeutic opportunities, which are practically the same as those of human

embryonic stem cells, but without ethical and scientific concerns. In particular,
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reprogramming the patients’ own cells results in creating human autologous pluripotent

induced stem cells, which eliminate the risks of immune response or the need for immuno-

suppression.

Trans-differentiated cells

The spectrum of cell therapeutics has been further expanded through directed trans-

differentiation of the differentiated cells into the differentiated cells of a different type [71–

83]. This is accomplished without the step of reprogramming of the adult stem cells into the

undifferentiated cells as outlined above. This novel biotechnology is of paramount

importance for bioengineering of the cells with special therapeutic tasks, as they are being

recognized by the patients’ immune system as their own cells. These tasks may include

guiding the bioengineered stem cells towards selected receptors on cancer cells and

delivering suicide genes. This novel technology opens new routes for reprogramming of the

patients’ own cells into the therapeutic genes’ carrying vectors.

Sources and therapeutic applications of stem cells

Because of their unique characteristics, self-renewing and multilineage differentiation, stem

cells are promising candidates for potential therapeutic uses in regenerative medicine,

pharmacogenomics, and bioengineering [29–53]. Ability of MCSs to differentiate into

osteoblasts or chondrocytes, has generated considerable interest in using these cells as

potential treatment in patients with bone or cartilage disorders through MSCs

transplantation. Stem cells ability to differentiate from one type of a tissue lineage into

another, carries a great promise for the treatment of a variety of diseases such as

cardiovascular disease and heart failure, stroke, Parkinson’s and Huntington disease,

diabetes, liver diseases such as cirrhosis to name only a few. Their ability to modulate

immune response and their immunosuppressive effect onto B and T lymphocytes

proliferation, further expanded possible use of these cells for the treatment of autoimmune

diseases, rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and

autoimmune encephalomyelitis. Stem cells can be also obtained from dental tissues and may

be isolated from different parts of the teeth, apical papilla, dental follicle, human exfoliated

deciduous teeth, dental pulp and periodontal ligament. Stem cell research in dentistry

focuses on the regeneration of periodontal ligament, regeneration of coronal dentine, pulp

and salivary gland after radiation therapy and repair of craniofacial defects.

Stem cells as the vectors of cancer cell suicide inducing genes

Research on stem cells facilitated opportunities for their genetic engineering to become

vectors carrying suicide genes into different types of cancer - suicide gene therapy of cancer

[48–63,71–78]. One of the most advanced approaches is based on introduction into tumor

cells of genes capable for converting a non-toxic pro-drug into a cytotoxic agent. Among

these types of suicide systems, the most studied are: (1) thymidine kinase gene (HSV-TK) of

herpes simplex virus in combination with Ganciclovir used as a prodrug and (2) cytosine

deaminase (DC) gene of Escherichia coli in combination with 5-flurocytosine (5-FC). These

genes utilize different delivery systems, like viral or non-viral vectors, bacteria, parasites

and cell-based systems including stem cells. The use of stem cells, as possible vectors, has

been investigated due to their easy expansion and advances in genetic engineering.
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Additional attractive feature is immuno-privileged status of autologous stem cells, as

indicated by expression of the major histocompatibility complex 1 (MHC1), but not MHC2,

clusters of differentiation 40, 80, and 86. As such, these cells can be used in immuno-

competent patients, including those with cancers, while without complications presented

from immuno-modulation, with better therapeutic efficacy, and significantly improved

safety.

Many treatments result in cells’ death in vitro. The main challenge for practicing clinicians

is not to cross the thin line between eradicating cancer cells in vivo, in the patients’ bodies,

but not harming these patients’ healthy cells. This is a particularly tough challenge in

advanced cancers, which metastasized to multiple and distant locations of the patients’

bodies. These advanced stages are beyond the therapeutic arsenal of local surgery, but

require systemic therapies associated with horrendous side effects. In this realm, there is a

great promise in genetic engineering of stem cells, so that they are compatible with the

patient’s immune system, are guided to the specific tumor, and deliver the therapeutic

transgenes into cancer cells, while inducing their death (Figure 1).

However, the recognized risk of stem cell therapy is their cancerogenic potential [64–70].

Therefore, implementing all measures preventing cancerogenic transformation is the

stringent sine qua non condition for introducing stem cell therapy into clinical trials.

Review of therapeutic stem cells-guided strategies in preclinical and

clinical trials

We have recently reviewed current strategies of cancer suicide gene therapy of cancer

[27,28]. Suicide gene therapy has been tried in several types of cancers including those of

brain, head and neck, ovary, breast, lung, pancreas, colon, blood, and skin. The use of

suicide gene therapy is more efficient and with fewer side effects than chemotherapy or

radiotherapy due to selective eradication of the cancer cells. Furthermore, gene therapy aims

at blocking specific pathways, growth factors or enzymes that are involved in the

carcinogenesis, the tumor growth and cell proliferation. This therapeutic strategy targets the

cancers cells directly, while limiting the effects upon the healthy cells and reducing adverse

events of systemic chemo- and radiation therapies, which currently remain the cornerstones

of cancer treatment. A new frontier in therapy of targeted therapy of cancer is rapidly

developing with the stem cells as the vectors delivering therapeutics to the targeted cancer

cells. Herein, we review most advanced preclinical studies and clinical trials pursued in this

new promising therapeutic frontier.

Glioblastomas

Glioblastomas remain one of the most frequent intracranial tumors with poor prognosis and

short survival. Current treatment strategies include surgical resection followed by

concomitant chemotherapy and radiation. It is believed that the main contributor to the

tumors’ relapses is presence cancer stem cells. On the other hand, stem cells demonstrate

natural tropism towards cancerous tissues. This ability was utilized for delivering suicide

inducing genes into glioblastomas [57–63]. Use of stem cells as vehicles delivering suicide
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genes into the brain cancer cells therapy is the most recent and promising therapeutic

approach for brain tumors. This is possible due to their unique characteristics of tumor

tropism, immunostimulation, tumor infiltration through blood brain barrier. To date, the

stem cells were bioengineered with doubled suicide genes: cytosine deaminase (CD) and

tyrosine kinase (TK). It was demonstrated that the cells carrying amplified transgenes

ensured better treatment results than those bio-engineered with the single suicide gene. The

use of double pro-drug enzymes enhanced tumor eradication and offered major safety. Other

studies have evaluated mesenchymal cells (MSCs), which were genetically engineered to

express cytokines such as IL-2, IL-18, IL-12 and INF-γ. This resulted in increasing the

tumors’ immune response. Human MSCs were also engineered in order to express cytosine

deaminase: uracil phosphorybosiltranferase (CD:UPRT). In combination with 5-FC, these

have shown post operative inhibition of tumor growth in animal models. In other studies,

PI103 - systemic PI3K/mTOR inhibitor was combined with stem cells’ delivered tumor

necrosis factor related apoptosis inducing ligand (S-TRAIL). This combination inhibited the

tumors’ growth in mouse models. As the most encouraging development, the FDA recently

approved the first pilot study using CD/5FC and stem cells as the delivery system. The

results of this clinical trial will help to evaluate effectiveness and safety of this method.

Overall, bioengineered stem cells used as therapeutic genes’ delivery vectors into

glioblastomas, resulted in encouraging results in preclinical studies. Therefore, they appear

to be a promising strategy for treatment of brain tumors.

Cancers of Head and Neck

Recurrence and distant metastasis remain critical problem for the treatment of squamous cell

carcinomas of head and neck [84–85]. Genetically modified stem cells, may be used as

potential targeted treatment. Human stem cells, which were genetically engineered to

express cytosine deaminase (HB1.F3-CD) have been used as a delivery system, in

combination with 5-FC in vitro and in vivo studies. They resulted in inhibition of the

tumors’ growth, when used combined with systemic administration of 5-FC. In laryngeal

carcinoma, combined gene therapy of CD/5-FC and TNF-α in hep-2 cell line, has inhibited

the tumor cell growth and induced anti-tumor immune response in animal models. As such,

stem cells guided gene therapy is a good candidate for streamlining into clinical trials.

Cancers of the Ovaries

Cancers of the ovaries are the most lethal gynecological cancers. Almost 63% of them are

diagnosed in advanced stages, which require systemic therapies. These cancers progress into

the abdominal cavity without giving specific symptoms. Therefore, by the time of their

detection, they are already spread too far for the local surgical resection. Recent studies

focus on a possible use of stem cell based therapy [87–91]. Human placenta derived MSCs

(hpMSCs) are promising candidates for stem cell therapy due to their ability of homing in

tumor sites and modulating the immune response. They have been genetically engineered in

order to deliver endostatin - an inhibitor of endothelial cell migration and proliferation; thus

of the tumor’s induced angiogenesis. The in vitro and in vivo studies confirmed the homing

effect of hpMSCs expressing endostatin in the tumor site, the inhibition of tumor

neoangiogenesis, and cell proliferation. Those effects led to starving the neoplasms and
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reducing their growth. In other studies, genetically engineered stem cells that expressed

carboxyl esterase (CE), were engineered to migrate towards ovarian cancers and to deliver

therapeutics. These cells induced inhibition of tumor cell proliferation. Over-expression and

mutations in the gene coding epidermal growth factor receptor offer a great target for

genetically engineered stem cells delivering apoptosis inducing transgenes [89]. Following

this targeting approach, genetically engineered stem cells could deliver HSV-TK to EGFR

over-expressing cells to eradicate cancer cells.

Breast Cancer

Breast cancer is the most common cancer in females. Endocrine therapy in estrogen receptor

α (ERα) positive tumors is largely used with satisfying results, while preventing cancer

cells from developing of resistance. Recent studies have shown that Sox2, one of the

transcription factors essential for maintaining pluripotency of stem cells, is responsible for

resistance to Tamoxifen [92–93]. Sox2 is over-expressed in breast tumor cells through

activation of Wnt signaling pathway. In that case, Sox2 is used as an indicator of resistance

to treatment. Furthermore, discovery of Wnt pathway inhibitors can lead to new treatment

strategies. These encouraging approaches can further be enhanced by recent results obtained

by introducing stem cell guided gene therapy [50–52]. Mesenchymal stem cells (MSCs)

were used as a vehicle for delivery of the sodium iodine symporter with significant decrease

of tumor growth. MSCs were also used as a vehicle for the delivery of TRAIL (MSCs/

TRAIL) to induce apoptosis of tumor cells but without toxicity in normal tissues such as in

the liver. This therapy represents a promising approach for treatment of the breast cancer.

Lung cancer

Lung cancer is one of the leading causes of death world-wide. Despite successes of

platinum-based chemotherapy, there was no major change in rates of long term survival

[94–97]. Gene for receptor for tyrosine kinase (ROS1) was recently reported as involved in

chromosomal translocations in lung cancer. Patients suffering from non-small cell lung

carcinomas (NSCLC) with ROS1 rearrangements appeared to be sensitive to ALK inhibitor

Crizotinib. Growing evidence accumulates for cancer stem cells (CSCs) as the source of

cancer malignancy, which is associated with poor differentiation, lymph node metastases,

and poor prognosis. In NSCLC, subpopulation of the CD133 expressing CSCs was

identified. The subpopulation of lung cancer stem cells A549, with high expression of

CD133, CD44 and ALDH1, strongly responded to Casticin, that preferentially suppress

CSCs proliferation, making it a possible therapeutic for NSCLC.

Different vectors systems have been used to deliver therapeutic genes. Among non-viral

vectors, polyethilenimine (PEI) is the most widely used as a gene carrier, due to its low

cytotoxicity and high transfection efficacy. Polyspermine and polyethylene glycol (PEG)

diacrylate (SPE-alt-PEG) synthesized gene carrier for lung cancer is another synthetic vector

with low cytotoxicity, high transfection efficacy, and biocompatibility. SPE-alt-PEG/GFP

complexes have been successfully transferred by aerosol into the lungs. Furthermore, the

therapeutic effect of SPE-alt-PEG was confirmed by using Pdcd4, decreasing that way the

tumor’s size and showing that SPE-alt-PEG is a safe gene carrier for in vivo applications.

Many lung cancers express mutations deletion gene for epidermal growth factor receptor
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variant III. It is the unique receptor, which distinguishes cancer cells from healthy cells.

Therefore, it becomes a desired target for genetically engineered stem cells serving as

vectors delivering the suicide inducing genes into the lung cancer cells displaying that

mutated receptor [127].

Colon cancer

Colon cancer represents one of the most common cancers in Western countries. Studies

implicated MSCs in tumor pathogenesis, growth, and metastasis. These cells express

platelet-derived growth factor (PDGF) [97–100]. On the other hand, PDGF signaling

pathways are determined important for survival and migration of MSCs in colon cancer.

Studies in mice have shown that Imatinib - PDGFR inhibitor could decrease tumor growth,

angiogenesis and metastatic effect of MSCs. Drugs that target to MSCs could be future

treatment for colon cancer. Recently, it was also shown that CSCs, particularly the CD133

subpopulation, are responsible for resistance to anti-angiogenesis treatment, through the

activation of Hsp27, MAPKAPK2, p38MAPK and PP2A anti-apoptotic signaling pathways.

Targeting these pathways and suppressing the CSCs’ activation, may lead to development of

new treatment methods in colorectal cancer. Genetic engineering of the stem cells, so that

they deliver endostatin - an inhibitor of endothelial cell migration and proliferation; thus

inhibition of tumor’s angiogenesis, may become a venue to break these cancers’ therapeutic

resistance.

Pancreatic cancer

Pancreatic cancer is one of the deadliest neoplasms. It is very difficult to diagnose, as it

progresses silently without any specific symptoms, thus is mostly diagnosed in very

advanced stages. Communicating diagnosis in most cases is equivalent to prognosis of a few

months survival. Pancreatic cancer is also very difficult to cure. This features are strong

drivers of exploring the stem cells guided therapy [101–107]. The main problem, especially

in cases of pancreatic ductal adenocarcinoma (PDAC), is the resistance of pancreatic cells to

conventional therapy. The pancreatic cancer stem cells (CSCs) are suggested as contributors

to tumor growth and metastasis. They are often associated with epithelial mesenchymal

transition (EMT), which leads to cells of similar characteristics with CSCs. Recently, it was

shown that pancreatic cancer CD44+/CD24+/ESA+ cell line has stem cells’ properties,

characterized by self-renewal and differentiation, while also present high tumorigenicity.

Expression of CD133+, CXCR4, SOX2 and c-Met has also been been correlated to

tumorigenicity and chemoresistance. Hedgehog, Notch, Wnt signaling pathways are

important in cancerogenesis of pancreatic cells and their deregulation such alterations in NF-

κB, Akt, TGF-β and miRNA- regulated pathways are very critical for the differentiation,

self renewal and tumorigenesis of pancreatic CSCs. Side populations of cells have been

identified in PDAC, which express multidrug transporter - ABCB1; thus are capable for

expulsion of therapeutics. This leads to developing of chemoresistance. Definition of

pancreatic cancers’ biomarkers and exposing mechanisms of resistance opened new routes

for new strategies of the targeted therapy which also include genetic engineering of

therapeutic stem cells.
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Melanoma

Melanoma is one of the most aggressive tumors [108–113]. The major problem for

enforcing effective therapy remains drug resistance. Over the last few years, there is a

growing interest for the melanoma cancer stem cells (CSCs) and possible alternative ways of

prognosis and treatment of this disease. Studies have shown that the melanoma CSCs

express surface markers such as ABCB5, CD271, ALDH, SOX10, c-kit, that can play a role

in treatment and prognosis. More specifically, CD271 expression is correlated with

increased metastatic ability and poor prognosis. Expression of ABCB5 is strongly correlated

with disease progression. Stem cells ABCB5+, present lower expression of melanoma

antigen recognized by T cells-1 (MART-1); thus are harder to kill by natural immune

response or immunotherapy. Similar expression of tumor antigens: MAGE-A, BIRC7/ML-

IAP, NY-ESO-1, MHC class 1, inhibition of the production of IL-2, and preferential

expression of B7.2, may inhibit antitumor immunity. Future melanoma treatment approaches

should consider these biomarkers as possible therapeutic targets for genetically engineered

therapeutic stem cells.

Acute Myeloid Leukemia

Studies on acute myeloid leukemias (AMLs) with high incidence of relapses led to detection

of the cells’ subpopulations with stem cell-like properties: leukemic stem cells (LSCs) [114–

118]. These cells demonstrated resistance to conventional therapies. In several studies,

investigators proposed that CD34 and CD38 positive immunophenotypes of LSCs are

correlated with lower median survival and with poor outcomes of AML. Different other

biomarkers are also associated with the LSCs: CD25, CD71, CD123, HLA- and CLL-1.

Among them, CD25+ is correlated to early treatments’ failure. These molecules may be used

as prognostic biomarkers, but also as targets for personalized therapies. Specifically, it was

shown in animal models that therapeutic targeting of CD123+ in AML cell line led to

elimination of LSCs. Signaling pathway for transcription complex NF-κB is another

therapeutic target. It is important for proliferation and survival of the LSCs. It can also be

involved in mediating drug resistance. Recent studies focus on targeting this pathway with

different agents like Bortezomib - an inhibitor used in combination with other agents. Data

from the recent study in mice has suggested that eradication of the LSCs could be

considered for further tests as a therapeutic approach. The monocytic leukemia zinc finger

fusion proteins stimulate PU1-mediated transcription of macrophage colony stimulating

factor receptor 1 (CSF1R). High expression of CSFR1 can induce AML, thus a possible

therapeutic approach would be apoptosis of CSF1R cells. Identification of the

aforementioned biomarkers opens the new perspectives for engineering of the stem cells,

which may target these biomarkers and deliver the deadly cargo of suicide inducing genes

into the cancer cells.

Safeguarding stem cell therapy against iatrogenic cancerogenesis

“Primum non nocere” is our ultimate creed. Safeguarding stem cell therapy against

iatrogenic cancerogenesis should be the primary consideration in designing any therapeutic

strategy. Main approaches of such safeguarding, which are currently explored, include

negative selection or selective killing of potentially cancerogenic stem cells [69,119–126].
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First approach relies upon biomarkers, which are specifically expressed on stem cells.

Identification of podocalyxin-like protein-1 on surfaces of embryonic stem cells promoted

depletion of these cells to reduce the risks of teratomas [119]. Stage specific embryonic

antigen 5 (SSEA5) was identified specifically on human pluripotent stem cells. Monoclonal

antibody raised against SSEA-5 was used to deplete the cells expressing this antigen and

resulted in reduced numbers of forming teratomas [120]. Claudin 6 is a protein contributing

to formation of tight junctions and was identified on stem cells [120]. Anti-claudin-6

antibodies modified with toxins were effective in killing the targeted stem cells. So were the

other antibodies followed by toxins [122–123].

In an alternative approach for eliminating stem cells with neoplasmic potential, eradication

of the selected cells was accomplished by inhibitor of the oleate synthesis [124]. Stem cells

were genetically engineered to express herpes virus thymidine kinase (HSVTK). Thus, they

became sensitive to and eliminated by Ganciclovir at the doses far lower than those toxic to

the healthy cells [125]. Selectivity of this approach was improved by genetic engineering of

truncated herpes simplex virus delta thymidine kinase (λTK) gene under control of EF1α or

NANOG promoters [126]. This insertion of λTK gene did not affect pluripotency of the

cells, but rendered them sensitive to Ganciclovir. This also created an opportunity to

eliminate stem cells expressing genes sustaining pluripotentcy by supplying Ganciclovir, to

which the transduced stem cells were more sensitive than were differentiated cells. Finally,

in the most direct approach, selective elimination of proliferating and directed-

differentiation-resistant stem cells was attained by inducible expression of transgenes for

DNases controlled by POLA1 promoter [69]. In this strategy, after providing factors to

induce differentiation of the stem cells, the cells, which would resist to directed

differentiation and keep proliferating, would express human recombinant DNases executing

these stem cells’ death.

Perspectives

Three most current topics of oncology carry great promise for developing effective cancer

therapeutics in the near future: defining cancer biomarkers to facilitate early diagnosis,

research on cancer heterogeneity and personal genomics with modern tools of next

generation sequencing to target specific molecules in cancers, and addressing patients’ gene

expression profiles to consider them for crafting personalized and targeted therapies.

Cancer biomarkers for early diagnosis

One of the most effective ways to cure cancer is to capture it early. The solid support for this

approach is provided by the statistics reporting 19% five year survival of women diagnosed

with ovarian cancer at the advanced stages, but 69% five year survival of women with the

cancer diagnosed at the early stages 1 [3]. Cancer captured early can be efficiently treated

with the local surgery. On the other hand, invasive and metastatic tumors present poor

prognosis and require systemic therapies with horrendous side effects. Hence, a major effort

goes toward defining cancer biomarkers and developing screening methods. These include

works on circulating tumor cells, free circulating biomarkers, and free circulating DNA.

Those works are complemented by refining sensitive methods of molecular imaging. The
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molecular diagnoses generated by those both approaches should pave the ways for therapies

delivered precisely to the targeted cancer cells by bioengineered stem cells.

Targeted therapies addressing cancers’ heterogeneities

All cancers consist of very heterogeneous populations of cancer cells’ clones. Some of these

clones respond well to standard therapeutic regimes, but other clones do not respond or

develop resistance to those regimes. Cancer stem cells seem to play significant role. Those

phenomena lead to clonogenic survival and tumors’ growth propelled by resistant clones.

Therefore, analysis of the complete spectrum of all the clones driving cancerous tumors’

growth, while considering that the spectra of these clones may change during or as the result

of therapeutic regimes, are really necessary for planning effective therapies [89]. Advances

in genomics and proteomics should help to identify these spectra. This would also include

the targets for stem cells, which would be delivering cargo of therapeutic genes.

Genomic medicine, pharmacogenomics, and personalized therapy

It is also very important to consider that every patient is different. Susceptibility to diseases

and ability to defend against the diseases are the outcomes of the person’s genomic profile.

This is the foundation for genomic medicine built on the foundation of the human genome.

So is responsiveness to therapeutics. This is the core of pharmacogenomics. Rapid advances

towards next generation sequencing of genomes and transcriptomes should help us in

defining those differences and crafting therapies adjusted according to the patient’s genomic

profile and to the cancer’s molecular profile. Designing and bioengineering of the stem cell

guided therapies should play the essential role in these promising endeavors.
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Figure 1.
Gene therapy can be administered directly to patients with the aid of transgene vectors.

Alternatively, cells from a patient can be acquired, genetically engineered, and returned to

this patient. Current research aims at bioengineering of vectors that can deliver therapeutic

genes to the targeted cells after injecting into blood circulation or directly into targeted

tissues.
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