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Carpal tunnel syndrome, a median nerve entrapment neuropathy, is characterized by sensorimotor deficits. Recent reports have

shown that this syndrome is also characterized by functional and structural neuroplasticity in the primary somatosensory cortex

of the brain. However, the linkage between this neuroplasticity and the functional deficits in carpal tunnel syndrome is un-

known. Sixty-three subjects with carpal tunnel syndrome aged 20–60 years and 28 age- and sex-matched healthy control

subjects were evaluated with event-related functional magnetic resonance imaging at 3 T while vibrotactile stimulation was

delivered to median nerve innervated (second and third) and ulnar nerve innervated (fifth) digits. For each subject, the interdigit

cortical separation distance for each digit’s contralateral primary somatosensory cortex representation was assessed. We also

evaluated fine motor skill performance using a previously validated psychomotor performance test (maximum voluntary con-

traction and visuomotor pinch/release testing) and tactile discrimination capacity using a four-finger forced choice response test.

These biobehavioural and clinical metrics were evaluated and correlated with the second/third interdigit cortical separation

distance. Compared with healthy control subjects, subjects with carpal tunnel syndrome demonstrated reduced second/third

interdigit cortical separation distance (P50.05) in contralateral primary somatosensory cortex, corroborating our previous pre-

liminary multi-modal neuroimaging findings. For psychomotor performance testing, subjects with carpal tunnel syndrome

demonstrated reduced maximum voluntary contraction pinch strength (P5 0.01) and a reduced number of pinch/release

cycles per second (P50.05). Additionally, for four-finger forced-choice testing, subjects with carpal tunnel syndrome demon-

strated greater response time (P50.05), and reduced sensory discrimination accuracy (P50.001) for median nerve, but not

ulnar nerve, innervated digits. Moreover, the second/third interdigit cortical separation distance was negatively correlated with

paraesthesia severity (r = �0.31, P5 0.05), and number of pinch/release cycles (r = �0.31, P5 0.05), and positively correlated

with the second and third digit sensory discrimination accuracy (r = 0.50, P50.05). Therefore, reduced second/third interdigit

cortical separation distance in contralateral primary somatosensory cortex was associated with worse symptomatology
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(particularly paraesthesia), reduced fine motor skill performance, and worse sensory discrimination accuracy for median nerve

innervated digits. In conclusion, primary somatosensory cortex neuroplasticity for median nerve innervated digits in carpal

tunnel syndrome is indeed maladaptive and underlies the functional deficits seen in these patients.

Keywords: functional magnetic resonance imaging (fMRI); median nerve neuropathy; tactile stimulation; psychomotor performance;
finger agnosia

Abbreviations: BCTSQ = Boston Carpal Tunnel Syndrome Questionnaire; CTS = carpal tunnel syndrome; D2/3/5 = second/third/
fifth digit; S1/2 = primary/secondary somatosensory cortex

Introduction
Carpal tunnel syndrome (CTS), a median nerve entrapment neur-

opathy, is characterized by pain and paraesthesia in median nerve

innervated areas. Recent studies have shown that CTS is also

characterized by functional (Druschky et al., 2000; Tecchio

et al., 2002; Napadow et al., 2006; Dhond et al., 2012) and

structural (Maeda et al., 2013) neuroplasticity in the primary som-

atosensory cortex (S1) of the brain. Several studies have noted

enlarged and/or blurred cortical representations in contralateral

S1 for the fingers, or digits of the hand, affected by CTS. For

instance, functional MRI studies have found reduced distance be-

tween cortical representations of the second and third digits (D2/

D3) in subjects with CTS and in addition, prolonged sensory con-

duction velocities for median nerve innervated digits (Napadow

et al., 2006). This contracted D2/D3 separation distance for sub-

jects with CTS was recently confirmed by our magneto-encephal-

ography study in a separate patient cohort (Dhond et al., 2012).

Furthermore, alterations in neuroplasticity with CTS may also

extend to structural properties of S1 grey matter. Our recent

whole-brain analysis found that grey matter volume was reduced

in subjects with CTS and that (i) this reduction was confined spe-

cifically to the hand area of S1, contralateral to the more affected

hand; and (ii) was associated with the median nerve sensory vel-

ocity (Maeda et al., 2013). Such changes in neuroplasticity likely

reflect the synaptic reorganization noted in animal deafferentation

models (Merzenich et al., 1983; Wall et al., 1986, 1992; Florence

and Kaas, 1995; Tommerdahl et al., 1996) as well as in human

immobilization (Lissek et al., 2009; Weibull et al., 2011) and de-

afferentation (Werhahn et al., 2002) models. However, the link-

age between such neuroplasticity and functional deficits in CTS is

currently unknown.

Although CTS has been characterized by elevated tactile detec-

tion thresholds (Thonnard et al., 1999; Tucker et al., 2007), it is

doubtful that this change in detection threshold could be due to

factors associated with skin physiology (such as observed with

age; Zhang et al., 2011a), but is rather more likely associated

with centrally mediated deficits that lead to changes in acute

and/or chronic S1 cortical organization. A number of tactile sen-

sory discriminative metrics, other than tactile detection thresholds,

have been demonstrated to be sensitive to alterations in centrally

mediated information processing. For example, observations

obtained in non-CTS pain populations from tactile tasks that

challenge sensory discriminative performance between adjacent

digits is compromised, and this is most likely the result of

impaired inhibition, which in turn leads to some form of mal-

adaptive neuroplasticity (Zhang et al., 2011b; Nguyen et al.,

2013). Observations from these tactile discrimination performance

tasks, which were designed to engage interactions between ad-

jacent and near-adjacent cortical ensembles of adjacent digit cor-

tical representations, have paralleled findings obtained from

stimulus-evoked activity in the somatosensory cortex of non-

human primates (Francisco et al., 2008). Moreover, these sensory

discriminative tasks are impacted in human performance when

the balance between excitation and inhibition is altered locally

in S1 cortex (Rai et al., 2012; Lee et al., 2013). Previous reports

have demonstrated that decreasing the spatial distance between

two vibrotactile stimuli delivered to the skin—and consequently,

decreasing the cortical distance between the evoked response—

has a significant impact on the sensory percept of those two

stimuli (Tannan et al., 2006, 2007; Zhang et al., 2008). Those

findings imply that a shorter cortical distance between digit rep-

resentations would hypothetically result in decreased sensory dis-

criminative performance in tasks requiring discrimination between

the represented skin sites. In our study, we predicted that a de-

crease in cortical separation distance between D2 and D3 would

lead to a decrease in tactile discrimination capacity between those

digits. As we found a significant overlap between those digit

representations in our pilot study of subjects with CTS, we antici-

pated that these subjects would have a decrease in sensory

discriminative performance that would be related to D2/D3

separation.

Furthermore, sensory discrimination phenomena such as finger

agnosia manifests as difficulty in distinguishing different fingers,

and has been localized to disruption of the angular gyrus and

other regions of the parietal lobe (Rusconi et al., 2005). Altered

S1 reorganization of somatotopic representations in CTS may also

support the deficits in fine motor control seen in these patients

(Fernandez-de-las-Penas et al., 2009a; de la Llave-Rincon et al.,

2011), likely through disrupted sensorimotor integration (Shinoura

et al., 2005). Examples of deficient sensorimotor integration have

been noted by visuomotor tasks involving pinch grip control

(Radwin et al., 2004). For instance, reduced speed and accuracy

in pinch-release performance has been reported for CTS-affected

fingers (Jeng et al., 1994). Recently, more sophisticated multi-digit

manipulation protocols have also been applied to subjects with

CTS, demonstrating that these subjects are also deficient in dex-

terous manipulation (Zhang et al., 2011) from an inability to ad-

equately control finger force distribution (Zhang et al., 2013).

While S1 physiology and sensorimotor feedback underlies fine
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motor control, it is currently unknown whether the blurring of

cortical representations for median nerve innervated digits in

CTS represents maladaptive neuroplasticity and is related to be-

havioural deficits in sensory discrimination performance and fine

motor control.

In this cross-sectional study, we aimed to link neuroimaging

metrics such as D2/D3 S1 cortical separation distance with CTS

symptoms, somatosensory discrimination capacity, and psycho-

motor performance. We also aimed to confirm our previously re-

ported alterations in S1 organization in CTS using a much larger

sample. We used high-resolution functional MRI to evaluate brain

response to vibrotactile stimulation on median and ulnar nerve

innervated digits. We also evaluated tactile discrimination and

fine motor skill capacity for tasks involving these same digits.

We hypothesized that reduced D2/D3 separation distance in S1

would be associated with worsened symptomatology (particularly

paraesthesia), poor somatosensory discrimination accuracy, and

reduced fine motor skill performance for median nerve innervated

digits in subjects with CTS.

Materials and methods

Subjects
Male and female CTS and healthy control subjects, aged 20–60 years,

were enrolled. Subjects in both groups responded to study advertise-

ment or, for subjects with CTS, recruitment from patient data regis-

tries, and eligible healthy control subjects were chosen in preference to

match the evolving age and gender distribution of the patient cohort

in the study. Subjects with CTS needed to have a history of pain and/

or paraesthesia in median nerve innervated territories, 43 months

duration. All subjects were examined for eligibility by a physiatrist at

Spaulding Rehabilitation Hospital, which included a physical exam for

Phalen’s (Phalen, 1966) and Durkan’s sign (Durkan, 1991), and testing

of median and ulnar sensory nerve conduction velocities (Cadwell

Sierra EMG/NCS Device). For subjects with CTS, inclusion criteria for

nerve conduction velocities consisted of 43.7 ms sensory latency for

median nerve or 40.5 ms sensory latency compared to ulnar sensory

conduction. Subjects diagnosed with bilateral CTS were tested on the

more affected hand.

Exclusion criteria for both groups consisted of contraindications

to MRI, history of diabetes mellitus, cardiovascular, respiratory, or

neurological illnesses, rheumatoid arthritis, wrist fracture with

direct trauma to median nerve, current usage of prescriptive

opioid medication, severe thenar atrophy, previous acupuncture

treatment for CTS, nerve entrapment other than median nerve,

cervical radiculopathy or myelopathy, generalized peripheral neur-

opathy, blood dyscrasia or coagulopathy or current use of antic-

oagulation therapy. Symptom severity and functional status were

evaluated with the Boston Carpal Tunnel Syndrome Questionnaire

(BCTSQ; Levine et al., 1993), where pain was evaluated as the

average of ratings on the first through fifth questions, whereas

paraesthesia was evaluated as the average of ratings on the sixth

through 10th questions.

All study protocols were approved by Massachusetts General

Hospital and Partners Human Research Committee and all subjects

provided written informed consent.

Psychomotor performance testing
Psychomotor performance testing was completed using the BTE work

simulator with the pinch strength attachment (Fig. 1A; BTE

Technologies Simulator II, BTE Technologies) adapted with laptop

monitoring and custom software using the Labview platform (ver.7,

National Instruments). The task was made to replicate previously pub-

lished psychomotor performance tasks, which demonstrated significant

deficits in subjects with CTS (Jeng et al., 1994). Subjects first per-

formed two repetitions of a maximum voluntary contraction using

pinching of their thumb and index finger on the more affected

hand. Subjects were in a seated position with the arm bent at 90�

and elbow supported on an armrest. The psychomotor performance

Figure 1 Functional deficits in subjects with CTS were assessed with (A) psychomotor performance testing using the BTE Technologies

Simulator II adapted in-house for visuomotor pinch/release tasks, and (B) sensory discrimination testing using the CM4 (Cortical Metrics,

LLC), a portable four-finger vibrotactile stimulator using voice coil technology.
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task used the higher maximum voluntary contraction value from the

two repetitions and then set a ‘high’ (25% maximum voluntary con-

traction) and ‘low’ (2% maximum voluntary contraction) threshold for

each subject. The psychomotor performance task was a pinch and

release performance task which tested subjects’ speed and accuracy

at this pinch and release manoeuvre. Subjects were given visual feed-

back and were instructed to pinch stronger than the high threshold

and release below the low threshold as quickly as possible. Subjects

were able to practice the task twice before testing. The entire task was

8 s in duration, was performed twice, and the number of successful

pinch and release manoeuvres per second was calculated from the

final 5 s of each test. Accuracy was assessed by also calculating the

overshoot and undershoot forces beyond the high and low thresholds,

respectively. We also calculated the percentage of pinch/release cycles

completed successfully, to evaluate if speed calculations may have

been adversely affected by differences in accuracy between groups.

Sensory discrimination testing
During an experimental session, before MRI scanning, the subject was

seated comfortably in a chair with one arm resting on an armrest

attached to the head unit of a portable four-site vibrotactile stimulator

(Fig. 1B; CM4, Cortical Metrics, LLC; for full description see Holden

et al., 2012). The subject placed the hand over the tactile stimulator

with the volar surface of each finger’s (D2 to D5) distal phalanx on

5 mm diameter probe tips. In the case of subjects with CTS, the more

affected hand was used. The probe tips were independently controlled

and the stimulator was capable of delivering a wide range of frequen-

cies and amplitudes.

Subjects were evaluated with a four-finger forced choice protocol.

This protocol was composed of four trials per digit (16 trials total).

During each trial, a short duration stimulus (amplitude: 100 mm, fre-

quency: 25 Hz, duration: 500 ms) was delivered randomly to one of

the four digits. Subjects were instructed to press a key corresponding

to the digit stimulated immediately after the stimulus was detected.

Each trial, other than the first trial, began 2 s after subject response of

the previous trial. Response time (from onset of stimulus to subject

response) and response accuracy (percentage of correct trials) for D2

and D3 (median nerve innervated), as well as D5 (ulnar nerve inner-

vated) were recorded.

Somatosensory cortical mapping with
functional magnetic resonance imaging
Following sensory discrimination testing, subjects underwent MRI

evaluation on a 3.0 T Siemens Trio equipped with 32-channel head

coil. A structural MRI scan used for localization was followed by

functional MRI evaluation. Structural MRI data were acquired with a

multi-echo MPRAGE T1-weighted pulse sequence (repetition

time = 2530 ms, echo time 1/echo time 2 = 1.64/30.0 ms, inversion

time = 1200 ms, flip angle = 7�, field of view = 256 � 256,

slices = 176, sagittal acquisition, spatial resolution = 1 � 1 � 1 mm3).

Event-related functional MRI was used in conjunction with vibrotactile

stimulation at three different digits (D2, D3 and D5). A separate scan

run was performed for each digit and the order of stimulation was

pseudo-randomized. Functional MRI data were acquired using a gra-

dient echo blood oxygen level-dependent T2*-weighted pulse se-

quence adapted for improved spatial resolution (repetition time/echo

time = 2000/30 ms, field of view = 200 � 200 mm, 32 coronal slices,

voxel size = 2.1 � 2.1 � 2.5 mm, flip angle = 90�). Slices were oriented

roughly parallel to the central sulcus contralateral to the stimulated

digit, maximizing spatial resolution along the dimension of any ex-

pected shifts along the post-central gyrus. Vibrotactile stimulation

was provided by a magnetic resonance-compatible device constructed

in-house in conjunction with a shell provided by Cortical Metrics. The

device contained four piezoelectric transducers (one for each digit,

T220-A4NM-303 Y, Piezo Systems Inc.) fitted with roughened edge

cylindrical plastic probes (5 mm diameter). Stimulation was controlled

by software coded in-house (Labview 7.1, National Instruments) in

conjunction with relay integrated circuitry and an analogue signal gen-

erator (HM8030_5, HAMEG Instruments). The piezoelectric trans-

ducers were driven by a sine-wave signal at 30 Hz, which was

amplified to achieve a piezoelectric element deflection of 0.51 mm.

Each one of the three digits (D2, D3 and D5) on the more affected

hand was stimulated in separate runs with an event-related design

comprised of 27 2 s duration stimulation events separated by a rando-

mized interstimulus interval (6-12 s, total scan time = 306 s). Subjects

lay supine in the scanner with earplugs to attenuate gradient noise.

Subjects were informed they would receive intermittent finger stimu-

lation and instructed to close their eyes and focus their attention on

the stimulated finger. Following scanning, subjects were asked to

report which finger was stimulated and the intensity of stimulation

on a scale of 0 (no sensation) to 10 (very strong but not painful).

Data analysis
Demographic, clinical assessment, sensory discrimination testing data,

and psychomotor performance testing data were evaluated for nor-

mality (Shapiro-Wilk test) and for equal variance between groups

(Levene’s test). These data were then contrasted between CTS and

healthy control subjects using either a Student’s t-test or Mann-

Whitney U-test (if either distribution normality or intergroup variance

equality was not found) at a significance level of P5 0.05 (SPSS ver-

sion 20). For assessment of sensory discrimination response time, sub-

jects whose response accuracy was worse than 2 standard deviations

(SD) from the mean were excluded to improve data quality.

Additionally, response times were computed from trials in which sub-

jects responded correctly (i.e. indicated the correct digit). The stimulus

intensity rated for vibrotactile digit stimulation during the functional

MRI scan was contrast between groups with a Student’s t-test. In

order to clarify whether hand dominance, and its relation to the

tested hand, affected any differences in sensory discrimination be-

tween groups, we also performed an additional subgroup analysis

with CTS and healthy control subjects who were both right hand

dominant and were tested on their right hand.

Functional MRI data were first registered to each subject’s structural

MRI data [bbregistration (Greve and Fischl, 2009), Freesurfer: v.5.1].

Slice timing correction, motion correction, high pass filtering (cut-off

period = 90 s) and slight spatial Gaussian smoothing (full-width at half-

maximum = 1 mm, i.e. below voxel resolution, FSL: v.4.1) were per-

formed on the volumetric space data during preprocessing. Spatial

smoothing in volume space was minimal to limit inadvertent cross-

sulcus spread in functional MRI signal, but was still used as (i)

volume to surface mapping was completed using an intersection

plane defined as the grey/white matter boundary surface (mri_vol2-

surf, Freesurfer), which may be slightly offset from the peak activation

voxel; and (ii) our region of interest analysis extracted values from

individual subject maps (i.e. before more robust surface smoothing

for group analyses, see below), and smoothing is known to enhance

signal-to-noise ratio [spatial smoothing acts as a low pass spatial fre-

quency filter (Petersson et al., 1999)]. Preprocessed functional MRI

data from each brain voxel were then analysed using a general

linear model (GLM). This GLM was univariate and the event timing
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design, convolved with a canonical double-gamma haemodynamic re-

sponse function, served as explanatory variable (Feat, FSL).

We then performed region of interest analyses using subjects’ digit

stimulation maps and an anatomical post-central gyrus label for

Brodmann area 3b (BA3b label, from aparc.annot.2009, Freesurfer)

intersected with an unbiased (across all CTS and healthy control sub-

jects) group map cluster corrected for multiple comparisons (z = 2.3,

P5 0.05) for each digit. For each subject’s digit statistical map, the

location of the peak vertex of the most significant activation cluster

within this region of interest was extracted (mri_surfcluster,

Freesurfer). The surface distance between pairs of peak vertices for

these D2, D3, and D5 statistical maps (fsaverage, Freesurfer) was

calculated on each subject’s Freesurfer brain surface using an edge

cost and Dijkstra’s algorithm for surface distance (mris_pmake,

Freesurfer). Hence, distance measurement respected surface topog-

raphy (i.e. not Euclidean distance between two voxels). These dis-

tances were then contrasted between CTS and healthy control

subjects with a Student’s t-test.

Correlations between clinical assessment, psychomotor performance,

sensory discrimination, and functional MRI testing metrics which dif-

fered between groups were also calculated (SPSS version 20).

To calculate group functional MRI response maps, the resultant par-

ameter estimates and variances for each digit on the single subject

level were projected on to the average surface brain (fsaverage,

Freesurfer) and smoothed on the spherical cortical surface (full-width

at half-maximum = 5 mm) (mri_vol2surf, mri_surf2surf, Freesurfer).

Subjects with CTS whose more affected hand was the left and, thus,

experienced finger stimulation on the left hand, had their functional

and structural data flipped across the mid-sagittal plane to perform

group analyses with right hand-affected subjects. Accurate registration

was ensured by visualization (tkmedit, tkregister, Freesurfer). Group

maps were created for CTS and healthy control subjects and cluster-

corrected for multiple comparisons (z = 2.3, P5 0.05).

Results

Demographic and clinical assessments
A total of 63 subjects with CTS (48.9 � 9.7 years old, mean � SD,

52 females) and 28 age-matched healthy control subjects

(48.4 � 9.9 years old, 21 females) were enrolled. Although

median nerve sensory velocity was significantly slower in CTS

compared to healthy control subjects (CTS: 37.3 � 7.2 m/s,

healthy control subjects: 53.6 � 5.3 m/s, mean � SD P5 0.001),

ulnar nerve sensory velocity was not significantly different (CTS:

55.7 � 6.7 m/s, healthy control subjects: 55.6 � 5.3 m/s) (Table

1). Further, although median nerve motor latency was significantly

longer in CTS compared to healthy control subjects (CTS:

5.0 � 1.3 ms, healthy control subjects: 3.3 � 0.4 ms, mean � SD

P50.001), ulnar nerve motor latency was not significantly differ-

ent (CTS: 2.9 � 0.3 ms, healthy control subjects: 3.0 � 0.3 ms)

(Table 1). The overall BCTSQ symptom severity scale and func-

tional status scale scores were 2.7 � 0.7, and 2.1 � 0.8, respect-

ively (Table 1). Within the BCTSQ symptom severity scale, subjects

reported moderate pain and paraesthesia (2.6 � 0.9 and

3.0 � 0.7, mean � SD, respectively on the BCTSQ scale of 1 to

5). Self-reported symptom duration was 8.7 � 8.7 years

(mean � SD, Table 1).

BCTSQ pain and paraesthesia ratings were positively correlated

(r = 0.43, P50.001). Thus, subjects with greater pain also re-

ported greater paraesthesia. The BCTSQ symptom severity score

was significantly correlated with the BCTSQ functional status score

(r = 0.57, P5 0.001).

In order to clarify whether hand dominance, and its relation to

the tested hand, affected any sensory discrimination or psycho-

motor performance differences between groups, we also per-

formed an additional subgroup analysis with CTS and healthy

control subjects who were both right hand-dominant and were

tested on their right hand (CTS: n = 38, 34 females, healthy con-

trol subjects: n = 27, 21 females, sex distribution was not signifi-

cantly different between these subgroups, chi-square test)

(Supplementary Table 1). The subgroups still differed significantly

in terms of median nerve sensory velocity (CTS: 37.3 � 7.4 m/s,

healthy control subjects: 53.4 � 5.4 m/s, mean � SD, P5 0.001)

and median motor latency (CTS: 5.1 � 1.4 ms, healthy control

subjects: 3.3 � 0.4 ms, P5 0.001, Mann Whitney U-test)

(Supplementary Table 1).

Psychomotor performance testing
Due to some data loss, we analysed psychomotor performance

data from 58 subjects with CTS and 24 healthy control subjects.

Table 1 Demographics and clinical assessments

Healthy control
(n = 28, 21 female)

Carpal tunnel syndrome
(n = 63, 52 female)

P-value

Age (years) 48.4 � 9.9 48.9 � 9.7 n.s.

Symptom duration (years) n/a 8.7 � 8.7 n/a

Nerve conduction study

Median nerve sensory velocity (m/s) 53.6 � 5.3 37.3 � 7.2 _0.001

Ulnar nerve sensory velocity (m/s) 55.6 � 5.3 55.7 � 6.7 n.s.

Median nerve motor latency (ms) 3.3 � 0.4 5.0 � 1.3 _0.001

Ulnar nerve motor latency (ms) 3.0 � 0.3 2.9 � 0.3 n.s.

Boston carpal tunnel syndrome questionnaire

Symptom severity score (1–5) n/a 2.7 � 0.7 n/a

Function status score (1–5) n/a 2.1 � 0.8 n/a

Data is shown as mean � SD. n.s. = not significant; n/a = not applicable.
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Psychomotor performance data were lost to device failure (CTS:

n = 5, healthy control subjects: n = 4) (Supplementary Table 2).

Pinch maximum voluntary contraction was significantly reduced

in CTS compared to healthy control subjects (CTS: 53.6 � 18.2

N, healthy control subjects: 71.7 � 24.1 N, mean � SD,

P50.01, Table 2). The number of successful pinch and release

manoeuvres during testing was significantly reduced in CTS

compared to healthy control subjects [CTS: 3.3 � 1.2 times/s

(Hz), healthy control subjects: 4.0 � 1.6 Hz, mean � SD,

P50.05, Fig. 2A and Table 2]. We also evaluated accuracy in

completing this task. The pinch overshoot and release under-

shoot were not significantly different between groups (over-

shoot; CTS: 15.6 � 9.7 N, healthy control subjects: 13.4 � 7.4

N; undershoot: CTS: �5.2 � 6.7 N, healthy control subjects:

�3.0 � 3.0 N mean � SD, Table 2). Additionally, the percentage

of successful pinch and release manoeuvres during testing

was also not significantly different between groups (CTS:

98.5 � 3.8%, healthy control subjects: 97.3 � 4.7%,

mean � SD, Table 2), suggesting that group differences in the

number of successful pinch and release manoeuvres could, in

fact, be attributed to task speed.

To examine whether handedness impacted these results, we

repeated these analyses on a matched subset of subjects who

were tested on their right hand and were right hand-dominant.

We again found significant differences between CTS and healthy

control subjects in terms of maximum voluntary contraction (CTS:

55.0 � 17.3 N, healthy control subjects: 70.6 � 24.0 N,

mean � SD, P50.01, Supplementary Table 1) and the number

of pinch and release manoeuvres [CTS: 3.2 � 1.3 times/s (Hz),

healthy control subjects: 3.8 � 1.2 Hz, mean � SD, P5 0.05,

Supplementary Table 1]. There were again no significant differ-

ences in overshoot, undershoot, or percentage of successful pinch

and release manoeuvres between CTS and healthy control subject

subgroups.

For subjects with CTS, the number of successful pinch and re-

lease manoeuvres was significantly correlated with the median

nerve (averaged D2 and D3) sensory velocity (r = 0.31,

P50.05) and median motor latency (r = �0.27, P50.05).

Figure 2 Psychomotor performance deficits in CTS. (A) The number of pinch and release manoeuvres per second was significantly

reduced in CTS compared to healthy control subjects (HC) [CTS: 3.3 � 1.2 times/s (Hz), healthy control subjects: 4.0 � 1.6 Hz,

mean � SD P50.05]. (B) The number of pinch and release manoeuvres was positively correlated with D2/D3 separation distance in

contralateral S1 of the brain (r = 0.30, P50.05). Thus, closer D2/D3 separation distance was associated with reduced fine motor skill

performance during psychomotor performance testing.

Table 2 Psychomotor performance testing

Healthy control
(n = 24, 17 female)

Carpal tunnel syndrome
(n = 58, 48 female)

P-
value

Maximum voluntary contraction (N)a 71.7 � 24.1 53.6 � 18.2 _0.01

Number of pinch and release (Hz)a 4.0 � 1.6 3.3 � 1.2 _0.05

Overshoot (N)a 13.4 � 7.4 15.6 � 9.7 n.s.

Undershoot (N)a �3.0 � 3.0 �5.2 � 6.7 n.s.

Rate of successful pinch & release (%)a 97.3 � 4.7 98.5 � 3.8 n.s.

Data is shown as mean � SD. n.s. = not significant. aMann Whitney U-test.
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Thus slower velocities and longer latencies were associated with

reduced ability to pinch and release during testing. No other sig-

nificant correlations between psychomotor performance and clin-

ical metrics were noted.

Sensory discrimination testing
Data were lost from a few subjects. We analysed sensory discrim-

ination data from 54 patients with CTS and 24 healthy control

subjects (Supplementary Table 2). Sensory discrimination data

were lost because of time constraints (CTS: n = 6, healthy control

subjects: n = 3), lack of compliance (CTS: n = 1, healthy control

subjects: n = 0), drop out (CTS: n = 1, healthy control subjects:

n = 1), or device failure (CTS: n = 1). For the four-finger forced

choice protocol, subjects with CTS demonstrated increased

response time for median nerve (averaged D2 and D3, CTS:

0.92 � 0.10 s, healthy control subjects: 0.85 � 0.12 s,

mean � SD, P50.05, Table 3), but not ulnar nerve (D5: CTS:

0.89 � 0.10 s, healthy control subjects: 0.86 � 0.12 s,

mean � SD) innervated digits. Discrimination accuracy (percentage

of correct trials) for median nerve innervated digits (averaged D2

and D3 trials) was significantly lower in CTS compared to healthy

control subjects (CTS: 90.4 � 12.4%, healthy control subjects:

98.4 � 4.2%, mean � SD, P5 0.001, Mann-Whitney U-test,

Fig. 3A and Table 3). Accuracy for D5 did not differ between

groups (CTS: 98.2 � 8.2%, healthy control subjects:

100.0 � 0.0%, mean � SD, Mann-Whitney U-test, Fig. 3A and

Table 3). To examine whether handedness impacted these results,

we repeated these analyses on a matched subset of subjects who

were tested on their right hand and were right hand-dominant.

Figure 3 Sensory discrimination deficits in CTS. (A) Discrimination accuracy (percentage of correct trials) for median nerve innervated

digits (D2 and D3) was significantly lower in CTS compared to healthy control subjects (HC) (CTS: 90.4 � 12.4%, healthy control subjects:

98.4 � 4.2%, mean � SD P5 0.001, Mann-Whitney U-test). Accuracy for D5 did not differ between groups (CTS: 98.2 � 8.2%, healthy

control subjects: 100.0 � 0.0%, mean � SD Mann-Whitney U-test). (B) For subjects with CTS who did make errors, D2 and D3 accuracy

was positively correlated with D2/D3 separation distance in contralateral S1 of the brain (r = 0.50 P5 0.05). Thus, closer D2/D3 sep-

aration distance was associated with reduced accuracy in discriminating median nerve innervated digits (D2 and D3) in four-finger forced

choice sensory discrimination testing.

Table 3 Sensory discrimination testing

Healthy control
(n = 24, 19 female)

Carpal tunnel syndrome
(n = 54, 45 female)

P-value

Response time: four-finger forced choice

Average D2 and D3 (s) 0.85 � 0.12 0.92 � 0.10 _0.05

D5 (s) 0.86 � 0.12 0.89 � 0.10 n.s.

Accuracy: four-finger forced choice

Average D2 and D3 (%)a 98.4 � 4.2 90.4 � 12.4 _0.001

D5 (%)a 100.0 � 0.0 98.2 � 9.2 n.s.

n.s. = not significant. aMann Whitney U-test.
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We again found a significant difference between these subgroups

of CTS and healthy control subjects in terms of discrimination ac-

curacy (P5 0.05, Mann Whitney U-test) and a trend in response

time (P = 0.07) for median nerve innervated digits (averaged D2

and D3, see Supplementary Table 1).

The averaged D2 and D3 response time in the four-finger

forced choice protocol was significantly correlated with BCTSQ

paraesthesia (r = 0.33, P50.05). No other correlations between

sensory discrimination testing metrics and psychomotor perform-

ance or clinical metrics were noted.

Somatosensory cortical mapping with
functional magnetic resonance imaging
Due to data loss, we analysed functional MRI data from a total of

57 subjects with CTS and 26 healthy control subjects

(Supplementary Table 2). Some functional MRI data were lost

due to claustrophobia (CTS: n = 1), sleep during scan (CTS:

n = 1), excessive head motion (42 mm) during scanning (CTS:

n = 2), or subject drop out (healthy control subjects: n = 2). For

a few subjects, we noted paradoxical blood oxygen level-depend-

ent signal reduction in contralateral S1 hand area in response to

finger stimulation (CTS: n = 2). These data were analysed and dis-

cussed separately (Supplementary Fig. 1). Vibrotactile stimulation

produced similar sensation intensity for CTS and healthy control

subjects (5.0 � 1.2, 4.3 � 1.7 on a scale of 0–10, respectively).

Group functional MRI maps demonstrated that vibrotactile stimu-

lation produced robust activation in contralateral primary somato-

sensory cortex (S1) and bilateral secondary somatosensory (S2),

primary motor, premotor, and insular cortices (Fig. 4).

Deactivation was noted in ipsilateral S1 for both CTS and healthy

control subjects. Within contralateral S1, there appeared to be

more overlapped activation in the group maps for CTS compared

to healthy control subjects (Fig. 5). In fact, individual analysis

found that cortical separation distance was significantly lower in

CTS compared to healthy control subjects for D2/D3 (CTS:

6.5 � 3.8 mm, healthy control subjects: 9.1 � 3.9 mm,

mean � SD, P5 0.01) and D2/D5 (CTS: 10.9 � 4.3 mm, healthy

control subjects: 14.1 � 4.2 mm, mean � SD, P50.01; Fig. 6 and

Table 4). However, the D3/D5 separation distance was not sig-

nificantly different between groups (CTS: 6.5 � 3.8 mm, healthy

control subjects: 7.7 � 4.0 mm, mean � SD, Fig. 6 and Table 4).

The D2/D3 cortical separation distance was negatively corre-

lated with the BCTSQ symptom severity score (r = �0.30,

P50.05) and the BCTSQ paraesthesia subscore (r = �0.31,

P50.05). Thus, reduced separation between D2 and D3 cortical

representations was associated with greater symptom severity,

particularly paraesthesia. The D2/D3 cortical separation distance

was positively correlated with the number of pinch and release

manoeuvres (r = 0.30, P50.05, Fig. 2B). Thus, closer D2/D3 sep-

aration distance was associated with reduced ability to pinch and

release during psychomotor performance testing. A trending

Figure 4 Group functional MRI maps demonstrated that vibrotactile stimulation produced robust activation in contralateral primary

somatosensory cortex (S1) and bilateral secondary somatosensory (S2), primary motor, premotor, and insular cortices.
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negative correlation was also found between D2/D3 cortical sep-

aration distance and response time in the sensory discrimination

testing for D2 and D3 (r = �0.26, P = 0.08).

Although in general, errors were unusual in the sensory discrim-

ination protocol (�90% accuracy rate), for subjects with CTS who

made errors, the average D2 and D3 accuracy was positively cor-

related with the D2/D3 cortical separation distance (r = 0.50,

P50.05, Fig. 3B). Thus, smaller D2/D3 separation distance was

associated with lower accuracy in discriminating median nerve

innervated digits (D2 and D3) in the sensory discrimination testing.

No other significant correlations between functional MRI and sen-

sory discrimination, psychomotor performance, or clinical metrics

were noted.

Figure 5 Group-level activation clusters in contralateral S1 for vibrotactile stimulation. Larger and more overlapped activation clusters

were noted for CTS compared to healthy control subjects (HC).

Figure 6 Subject-level evaluation of somatotopy in contralat-

eral S1. Cortical separation distance was significantly lower in

CTS compared to healthy control subjects (HC) for D2/D3 (CTS:

6.5 � 3.8 mm, healthy control subjects: 9.1 � 3.9 mm,

mean � SD P5 0.01) and D2/D5 (CTS: 10.9 � 4.3 mm, healthy

control subjects: 14.1 � 4.2 mm, mean � SD P50.01).

However, the D3/D5 separation distance was not significantly

different between groups (CTS: 6.5 � 3.8 mm, healthy control

subjects: 7.7 � 4.0 mm, mean � SD).

Table 4 Interdigit cortical representation distance in pri-
mary somatosensory cortex

Healthy
control
(n = 25,
18 female)

Carpal
tunnel
syndrome
(n = 50, 42 female)

P-
value

D2/D3 (mm) 9.1 � 3.9 6.5 � 3.8 _0.01

D2/D5 (mm) 14.1 � 4.2 10.9 � 4.3 _0.01

D3/D5 (mm) 7.7 � 4.0 6.5 � 3.8 n.s.

Data is shown as mean � SD. n.s. = not significant; n/a = not applicable.
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Discussion
This well-powered cross-sectional study evaluated the clinical

symptomatology, functional deficits, and brain neuroplasticity in

subjects with CTS. We were able to show that the cortical repre-

sentations in contralateral S1 for median nerve innervated digits

were overlapped in CTS, leading to reduced D2/D3 separation

distance compared to healthy control subjects. This result corro-

borated our previous preliminary multi-modal neuroimaging find-

ings (Napadow et al., 2006; Dhond et al., 2012), but with a much

larger sample size. In addition, we have now linked the cortical

remodelling with symptomatology and functional deficits in CTS.

Greater symptom, and particularly paraesthesia severity was asso-

ciated with reduced separation distance between the D2 and D3

cortical representations in contralateral S1. Also, both fine motor

skill and sensory discrimination performance, which were reduced

in CTS compared to healthy control subjects, were correlated with

the D2/D3 somatotopic separation distance. Specifically D2/D3

distance was correlated with (i) the number of pinch/release man-

oeuvres performed in a pinch grip task using median nerve inner-

vated digits; and (ii) sensory discrimination accuracy for D2 and

D3. In summary, reduced D2/D3 cortical separation distance was

associated with worse symptomatology (particularly paraesthesia),

reduced fine motor skill performance, and worse sensory discrim-

ination accuracy for median nerve innervated digits. Importantly,

many of these differences and correlations were specific to median

nerve innervated digits and were not significant for functional and

functional MRI metrics involving ulnar nerve innervated D5. Thus,

our study demonstrated that S1 neuroplasticity for median nerve

innervated digits is indeed maladaptive and underlies the func-

tional deficits seen in CTS.

Contracted D2/D3 distance is likely due to persistent multi-digit

paraesthesia localized to median nerve innervated digits (D1 to

D4) in CTS. Such paraesthesia represent afferent impulses with

greater temporal coherence than is normally experienced from

these anatomically distinct digits, and this temporal synchrony

leads to Hebbian mechanisms of synaptic strengthening and cor-

tical reorganization (Hebb, 1949). The close association between

paraesthesia and the blurring of cortical representation for affected

digits was underscored by the significant correlation between par-

aesthesia intensity and D2/D3 separation distance. This afferent

driven reorganization is similar to that seen for experimental ma-

nipulations such as syndactyly, or the skin fold fusion of adjacent

digits (Clark et al., 1988; Allard et al., 1991), and multi-digit syn-

chronous co-activation (Wang et al., 1995; Godde et al., 1996;

Pilz et al., 2004).

Our pilot functional MRI study also found that the separation

distance between contralateral S1 cortical representations for D2

and D3 was reduced in CTS (Napadow et al., 2006). That study

was performed with 13 subjects with CTS, whereas our current

study, performed with 63 subjects with CTS, used improved func-

tional MRI spatial resolution and more automated representation

allocation for each subject’s digit activation map. Thus, reduced

D2/D3 cortical separation has now been corroborated in a larger

study sample and in a separate magneto-encephalography study

(Napadow et al., 2006; Dhond et al., 2012), underscoring the

veracity of this brain-based neuroimaging metric for characterization

of individuals suspected of CTS. Moreover, our pilot functional MRI

study found that although D2 was shifted closer to D3, the location

of the D3 and D5 cortical representations did not differ between CTS

and healthy control subjects (Napadow et al., 2006). Similarly, our

current study found that although D2/D3 and D2/D5 separation

was contracted in subjects with CTS compared to healthy control

subjects, the D3/D5 separation distance did not differ between

groups, also confirming our prior results.

Additionally, we sought to evaluate how S1 remodelling relates

to functional deficits in CTS. We evaluated several functional

measures, including somatosensory discrimination and psycho-

motor performance capacity. Sensory discrimination relates directly

to somatotopy in that subjects are able to distinguish tactile stimuli

on different body locations due to the separation in cortical rep-

resentations evident in contralateral S1. Alteration in somatotopic

organization occurs in response to a number of different states of

altered afferent input. Syndactyly, digit amputation and synchron-

ous digit stimulation have been demonstrated to lead to altered

digit representations in S1 of non-human primates (Clark et al.,

1988; Allard et al., 1991). It appears that similar cortical remodel-

ling occurs as a result of CTS. Such blurred cortical representations

for median nerve innervated digits are maladaptive, as blurring

compromises the ability to discriminate inputs projecting to adja-

cent digits. This, in turn, could impact sensorimotor integration

and functional performance. In the four-finger forced choice dis-

crimination task used in this study, we found that subjects with

CTS demonstrated increased response time and diminished accur-

acy for median nerve, but not ulnar nerve innervated digits.

Aberrant sensory discrimination has been previously reported in

subjects with CTS, including impaired gap discrimination (Jeng and

Radwin, 1995). Although finger agnosia is one of the signs of

Gerstmann’s syndrome, which has been ascribed to angular

gyrus lesions (Rusconi et al., 2010), or, more recently, parietal

white matter damage (Rusconi et al., 2009), subjects with CTS

demonstrate evidence of finger agnosia without other aspects of

this syndrome (e.g. agraphia, acalculia). We also found that dis-

crimination accuracy for median nerve innervated digits was asso-

ciated with subjects’ D2/D3 separation distance, suggesting that

primary finger agnosia may be localized to the parietal lobe and is

a result of maladaptive S1 reorganization. Interestingly, in healthy

adults stimulated by tactile stimuli at sensory threshold, localization

errors were distributed preferentially to fingers adjacent to the

stimulated finger (Braun et al., 2005), suggesting that some over-

lap in S1 cortical representations for adjacent fingers exists even in

healthy adults. In fact, synchronous stimulation of adjacent digits

in healthy adults can lead to closer cortical representations, and

mislocalizations on a behavioural task (Pilz et al., 2004). Such

synchronous stimulation may be analogous to diffuse multi-

finger paraesthesia in CTS and, ultimately, lead to blurring of

D2/D3 S1 representations, which likely supports these subjects’

worsened sensory discrimination performance. Additionally, mal-

adaptive somatotopic reorganization and somatosensory misloca-

lization appears to also occur in other pain subjects. Mislocalization

has recently been reported for patients with chronic low back pain

(Wand et al., 2013). Interestingly, this chronic pain condition has

previously been reported to manifest in altered S1 somatotopy,
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specifically by a medial shift of the low back representation (Flor

et al., 1997; Lloyd et al., 2008). Although low back pain is not

typically characterized by paraesthesia, the diffuse nature of pain

in these patients may also supply the necessary synchronous af-

ferent inputs to shift or remodel S1 cortical representations.

Psychomotor performance reflects sensorimotor integration, and

previous studies have found that subjects with CTS demonstrated

impaired pinch grip strength and pinch/release speed in a visually

guided task (Jeng et al., 1994, 1997). In our study, we replicated

these results, finding reduced pinch strength and reduced number

of pinch/release movements per unit time performed by subjects

with CTS. The percentage of accurately performed pinch/release

cycles, as well as overshoot and undershoot, did not differ be-

tween groups, suggesting that it was, in fact, speed and not ac-

curacy that was affected in the subjects with CTS. On the other

hand, accuracy may be disrupted when fine motor tasks need to

occur within a fixed time, and more sophisticated, multi-finger

protocols have been shown to detect sensorimotor integration

deficits in accuracy for subjects with CTS (Zhang et al., 2011,

2013). Importantly, the number of pinch/release movements

was correlated with D2/D3 separation distance, suggesting that

S1 neuroplasticity also impacts sensorimotor integration, and ul-

timately functional deficits in fine motor skill performance in sub-

jects with CTS (Fernandez-de-Las-Penas et al., 2009b; de la Llave-

Rincon et al., 2011). Thus, these deficits may be due to the am-

biguity of signal localization for afference coming from receptors

on median nerve innervated digits.

Although our finding of contracted D2/D3 cortical separation

distance in CTS corroborated our previous pilot functional MRI

study, some differences with our prior study were also noted.

For instance, the pilot study found that median nerve innervated

digits had larger areas of activation in contralateral S1 for CTS

compared to healthy control subjects whereas our current study

did not find the activation area difference to be statistically sig-

nificant. This discrepancy might be due to differences in the mode

of somatosensory stimulation and stimulus design used in both

studies. Our pilot study used 100 Hz electrical stimulation with a

1 minute duty cycle stimulus block design, whereas the current

study used 30 Hz vibrotactile stimulation with a 2 s duration event-

related design. Activation area (i.e. spread of activation around the

peak response location) may be influenced by adaptation, which

would be more prominent in a block design, whereas somatotopy

(i.e. the location of peak activation) may be less sensitive to stimu-

lus duration. Additionally, electrical stimulation in our pilot study

produced a relatively strong stimulus, compared to the moderately

(�5/10) strong ratings attributed by our subjects to the vibrotac-

tile stimulus. Importantly, there was no difference in sensation

intensity between CTS and healthy control subjects; thus, neither

attention level nor stimulus intensity were likely to have influenced

differences between groups.

Several limitations of our study should also be noted. First, due

to time constraints we did not evaluate somatotopy or activation

area for all digits of the hand. Evaluation of the ring finger (D4),

for example, may also prove interesting as this finger is both

median and ulnar nerve innervated. Another potential limitation

was the asymmetric design (i.e. unequal sample size in the two

groups), which stemmed from the anticipated greater variances in

the CTS population. We tried to mitigate any statistical shortcom-

ings of this design by incorporating non-parametric tests when

non-normal distributions (Shapiro-Wilk test) or unequal variances

(Levene’s test) were found.

In conclusion, S1 neuroplasticity is indeed maladaptive in sub-

jects with CTS, and it seems that this maladaptive neuroplasticity

underlies the functional deficits seen in CTS. Reduced D2/D3 cor-

tical separation distance was associated with worse symptomatol-

ogy (particularly paraesthesia), reduced fine motor control

performance, and worse sensory discrimination accuracy for

median nerve innervated digits.

Funding
This work was supported by National Center for Complementary

and Alternative Medicine (NCCAM), National Institutes of Health

[R01-AT004714, R01-AT004714-02S1, P01-AT002048], as well

as the National Centre for Research Resources (NCRR)

[P41RR14075, S10RR021110].

Supplementary material
Supplementary material is available at Brain online.

References
Allard T, Clark SA, Jenkins WM, Merzenich MM. Reorganization of som-

atosensory area 3b representations in adult owl monkeys after digital

syndactyly. J Neurophysiol 1991; 66: 1048–58.

Braun C, Ladda J, Burkhardt M, Wiech K, Preissl H, Roberts LE. Objective

measurement of tactile mislocalization. IEEE Trans Biomed Eng 2005;

52: 728–35.

Clark SA, Allard T, Jenkins WM, Merzenich MM. Receptive fields in the

body-surface map in adult cortex defined by temporally correlated

inputs. Nature 1988; 332: 444–5.

de la Llave-Rincon AI, Fernandez-de-Las-Penas C, Perez-de-Heredia-

Torres M, Martinez-Perez A, Valenza MC, Pareja JA. Bilateral deficits

in fine motor control and pinch grip force are not associated with

electrodiagnostic findings in women with carpal tunnel syndrome.

Am J Phys Med Rehabil 2011; 90: 443–51.

Dhond R, Ruzich E, Witzel T, Maeda Y, Malatesta C, Morse L, et al.

Spatiotemporal mapping cortical neuroplasticity in carpal tunnel syn-

drome. Brain 2012; 135 (Pt 10): 3062–73.
Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ,

Stefan H, et al. Alteration of the somatosensory cortical map in per-

ipheral mononeuropathy due to carpal tunnel syndrome. Neuroreport

2000; 11: 3925–30.

Durkan JA. A new diagnostic test for carpal tunnel syndrome. J Bone

Joint Surg Am 1991; 73: 535–8.

Fernandez-de-las-Penas C, de la Llave-Rincon AI, Fernandez-Carnero J,

Cuadrado ML, Arendt-Nielsen L, Pareja JA. Bilateral widespread mech-

anical pain sensitivity in carpal tunnel syndrome: evidence of central

processing in unilateral neuropathy. Brain 2009a; 132 (Pt 6): 1472–9.

Fernandez-de-Las-Penas C, Perez-de-Heredia-Torres M, Martinez-

Piedrola R, de la Llave-Rincon AI, Cleland JA. Bilateral deficits in fine

motor control and pinch grip force in patients with unilateral carpal

tunnel syndrome. Exp Brain Res 2009b; 194: 29–37.

Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of pri-

mary somatosensory cortex in chronic back pain patients. Neurosci

Lett 1997; 224: 5–8.

Sensory deficits reflect S1 plasticity Brain 2014: 137; 1741–1752 | 1751

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu096/-/DC1


Florence SL, Kaas JH. Large-scale reorganization at multiple levels of the
somatosensory pathway follows therapeutic amputation of the hand in

monkeys. J Neurosci 1995; 15: 8083–95.

Francisco E, Tannan V, Zhang Z, Holden J, Tommerdahl M. Vibrotactile

amplitude discrimination capacity parallels magnitude changes in som-
atosensory cortex and follows Weber’s Law. Exp Brain Res 2008; 191:

49–56.

Godde B, Spengler F, Dinse HR. Associative pairing of tactile stimulation

induces somatosensory cortical reorganization in rats and humans.
Neuroreport 1996; 8: 281–5.

Greve DN, Fischl B. Accurate and robust brain image alignment using

boundary-based registration. Neuroimage 2009; 48: 63–72.
Hebb D. The organization of behavior. New York: Wiley and Sons; 1949.

Holden JK, Nguyen RH, Francisco EM, Zhang Z, Dennis RG,

Tommerdahl M. A novel device for the study of somatosensory infor-

mation processing. J Neurosci Methods 2012; 204: 215–20.
Jeng OJ, Radwin RG. A gap detection tactility test for sensory deficits

associated with carpal tunnel syndrome. Ergonomics 1995; 38:

2588–601.

Jeng OJ, Radwin RG, Fryback DG. Preliminary evaluation of a sensory
and psychomotor functional test battery for carpal tunnel syndrome:

Part 1—confirmed cases and normal subjects. Am Ind Hyg Assoc J

1997; 58: 852–60.

Jeng OJ, Radwin RG, Rodriquez AA. Functional psychomotor deficits
associated with carpal tunnel syndrome. Ergonomics 1994; 37:

1055–69.

Lee KG, Jacobs MF, Asmussen MJ, Zapallow CM, Tommerdahl M,
Nelson AJ. Continuous theta-burst stimulation modulates tactile syn-

chronization. BMC Neurosci 2013; 14: 89.

Levine DW, Simmons BP, Koris MJ, Daltroy LH, Hohl GG, Fossel AH,

et al. A self-administered questionnaire for the assessment of severity
of symptoms and functional status in carpal tunnel syndrome. J Bone

Joint Surg Am 1993; 75: 1585–92.

Lissek S, Wilimzig C, Stude P, Pleger B, Kalisch T, Maier C, et al.

Immobilization impairs tactile perception and shrinks somatosensory
cortical maps. Curr Biol 2009; 19: 837–42.

Lloyd D, Findlay G, Roberts N, Nurmikko T. Differences in low back pain

behavior are reflected in the cerebral response to tactile stimulation of
the lower back. Spine (Phila Pa 1976) 2008; 33: 1372–7.

Maeda Y, Kettner N, Sheehan J, Kim J, Cina S, Malatesta C, et al.

Altered brain morphometry in carpal tunnel syndrome is associated

with median nerve pathology. Neuroimage Clin 2013; 2: 313–9.
Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D.

Topographic reorganization of somatosensory cortical areas 3b and 1

in adult monkeys following restricted deafferentation. Neuroscience

1983; 8: 33–55.
Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK.

Somatosensory cortical plasticity in carpal tunnel syndrome—a cross-

sectional fMRI evaluation. Neuroimage 2006; 31: 520–30.
Nguyen RH, Gillen C, Garbutt JC, Kampov-Polevoi A, Holden JK,

Francisco EM, et al. Centrally-mediated sensory information processing

is impacted with increased alcohol consumption in college-aged indi-

viduals. Brain Res 2013; 1492: 53–62.
Petersson KM, Nichols TE, Poline JB, Holmes AP. Statistical limitations in

functional neuroimaging. II. Signal detection and statistical inference.

Philos Trans R Soc Lond B Biol Sci 1999; 354: 1261–81.

Phalen GS. The carpal-tunnel syndrome. Seventeen years’ experience in
diagnosis and treatment of six hundred fifty-four hands. J Bone Joint

Surg Am 1966; 48: 211–28.

Pilz K, Veit R, Braun C, Godde B. Effects of co-activation on cortical

organization and discrimination performance. Neuroreport 2004; 15:
2669–72.

Radwin RG, Sesto ME, Zachary SV. Functional tests to quantify recovery

following carpal tunnel release. J Bone Joint Surg Am 2004; 86-A:
2614–20.

Rai N, Premji A, Tommerdahl M, Nelson AJ. Continuous theta-burst

rTMS over primary somatosensory cortex modulates tactile perception

on the hand. Clin Neurophysiol 2012; 123: 1226–33.

Rusconi E, Pinel P, Dehaene S, Kleinschmidt A. The enigma of

Gerstmann’s syndrome revisited: a telling tale of the vicissitudes of

neuropsychology. Brain 2010; 133 (Pt 2): 320–32.

Rusconi E, Pinel P, Eger E, LeBihan D, Thirion B, Dehaene S, et al. A

disconnection account of Gerstmann syndrome: functional neuroanat-

omy evidence. Ann Neurol 2009; 66: 654–62.
Rusconi E, Walsh V, Butterworth B. Dexterity with numbers: rTMS over

left angular gyrus disrupts finger gnosis and number processing.

Neuropsychologia 2005; 43: 1609–24.

Shinoura N, Suzuki Y, Yamada R, Kodama T, Takahashi M, Yagi K. Fibers

connecting the primary motor and sensory areas play a role in grasp

stability of the hand. Neuroimage 2005; 25: 936–41.

Tannan V, Simons S, Dennis RG, Tommerdahl M. Effects of adaptation

on the capacity to differentiate simultaneously delivered dual-site

vibrotactile stimuli. Brain Res 2007; 1186: 164–70.

Tannan V, Whitsel BL, Tommerdahl MA. Vibrotactile adaptation en-

hances spatial localization. Brain Res 2006; 1102: 109–16.

Tecchio F, Padua L, Aprile I, Rossini PM. Carpal tunnel syndrome modi-

fies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapp

2002; 17: 28–36.

Thonnard J, Saels P, Van den Bergh P, Lejeune T. Effects of chronic

median nerve compression at the wrist on sensation and manual

skills. Exp Brain Res 1999; 128: 61–4.

Tommerdahl M, Whitsel BL, Vierck CJ Jr, Favorov O, Juliano S,

Cooper B, et al. Effects of spinal dorsal column transection on the

response of monkey anterior parietal cortex to repetitive skin stimula-

tion. Cereb Cortex 1996; 6: 131–55.

Tucker AT, White PD, Kosek E, Pearson RM, Henderson M, Coldrick AR,

et al. Comparison of vibration perception thresholds in individuals with

diffuse upper limb pain and carpal tunnel syndrome. Pain 2007; 127:

263–9.

Wall JT, Huerta MF, Kaas JH. Changes in the cortical map of the hand

following postnatal ulnar and radial nerve injury in monkeys: organ-

ization and modification of nerve dominance aggregates. J Neurosci

1992; 12: 3456–65.

Wall JT, Kaas JH, Sur M, Nelson RJ, Felleman DJ, Merzenich MM.

Functional reorganization in somatosensory cortical areas 3b and 1

of adult monkeys after median nerve repair: possible relationships to

sensory recovery in humans. J Neurosci 1986; 6: 218–33.
Wand BM, Keeves J, Bourgoin C, George PJ, Smith AJ, O’Connell NE,

et al. Mislocalization of sensory information in people with chronic low

back pain: a preliminary investigation. Clin J Pain 2013; 29: 737–43.

Wang X, Merzenich MM, Sameshima K, Jenkins WM. Remodelling of

hand representation in adult cortex determined by timing of tactile

stimulation. Nature 1995; 378: 71–5.

Weibull A, Flondell M, Rosen B, Bjorkman A. Cerebral and clinical ef-

fects of short-term hand immobilisation. Eur J Neurosci 2011; 33:

699–704.

Werhahn KJ, Mortensen J, Van Boven RW, Zeuner KE, Cohen LG.

Enhanced tactile spatial acuity and cortical processing during acute

hand deafferentation. Nat Neurosci 2002; 5: 936–8.

Zhang W, Johnston JA, Ross MA, Sanniec K, Gleason EA, Dueck AC,

et al. Effects of carpal tunnel syndrome on dexterous manipulation are

grip type-dependent. PLoS One 2013; 8: e53751.
Zhang W, Johnston JA, Ross MA, Smith AA, Coakley BJ, Gleason EA,

et al. Effects of carpal tunnel syndrome on adaptation of multi-digit

forces to object weight for whole-hand manipulation. PLoS One 2011;

6: e27715.

Zhang Z, Francisco EM, Holden JK, Dennis RG, Tommerdahl M.

Somatosensory information processing in the aging population. Front

Aging Neurosci 2011a; 3: 18.

Zhang Z, Tannan V, Holden JK, Dennis RG, Tommerdahl M. A quanti-

tative method for determining spatial discriminative capacity. Biomed

Eng Online 2008; 7: 12.

Zhang Z, Zolnoun DA, Francisco EM, Holden JK, Dennis RG,

Tommerdahl M. Altered central sensitization in subgroups of women

with vulvodynia. Clin J Pain 2011b; 27: 755–63.

1752 | Brain 2014: 137; 1741–1752 Y. Maeda et al.


