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Abstract

What at the genomic level underlies organism complexity? Although several genomic features have been associated with
organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in
complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47
eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which
corrects for the distorting effect of a variable number of transcripts per species—an important obstacle for comparative
studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukary-
otic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this
association is not explained as a by-product of covariance between alternative splicing with other variables previously
linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition,
we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due
to reduced Ne in more complex species. Taken together, our results firmly establish alternative splicing as a significant
predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification
through alternative splicing as a means of determining a genome’s functional information capacity.

Key words: organism complexity, alternative splicing, genome evolution, transcriptome evolution, expressed
sequence tags.

Introduction
Prior to widespread genome sequencing, it was assumed that
organism complexity was proportional to gene content—
that more complex organisms encode a greater amount of ge-
netic information (Taft and Mattick 2003), the unit of which
is the gene (Bird 1995). However, the sequencing of the
human genome, revealing a lower than expected number
of genes (Fields et al. 1994), initiated a hunt to uncover the
genomic basis of organism complexity (Nilsen and Graveley
2010) as, despite two rounds of whole genome duplication at
the base of the vertebrate lineage (Ohno 1970; Dehal and
Boore 2005), the human genome contains almost as many
genes as that of a worm (Lander et al. 2001). Several genomic
features have been shown to have a significant association
with organism complexity, measured as the number of dis-
tinct cell types per species (cell type number [CTN]). These
variables include various measures of the potential number of
molecular interactions per protein: the number and propor-
tion of protein–protein interaction (PPI) domains in each
protein (Xia et al. 2008; Schad et al. 2011) and protein disorder
(flexibility in a protein’s 3D structure to adopt a variety of
conformations) (Romero et al. 2006; Dunker et al. 2008; Schad

et al. 2011). More recently, total coding region length in a
genome was shown to be positively associated with organism
complexity (Schad et al. 2011). This same study also showed
that when restricting the analysis to metazoans, gene number
becomes a significant predictor of organism complexity.

Alternative splicing, a posttranscriptional process in eu-
karyotes by which multiple distinct transcripts are produced
from a single gene, has the potential to boost the total
number of distinct proteins encoded in a genome in the
absence of increases in gene number (Nilsen and Graveley
2010). As such, an association between alternative splicing
and organism complexity has long been proposed. Under
an “adaptive" model, an increase in alternative splicing
could facilitate the evolution of higher organismal complexity,
by increasing proteome diversity (and thus, diversifying func-
tionality) at a level disproportionate to increases in the
number of protein-coding genes (Graveley 2001; Xing and
Lee 2007; Chen et al. 2012). Indeed, over the last decade,
alternative splicing prevalence (ASP; the proportion of multi-
exon genes that have at least one alternative splicing event)
has been successively revised upward for humans, with recent
deep sequencing transcriptome analyses estimating that
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up to 94% of multiexon genes undergo alternative splicing
(Pan et al. 2008; Wang et al. 2008). However, assessing the
expansion of ASP through evolutionary time and establishing
a link between alternative splicing and organism complexity
have proved difficult (Nilsen and Graveley 2010). The main
barrier to comparative studies of ASP arises from the fact that
differences in transcript sequence coverage across species can
distort both the proportion of genes classified as undergoing
alternative splicing and the number of alternative splicing
events detected (Brett et al. 2002; Kim et al. 2004; Kim et al.
2007; Takeda et al. 2008; Mollet et al. 2010; Nilsen and
Graveley 2010; Schad et al. 2011). Kim et al. (2007) devised
a method of transcript number normalization to obtain com-
parable ASP indices involving the identification of alternative
splicing events from a random sample of 10 transcripts per
gene. Importantly, they showed that alternative splicing in
vertebrate species was higher than among invertebrates and
that this was not explained by the higher abundance of tran-
scripts available for vertebrate species. Although not directly
tested, these findings were suggestive of a link between alter-
native splicing and complexity as vertebrates are generally
considered to have a higher CTN compared with inverte-
brates. Surprisingly, there are still no current data sets for
comparable alternative splicing indices, and controlling for
transcript abundance in comparative analyses of ASP is the
exception rather than the rule. The resulting lack of compa-
rable estimates for the number of alternative splicing events
per gene has hampered efforts to quantify ASP across taxa
(Harrison et al. 2002), the accumulation of splicing events
over time (Warnefors and Eyre-Walker 2011), and the link
between alternative splicing rates and organism complexity
(Nilsen and Graveley 2010; Xue et al. 2012). The only attempt
to directly assess the relationship between alternative splicing
variation and CTN (Schad et al. 2011) was considered incon-
clusive by the authors because of the lack of comparable
alternative splicing measures.

Here, we assess the prevalence of alternative splicing in 47
eukaryotic genomes by calculating a comparable index of
alternative splicing, which corrects for differences in transcript
coverage (adapted from Kim et al. [2007]; see Materials and
Methods). The species examined include metazoans, plants,
fungi, and protists. We then examined how these alternative
splicing indices relate to organism complexity and compared
the strength of alternative splicing as a predictor of CTN to
previously described correlates, including the number of pro-
tein-interacting domains encoded per gene (Xia et al. 2008),
protein disorder (Romero et al. 2006; Dunker et al. 2008;
Schad et al. 2011; Xue et al. 2012), the number of PPIs, gene
number, and various measures of coding region length (Schad
et al. 2011).

We find that alternative splicing has steadily increased over
the last 1,400 My of eukaryotic evolution. We also find that
alternative splicing is strongly associated with CTN and that
this relationship is not a by-product of the relationship
between various genomic features and complexity.

It is important to note that if increases in the proportion of
alternatively spliced genes or the level of alternative splicing
these genes undergo are linked with CTN, such an association

would not constitute proof of causality. Under a “nonadap-
tive" model, the association of alternative splicing and or-
ganism complexity could be a by-product of the link
between complexity and a lower effective population size
(Ne). The passive emergence of “genomic complexity" and
even organismal complexity itself is suggested by the work of
Lynch and coworkers, who argue that nonadaptive pro-
cesses explain the majority of the variance in organism com-
plexity as “more complex" organisms have a smaller Ne

(Lynch and Conery 2003; Lynch 2007). As documented con-
sequences of a comparatively small Ne include the accumu-
lation of slightly deleterious mutations, both in coding
(Nikolaev et al. 2007; Popadin et al. 2007; Gayral et al.
2013) and regulatory (Keightley et al. 2005) sequences, as
well as an increase in average intron and coding region
lengths (Lynch and Conery 2003), it is reasonable to
expect that mutations impairing splicing regulation will ac-
cumulate more rapidly in more complex organisms resulting
in higher (but not necessarily functional) transcript diversity.
Consistent with this, single species studies have shown that a
significant proportion of alternative splicing events are prob-
ably the result of noncoding “noise" and not biologically
meaningful (Pickrell et al. 2010; Leoni et al. 2011).

Using a limited sample size, we do not find any evidence to
suggest that the association of alternative splicing and CTN is
explained by differences in Ne. To the best of our knowledge,
this is the most comprehensive assessment of alternative
splicing levels (ASLs) covering all major eukaryotic taxa, and
the first time in which the link between alternative splicing
and CTN has been assessed using a comparative index of
alternative splicing which corrects for differential transcript
coverage.

Results

ASP Has Increased throughout Evolutionary Time

To assess whether ASLs have changed over time, over 39
million publicly available partial transcripts, representing
112 eukaryotes (20 protists, 18 plants, 23 fungi and 51 meta-
zoans including 23 chordates), were aligned to their corre-
sponding genomes to identify alternative splicing events (see
Materials and Methods). To minimize the strong dependence
of alternative splicing event detection on transcript coverage
per gene (Brett et al. 2002; Kim et al. 2004; Kim et al. 2007;
Takeda et al. 2008; Mollet et al. 2010; Nilsen and Graveley
2010; Schad et al. 2011), we used a transcript normalization
protocol (Kim et al. 2007) where alternative splicing events
are identified in randomly selected samples of 10 expressed
sequence tags (ESTs) per gene. We obtained a comparable
alternative splicing index per gene by averaging the number of
alternative splicing events in 100 samples (Kim et al. 2007)
(supplementary fig. S1, Supplementary Material online).

Using the comparable alternative splicing index, we calcu-
lated for each species both ASP, defined as the proportion of
alternatively spliced genes in the sample of genes analyzed,
and ASL, defined as the average number of alternative splicing
events per gene. Genomes with comparable alternative splic-
ing estimates available for fewer than 500 genes were
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excluded from further analyses leaving, in total, 47 species
(6 protists, 10 plants, 6 fungi, and 25 metazoans; supplemen-
tary table S1, Supplementary Material online). We found
that both ASP and ASL vary among eukaryotic clades with
chordates having both the highest ASP and ASL compared
with nonchordate metazoans, fungi, plants, and protists (fig.
1 and supplementary table S1, Supplementary Material
online). Although our ASP estimates are higher in most
clades compared with a previous study based on eight spe-
cies using comparable alternative splicing indices, the
relative differences among clades are consistent (Kim et al.
2007).

An increase in alternative splicing through evolutionary
time (fig. 1) is consistent with observations reporting links
between ASP and evolutionary time restricted to metazoan
species (Warnefors and Eyre-Walker 2011) and show that it is
not an artifact of differential transcript coverage among spe-
cies (Nilsen and Graveley 2010; Schad et al. 2011). The higher
prevalence and levels of alternative splicing in plant species
compared with fungi and protists suggest that AS levels have
independently increased in this lineage.

Overall, by using comparable alternative splicing esti-
mates from species covering all major eukaryotic clades and
correcting for differential transcript coverage, we show that
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FIG. 1. Variance in alternative splicing over evolutionary time. Bars show the average percentage of alternatively spliced genes per species grouped
according to their divergence from humans, as shown in the adjacent phylogenetic tree (data from Hedges et al. 2006), and their taxonomic category
(chordate, nonchordate metazoan, or nonmetazoan). The scatter plot shows changes in alternative splicing prevalance, that is, the percentage of
alternatively spliced genes per genome (blue) and in alternative splicing level, that is, the average number of alternative splicing events per gene for each
species (red). Trend lines represent the mean of all values at each divergence time. Although the relative positions of cephalochordates and tunicates on
this tree are disputed (Delsuc et al. 2006), this does not significantly alter the trend.
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alternative splicing has increased over the last 1,400 My of
eukaryotic evolution in the metazoan lineage with a more
moderate and potentially independent rise in alternative
splicing in plants.

Alternative Splicing Is a Strong Predictor of Organism
Complexity, Assayed as Cell Type Diversity

A previous attempt to assess the link between alternative
splicing and organism complexity, assayed as the number of
distinct cell types (Schad et al. 2011), was rendered inconclu-
sive because of the known bias caused by differential tran-
script sequence coverage among genes and species (Brett
et al. 2002; Kim et al. 2004; Kim et al. 2007; Takeda et al.
2008; Mollet et al. 2010; Nilsen and Graveley 2010; Schad
et al. 2011). As such, we assessed the relationship of ASP
and ASL with the number of distinct cell types per species
(CTN) as a proxy of organism complexity using the compa-
rable AS index (see Materials and Methods). We found that
both ASL and ASP are strongly associated with CTN (ASP:
r2 = 0.76, P = 9.36� 10�9; ASL: r2 = 0.83, P = 1.77� 10�10; sup-
plementary table S2, Supplementary Material online, and
fig. 2). This association remains strong when restricting the
analyses to the metazoan-fungi lineage (for ASP, r2 = 0.71,
P = 2.45� 10�5, and for ASL, r2 = 0.81, P = 1.28� 10�6;
supplementary table S3, Supplementary Material online).

Several genomic and functional parameters have previ-
ously been associated with organism complexity (using
CTN as a proxy). Xia et al. (2008) reported a strong link be-
tween CTN and PPI domain coverage. Other genomic vari-
ables found to have a more moderate association with CTN
include protein disorder (Romero et al. 2006; Dunker et al.
2008; Schad et al. 2011; Xue et al. 2012) and proteome size
(assayed as concatenated protein length) (Schad et al. 2011).
Gene number, previously found to be unrelated to CTN, has
recently been reconsidered as a significant predictor but only
after plant genomes are excluded from the analyses (Schad
et al. 2011).

How does alternative splicing compare to these previously
reported predictors of CTN? To address this, we compared
the relationship between CTN and alternative splicing with
that of 12 additional genomic measures of protein interactiv-
ity as well as proteome disorder, gene length, and number, all
previously linked to CTN (see Materials and Methods for
descriptions and sources of each variable assessed). Of all

parameters tested, ASL was found to have the strongest as-
sociation with CTN (r2 = 0.83, P = 1.77� 10�10) followed by
ASP and the average number of PPI domains per protein
(r2 = 0.76, P = 9.36� 10�9 and r2 = 0.64, P = 8.19� 10�11 re-
spectively; supplementary table S2, Supplementary Material
online). We then re-examined the relationship between each
parameter with CTN restricting the analyses to a set of 24
species for which data in all variables tested were available.
The mean number of interactions per protein was not in-
cluded in this or subsequent analyses due to the small
number of species for which data were available (n = 10).
ASL remained the top predictor of CTN (r2 = 0.87,
P = 2.80� 10�11) with ASP showing an increased (r2 = 0.80,
P = 2.66� 10�9) and the average number of PPI domains per
protein a decreased association with CTN (r2 = 0.59,
P = 6.42� 10�6; table 1).

As the relationship between genomic parameters and CTN
has been shown to increase after the removal of plant ge-
nomes (Schad et al. 2011), we reassessed the predictive power
of all parameters after restricting the analyses to the meta-
zoan-fungi lineage. This resulted in a stronger association
between CTN and many parameters with the two alternative
splicing indices remaining the best predictors of CTN (sup-
plementary table S3, Supplementary Material online).
Consistent with previous findings (Schad et al. 2011), when
plant genomes are excluded, gene number was found to be
significantly associated with CTN (r2 = 0.34, P = 1.74� 10�3;
supplementary table S3, Supplementary Material online).

Because of the tendency of related species to resemble one
another, it is also necessary to control for this nonindepen-
dence in a comparative analysis of patterns across species.
Pagel’s l measures the extent to which observed correlations
between traits reflect their shared evolutionary history assum-
ing an evolutionary model under Brownian motion (Pagel
1999). For the 24 species for which data in all variables
tested were available, we obtained estimates of l and
restricted log likelihood for the correlations between CTN
and each genomic variables, recalculating each correlation
to account for phylogenetic nonindependence of the vari-
ables by fitting a phylogenetic generalized least squares
(PGLS) model (see Materials and Methods). ASL remained
the top predictor of CTN even after taking into account
the strength of the phylogenetic signal (r2 = 0.87,
P = 1.59� 10�13, l= 0), followed by ASP (r2 = 0.77,
P = 8.38� 10�11, l= 0.052) and the percentage of PPI
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FIG. 2. Relationship between alternative splicing and organism complexity, assayed as CTN. Graphs show the relationship between CTN and ASP
(r2 = 0.76; P = 9.36� 10�9) and ASL (r2 = 0.83; P = 1.77� 10�10).
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domain sequence per protein (r2 = 0.60, P = 1.3� 10�7, l= 0;
table 1). This pattern holds true if we only take into account
metazoan and fungal species (supplementary table S3,
Supplementary Material online).

As most of the assessed parameters covary among them-
selves (supplementary tables S4 and S5, Supplementary
Material online), the association between some variables
with CTN may be secondary to their covariance with another
genomic feature which is in turn linked to CTN. To identify
the genomic parameters that significantly contribute to CTN,
we carried out a stepwise analysis (see Materials and
Methods). In the optimal stepwise regression model, the ma-
jority of the variance in CTN is explained by ASL, supported
by proteome size (supplementary table S6, Supplementary
Material online). Similar results are obtained when constrain-
ing the data to the metazoan-fungal lineage (supplementary
table S6, Supplementary Material online). In fact, contrasting
each variable directly against AS by including ASL/ASP in
multiple regression models with each additional variable
revealed that in all cases, only the AS parameter remained
significantly associated with CTN (supplementary table S2,
Supplementary Material online). The only exception was pro-
teome size that remained significantly associated with CTN
after correcting for either ASP or ASL, but only when fungi
and metazoans were included in the analysis (supplementary
table S3, Supplementary Material online).

To best capture the predictive value of sets of covarying
variables, we used a principal component analysis to reduce
the dimensionality among the 13 predictors of complexity.
This analysis was performed on a subset of species where data
were available for all predictors (n = 24). Interestingly, PC1 and
PC2 (which explain 35.2% and 31.4% of the variance in the
matrix, respectively) allow chordates to be differentiated from
all other species (fig. 3). Of all resulting principal components,
we found that PC1 is the only significant predictor of CTN
(r2 = 0.66, P = 8.58� 10�7). The two alternative splicing vari-
ables (ASP and ASL) and the three protein interactivity var-
iables (average number of PPI domains per protein, PPI
domain coverage, and the proportion of proteins with at
least one PPI domain) were found to be the main

contributors to PC1. Similar results were obtained when re-
stricting the analyses to the metazoan-fungi lineage (data not
shown). It is worth noting, however, that the value of r2 when
regressing PC1 against CTN, when including either all species
or only metazoans and fungi, is lower than that of ASL
(r2 = 0.83, P = 1.77� 10�10), suggesting that collapsing the di-
mensionality of the variables does not improve the prediction
of CTN beyond the variance explained by ASL alone.

The above results show that AS is significantly associated
with CTN and that this association is not explained as a by-
product of the relationship between AS and other genomic
features also related to CTN. However, it is possible that some
of these associations might be explained by ascertainment
bias resulting from the fact that humans and other closely
related species have been disproportionately studied. With
the exceptions of Caenorhabditis elegans and Drosophila mel-
anogaster, larger amounts of data exist for vertebrates than
other species. It is possible that the higher estimates of AS and
other genomic features, and even higher CTN among verte-
brates, might partly result from the greater availability of data
for these species. To address this possibility, we used the total
number of ESTs per species as a proxy for interest in a species
as higher transcript availability has a direct impact on the
quality of genome annotation. Compared with other proxies
of “research interest" such as “number of publications per
species," the number of ESTs approximates how much data
have accumulated rather than how many interpretations of it
there have been.

We established that the number of ESTs per species is
significantly associated with various genomic characteristics
(supplementary table S7, Supplementary Material online).
Notably, ASL and ASP, as well as CTN, were found to be
significantly related with transcript number per species
(ASL: r2 = 0.45, P = 7.29� 10�7; ASP: r2 = 0.39,
P = 8.01� 10�6; complexity r2 = 0.41, P = 5.01� 10�5). Thus,
we re-examined the relationship of CTN with AS and other
gene features using the residuals of a quadratic polynomial
regression with EST number. This correction resulted in a
marked reduction in the variance in CTN explained by
ASL and ASP (r2 = 0.47, P = 9.84� 10�5 and r2 = 0.57,

Table 1. Association between CTN and Genomic Features Before and After Phylogenetic Signal Correction in 24 Eukaryotic Species.

Category Variable Linear Regression PGLS Regression

r2 P r2 P k

Alternative splicing ASL 0.87 2.80� 10�11 0.87 1.59� 10�13 0
ASP 0.80 2.66� 10�9 0.77 8.38� 10�11 0.05

Sizes and lengths Number of genes �0.01 0.40 0.26 1.23� 10�3 0.76
Average protein length �0.05 0.97 0.12 0.03 0.79
Proteome information content 3.25� 10�3 0.31 0.09 0.05 0.65
Proteome size 0.31 2.59� 10�3 0.49 4.08� 10�6 0.75

Disorder Mean % of disordered binding sites �0.03 0.59 0.02 0.26 0.71
Mean number of disordered binding sites �0.04 0.78 �0.04 0.99 0.68
Total number of disordered binding sites 0.04 0.18 0.21 3.97� 10�3 0.69
Mean proteome disorder �0.03 0.64 6.45� 10�3 0.34 0.71

Interactivity % PPI domain seq per protein 0.60 5.36� 10�6 0.60 1.30� 10�7 0
Average number of PPI domains per protein 0.59 6.42� 10�6 0.59 1.61� 10�7 0
Proportion of proteins with 1 + PPI domains 0.54 2.33� 10�5 0.54 7.80� 10�7 0
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P = 8.82� 10�6, respectively; supplementary table S8,
Supplementary Material online). Correcting all variables by
transcript coverage also reduced the predictive value of
other gene features for CTN (supplementary table S8,
Supplementary Material online). However, the relative order
of gene feature parameters as predictors of CTN remained
unaltered with splicing and, to a lesser extent, the degree of
protein–protein interactivity the most strongly associated
with CTN (supplementary table S8, Supplementary Material
online). Furthermore, if considering all 13 variables, the opti-
mal stepwise regression model (see Materials and Methods)
explained 90% of the variance in CTN (P = 1.81� 10�5), with
the strongest of five predictors being ASP (supplementary
table S9, Supplementary Material online). When restricting
the analyses to the fungi-metazoan lineage, we found that
the optimal regression model contained only two regressors,
ASP and the mean percentage of disordered binding sites per
protein (see Materials and Methods for a description of this

variable) (supplementary table S9, Supplementary Material
online). In fact, only three parameters (average protein
length, the number of genes, and the total number of disor-
dered binding sites per protein) remained significantly asso-
ciated with CTN in a regression model directly comparing
each variable with either ASP or ASL (supplementary
table S8, Supplementary Material online). An alternative
transformation of the data, taking the natural log of EST
number, resulted in lower correlation coefficients, but the
relative strength of each variable in a regression against com-
plexity remained unchanged (supplementary table S10,
Supplementary Material online).

Our data span a diverse range of species with associated
variations in the number of available ESTs per species (sup-
plementary table S1, Supplementary Material online). For ge-
nomes with lower EST numbers (often those that also have a
lower CTN), highly expressed genes will make a dispropor-
tionate contribution to each species’ comparative alternative
splicing index as the number of genes with the minimum
required number of ESTs will be smaller. As such, we expect
lowly expressed genes to primarily contribute data for
genomes with a higher number of available ESTs.

Under the nonadaptive model, a reduced Ne among more
complex organisms (assayed as those with higher CTN) would
result in an accumulation of mutations detrimental to splic-
ing regulation, potentially resulting in the proliferation of
“noisy" alternative splicing events. Such neutral increases in
alternative splicing should be particularly pronounced among
lowly expressed genes, which, on average, are under lower
selective pressures compared with highly expressed genes.
Importantly for this study, if lowly expressed genes are
more highly spliced, then our data would overestimate ASL
for species with high EST numbers, artificially inflating the
correlation strength with CTN.

Using microarray data for four model species (human,
mouse, Caenorhabditis elegans, and Arabidopsis thaliana;
see Materials and Methods), we find that, as expected,
there is a strong correlation between the number of ESTs
per gene and gene expression level. However, contrary to
the prediction of the nonadaptive model, we found that
the more highly expressed genes are also more highly spliced
(supplementary figs. S2–S5, Supplementary Material online).
Therefore, our data might be underestimating ASP and ASL in
genomes with a higher number of available ESTs, as more
lowly expressed genes—with lower ASLs—disproportionately
contribute to the species’ alternative splicing indices. By ex-
tension, the relationship of AS with CTN might also be
underestimated.

Discussion
Here, we have assessed ASLs in 47 eukaryotic species and
showed that alternative splicing has increased over the last
1,400 My of evolution. Our data range from Plasmodium fal-
ciparum, in which 3% of genes are spliced with an average of
0.09 splice events per gene, to humans, where 88% of genes
are spliced with an average of 5.35 splice events per gene.
Consistent with the findings of Kim et al. (2007), we find that
chordates have higher levels of alternative splicing than any

FIG. 3. Biplot of the first two principal components built from 13 func-
tional genomic variables available for 24 species (see supplementary
table S1, Supplementary Material online). Graph shows the distribution
of species along PC1, which explains 35.2% of the variance in this data
set, and PC2, which accounts for 31.4%. Points represent each of 24
species for which data were available for all variables and are colored by
taxonomic category: chordates (red), nonchordate metazoans (black),
plants (green), fungi (blue), and protists (purple). Ellipses show the
clustering of species according to their dispersion along PC1 and PC2
(with confidence limit 0.95). Blue lines radiating from (0,0) represent
each variable included in the analysis. The direction of each line repre-
sents the highest correlation coefficient between the PC scores and the
variable, with the length of each line proportional to the strength of this
correlation. Letter codes for each variable: ASL (A), ASP (B), % PPI
domain sequence per protein (C), proportion of proteins with at least
one PPI domain (D), average number of PPI domains per protein (E),
average protein length (F), mean number of disordered binding sites per
protein (G), mean proteome disorder (H), mean % of disordered binding
sites per protein (I), number of genes (J), total number of disordered
binding sites per proteome (K), proteome information content (L), and
proteome size (M).
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other taxonomic group with mammals and birds having both
proportionately more genes that are alternatively spliced
(ASP) and a higher number of alternative splicing events
per gene (ASL). We observed significant increases over time
in ASP and ASL for the opisthokonts and show that past
claims for an increased level of alternative splicing along the
evolution of metazoans are not explained by differential tran-
script coverage (Warnefors and Eyre-Walker 2011). Our data
do not support a previous claim for lower ASLs among birds
compared with mammalian species (Chacko and
Ranganathan 2009), and in fact, ASLs in the chicken
genome were found to be among the highest of all species
tested.

Plant genomes were found to have higher levels of alter-
native splicing than both protist and fungal species, compa-
rable to those found among invertebrate species. This is
consistent with relatively low levels of alternative splicing in
the eukaryotic ancestor with independent rises in the plant
and metazoan lineages. None of the plant genomes we
examined, however, match the levels of alternative splicing
observed in the vertebrate lineage.

Our results demonstrate a strong association between
alternative splicing and organism complexity providing, to
the best of our knowledge, the first systematic evidence for
a link between these two variables. In this study, we have used
the number of cell types as a proxy for organism complexity.
CTN has been proposed as an indicator of an organism com-
plexity as the higher number of components or cell types in
more complex organisms should reflect, to some degree, their
higher number of functions (McShea 2000). We acknowledge,
however, that complexity is difficult to define and even more
difficult to measure and that all operational definitions for
“complexity" are, to various degrees, contentious (Adami
2002). Several proxies of organismal complexity have been
proposed; however, these measures are either relevant to
some taxonomic groups, such as encephalization coefficient,
or no measurements are available for a large number of spe-
cies, such as phenotypic complexity (Tenaillon et al. 2007).
Although accepting that “organism complexity" is likely to be
a multidimensional variable encompassing many other fea-
tures, we chose this measure as, compared with other proxies,
cell types are more easily quantifiable for organisms from
distant taxonomic groups. It is important to note that, as
CTN data are drawn from a diverse range of studies (see
Materials and Methods), more detailed characterizations of
CTN can appear anomalous. For example, we expect chim-
panzees to have a similar CTN to humans, but currently,
humans are the better characterized species and as such
the human CTN appears higher (supplementary table S1,
Supplementary Material online). To address whether this
type of outlier confounds our results, we repeat our analyses
using the average CTN for the order each species belongs to.
This makes the assumption that any variation in CTN be-
tween species of a given order reflects measurement noise,
rather than relevant biological information. Our results do
not significantly differ when using these alternate values of
CTN (supplementary tables S11 and S12, Supplementary
Material online).

Importantly, as most past studies analyzing the relation-
ship between various genomic features and organism com-
plexity have adopted CTN as a proxy (Xia et al. 2008; Chen
et al. 2011; Schad et al. 2011; Xue et al. 2012), its use allowed us
to contrast our results with those of others. Such comparisons
showed that the relationship of alternative splicing and CTN
is not secondary to other genomic features previously asso-
ciated with CTN, including proteome size (measured as total
protein coding sequence length [Schad et al. 2011]), protein
disorder (Schad et al. 2011; Xue et al. 2012), and protein
interactivity.

Before the full sequencing of nuclear eukaryotic genomes
became widespread, gene number was expected to have a
direct relationship with organism complexity as more genes
would encode a higher number of proteins boosting the
number of potential molecular interactions (Romero et al.
2006; Dunker et al. 2008). The sequencing of the human
genome, however, found no evidence for such an association
(Fields et al. 1994). The discrepancy between organism com-
plexity and gene content became known as the G-paradox
(Claverie 2001; Betran and Long 2002; Hahn and Wray 2002;
Taft and Mattick 2003). However, a recent study concluded
that gene number and organism complexity are related after
all, albeit only when plant species are removed from the
analyses (Schad et al. 2011).

Our findings also support a significant association be-
tween gene number and CTN in the absence of plant
genomes (r2 = 0.34, P = 1.74� 10�3; supplementary table S3,
Supplementary Material online). However, ASL has a stronger
association with CTN (r2 = 0.77, P = 1.09� 10�8) and is suffi-
cient to explain the relationship between CTN and gene
number.

Unlike alternative splicing and gene number, which di-
rectly impact on the number of interacting proteins, addi-
tional gene features linked to CTN can boost the interactivity
potential of individual proteins without expanding their
number. One of the simplest measures of the functional po-
tential of the proteome, total coding region length, has been
found to be significantly associated with CTN (Schad et al.
2011). Although we observed a similar association between
proteome size and CTN, this relationship is entirely explained
as a by-product of both variables’ covariance with alternative
splicing. Proteome size remains a marginal, albeit significant,
predictor of CTN in a stepwise regression model restricted to
the metazoan and fungi lineage where ASL was the strongest
variable (table 1). Moreover, proteome size was not a signif-
icant contributor to the only principal component found to
be significantly associated with CTN.

Protein disorder—the lack of equilibrium in a protein’s 3D
structure under physiological conditions (Romero et al.
2006)—has been proposed as a candidate predictor of organ-
ism complexity as higher intrinsic disorder allows individual
proteins to adopt a greater variety of conformations, increas-
ing the average number of interacting partners per protein
and potentially boosting functional diversification of the pro-
teome (Romero et al. 2006; Dunker et al. 2008). Nevertheless,
subsequent findings show the association between disorder
and CTN only explains any substantial amount of variance
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when bacterial species are included (Schad et al. 2011; Xue
et al. 2012). Our analyses of protein disorder using both step-
wise regressions and principal component analysis do not
provide any evidence of hidden covariance between protein
disorder and CTN. Moreover, despite the fact that past stud-
ies have found a higher than expected number of disordered
motifs in alternatively spliced areas at the gene level (Romero
et al. 2006; Buljan et al. 2012), we do not find a significant
association between protein disorder and alternative splicing
per species (supplementary tables S4 and S5, Supplementary
Material online).

Finally, a third measure of potential molecular interactions
per protein, the presence of PPI domains, has been shown to
be strongly associated with CTN (Xia et al. 2008). We found
three protein interactivity parameters—PPI domain coverage,
the average number of PPI domains per protein, and the
proportion of proteins with at least one PPI domain—to
be significantly associated with CTN regardless of the set
of species examined (supplementary tables S2 and S3,
Supplementary Material online). A head-to-head comparison
between predictors of CTN showed that protein interactivity
measures are better predictors of CTN than any other variable
with the exception of alternative splicing. After controlling for
alternative splicing, however, no protein interactivity param-
eter was found to be significantly associated with CTN (sup-
plementary tables S2 and S3, Supplementary Material online).
An additional measure of protein interactivity previously as-
sociated with CTN, the mean number of PPIs (Schad et al.
2011), was not included in most of our analyses as data were
limited to only 10 species in our set. These comparisons show
that although protein interactivity is significantly associated
with CTN, there is a great overlap between the variance in
CTN explained by protein interactivity and that explained by
alternative splicing.

Several studies have proposed an association between al-
ternative splicing and protein domain content, suggesting
that alternative splicing could act as a buffer against reduced
functionality because of “domain overload"—too many pro-
tein domains or domains in the wrong combination
(Kriventseva et al. 2003; Resch et al. 2004; Floris et al. 2008).
A large-scale analysis has shown that protein domains are
nonrandomly combined in functional proteins with fewer
protein domain co-occurrences observed than expected, sug-
gesting that certain protein domains “avoid" each other
(Parikesit et al. 2011), whereas other domains—including
PPI domains—are “promiscuous" and tend to coexist
within individual transcripts (Basu et al. 2008). Our analyses
of covariance among functional gene variables showed that
alternative splicing and PPI measures are positively corre-
lated—genomes with higher levels of alternative splicing
also have a higher PPI domain presence. We further examined
the association between ASL and PPI domain coverage within
species but found only a marginal association between the
two variables constrained to a few species (supplementary
table S13, Supplementary Material online). This finding sug-
gests that although genomes with a high level of alternative
splicing also tend to have a higher PPI domain coverage, there

is no support for a role for alternative splicing acting as a
buffer of PPI domain overload.

Overall, our results are consistent with a direct association
between alternative splicing and CTN, one which is not ex-
plained by other genomic features previously associated with
organism complexity. This finding is, in principle, consistent
with previous suggestions that alternative splicing may un-
derlie the rise in complexity during eukaryotic evolution
thanks to its potential to expand transcript diversity and
thereby increase the number of potential molecular interac-
tions and functions (reviewed in Xing and Lee 2007; Nilsen
and Graveley 2010; Chen et al. 2012).

Nevertheless, it is important to note that the rise in CTN
has been accompanied by a reduction in effective population
size (Lynch and Conery 2003). Classical nearly neutral theory
proposes that as effective population sizes diminish so too
does the efficiency of purifying selection, resulting in the ac-
cumulation of slightly deleterious mutations, both in coding
(Nikolaev et al. 2007; Popadin et al. 2007; Gayral et al. 2013)
and regulatory (Keightley et al. 2005) sequences. The in-
creased role of drift relative to selection has also been invoked
to explain the proliferation of a number of genomic features
among increasingly complex species (Lynch and Conery 2003;
Lynch 2007). Although more recent studies have disputed this
conclusion (Kuo et al. 2009; Whitney and Garland 2010;
Whitney et al. 2011), a significant proportion of alternative
splicing events have nevertheless been suggested to result
from noisy alternative splicing (Sorek et al. 2004; Pickrell
et al. 2010; Leoni et al. 2011). Thus, it is possible that the
observed increase in alternative splicing among more com-
plex species might be the result of increased genetic drift as a
result of reductions in effective population size, rather than
being directly associated with organism complexity. Using
estimates of effective population size for the 12 species rep-
resented in this study (Lynch and Conery 2003), we found
that a genome’s capacity for alternative splicing re-
mains strongly correlated with CTN even after controlling
for effective population size (partial Spearman’s correla-
tion coefficients: ASL = 0.71, P = 2.37� 10�3; ASP = 0.70,
P = 3.35� 10�3). Although based on a small sample of spe-
cies, this finding suggests that the association between CTN
and alternative splicing is not a by-product of reduced effec-
tive population sizes among more complex species. Future
studies should be able to assess the functional contribution of
increases in alternative splicing in the eukaryotic lineages we
report here.

In addition, it is worth noting that a significant correlation
of any genomic feature with CTN does not necessarily dem-
onstrate a causal role on the evolution of organism complex-
ity, that is, a higher CTN. It is beyond the scope of this study to
address this directly. Nevertheless, network theory provides
some clues, which allows us to speculate as to the likelihood
that increases in transcript diversification, facilitated by alter-
native splicing, have affected the evolution of organism com-
plexity. Boolean networks have been proposed as models for
genetic networks as the attractors, representing different
stable patterns of gene expression, correspond to different
cell types (Kauffman 1969; Serra et al. 2010). In Boolean
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networks, increases in the number of nodes leads to a higher
number of attractors within the network at a rate equal to or
exceeding the square root of the number of nodes in the
network (Samuelsson and Troein 2003). If we imagine each
distinct transcript as a node in the genetic network, we can
speculate that alternative splicing, by increasing the num-
ber of nodes (transcripts), would lead to an increased
number of attractors (cell types). Indeed, a previous study
that generated relational networks for seven species associ-
ated the number of functions in a proteome with the number
of polyform transcriptional units in the genome, those that
produce protein isoforms with different functional assign-
ments (which are strongly associated with the levels of splic-
ing). Various properties of these networks (such as the
number of nodes) were found to be strongly associated
with organism complexity, suggesting a link between splicing
and both multifunctionality and multicellularity (Kanapin
et al. 2010).

We conclude that alternative splicing increases over the
last 1,400 My of eukaryotic evolution are strongly associated
with CTN. Furthermore, this association is stronger and more
robust than other parameters previously associated with
CTN, although we cannot rule out the contributions of
other genomic features as many covary. Our findings are
consistent with an adaptive scenario whereby a genome’s
capacity for alternative splicing—with its resulting expansion
of the transcript pool—could constitute a critical component
of the underlying mechanisms explaining the diversification
of cell types and the rise in organism complexity over time.
Nevertheless, the data here presented do not allow us to
reach a conclusion on the functional relevance of increases
in alternative splicing or to establish causality regarding the
association of alternative splicing and organism complexity;
thus, it is possible that a “nonadaptive model" may account
for it.

To the best of our knowledge, our results represent the
first systematic assessment of the relationship between alter-
native splicing, evolutionary time, and CTN and provide ev-
idence for a strong association of alternative splicing and
CTN. Our results further constitute the most comprehensive
head-to-head comparison, to date, of variables associated
with CTN.

Materials and Methods

Organism Complexity

The number of unique cell types was used as a proxy of
organism complexity. Estimates of CTN per species were
compiled from previous studies (Valentine et al. 1994; Bell
and Mooers 1997; Hedges et al. 2004; Haygood and
Investigators 2006; Lang et al. 2010; Schad et al. 2011); data
in graph form from Valentine et al. (1994) as interpreted by
both Erwin (2009) and Vogel and Chothia (2006) were also
included. Following the methodology of Vogel and Chothia
(2006), where more than one estimate of CTN was available
for a species, the average of the minimum and maxi-
mum number was used. In addition, we included a revised
CTN estimate for humans (Vickaryous and Hall 2006).

Supplementary table S1, Supplementary Material online,
provides averaged complexity estimates for both pro- and
eukaryotic species, whereas supplementary table S14,
Supplementary Material online, shows the sources.

Identification of Alternative Splicing Events

Comparable alternative splicing events were obtained using
the following approach. Over 39 million EST sequences, ac-
counting for 112 species, were downloaded from dbEST
(Boguski et al. 1993) and matched to their corresponding
genome using GMAP (Wu and Watanabe 2005) (these spe-
cies are identified in supplementary table S1, Supplementary
Material online, by a positive value in the column titled “total
number of ESTs”). Genome sequences and annotations were
obtained from sources contained in supplementary table S1,
Supplementary Material online. Cancer-derived EST libraries
from human and mouse were removed from all analyses
presented. To ensure high-quality alignments, we only re-
tained those ESTs with 95% identity. ESTs were assigned to
genes using gene annotation coordinates. EST alignments
were then used to create an exon template. These templates
were generally in agreement with existing exon annotations
and also identify a small number of nonannotated exons and
discard orphan exons likely to be nested genes. Alternative
splicing events per gene were identified by comparing align-
ment coordinates for each individual EST to exon annota-
tions. A comparable alternative splicing index that avoids
transcript coverage biases was obtained using the transcript
normalization method described by Kim et al. (2007). Briefly,
for each gene with greater than 10 ESTs, 100 random samples
of 10 ESTs were selected. The number of alternative splicing
events were calculated for each random sample (as detailed
earlier), with an overall average calculated per gene. The abil-
ity of this method to correct for transcript coverage bias and
calculate an accurate number of alternative splicing events is
shown in supplementary figure S1, Supplementary Material
online. To estimate ASP, a gene was considered to be alter-
natively spliced if it had at least an average of one alternative
splicing event identified in each of the 100 random samples.

Additional Functional Genomic Parameters

Gene number per species was obtained from Ensembl
BioMart version 0.8 (March 2013) (Kinsella et al. 2011).
Proteome size (total amino acids encoded by all peptides),
proteome information content (total amino acids encoded
by primary transcripts only), and average protein length were
calculated from mRNA transcripts obtained from Ensembl
BioMart version 0.8 (March 2013) (Kinsella et al. 2011). The
exception is the lancelet, Branchiostoma floridae, where tran-
scripts were obtained from Putnam et al. (2008). PPI domains
per protein were identified using HMMER3 with default pa-
rameters (Finn et al. 2011) and the Pfam-A database (Finn
et al. 2008), with results parsed to consider matches to the
642 confirmed PPI domains as described by Xia et al. (2008).
Protein disorder data were obtained from Schad et al. (2011).
“Disordered sites" are those which are not at equilibrium in
the protein’s 3D structure under physiological conditions and
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can thus adopt a greater variety of conformations. We ob-
tained the mean number of disordered binding sites per pro-
tein, the total number of disordered binding sites across all
annotated proteins per species, and the mean percentage of
disordered binding sites per protein (i.e., the mean number of
disordered sites per protein as a percentage of the protein’s
length). The latter term is considered the disorder of the
protein. Mean proteome disorder is taken as the mean dis-
order per protein. The average number of PPIs per protein for
each species was also obtained from Schad et al. (2011). Data
on effective population size were obtained from Lynch and
Conery (2003).

Statistical Analysis

All statistical tests were performed in R, version 2.15.2 (Team
2012). For stepwise regression analysis, new regressors are
included at each step according to the Akaike Information
Criterion (Akaike 1974), estimated using the package “MASS"
(Venables and Ripley 2002). Principal component analysis was
performed using the R packages “FactoMineR" (Lê et al. 2008)
and “Vegan."

Correction for Phylogenetic Autocorrelation

To assess and control for the strength of the phylogenetic
signal on the correlation between CTN and the different ge-
nomic variables in this study, we computed Pagel’s l (Pagel
1999) based on maximization of the restricted log-likelihood
using the gls subroutine from the R-package nlme (Pinheiro
et al. 2013). Optimum negative values of Pagel’s l are
reported as l= 0. We used the subroutine PGLS in the R-
package Caper (Orme et al. 2012) to examine the “true" as-
sociations between the different genomic variables and CTN
after using the optimal l values to control for the strength of
the phylogenetic signal. This method implements generalized
least squares models, which account for phylogenetic nonin-
dependence by incorporating the covariance between taxa
into comparisons that determine the correlation between
dependent and independent variables. PGLS is an extension
of the independent contrasts methods proposed by
Felsenstein (1985) that provides a more general and flexible
approach for assessing correlations between traits while ac-
counting for phylogenetic divergence. An ultrametric phylo-
genetic tree for the analyzed species was created by obtaining
the divergence time between each pair of species from
Hedges et al. (2006).

Expression Level

Microarray data for four species (Homo sapiens, Mus muscu-
lus, A. thaliana, and C. elegans) were obtained from the fol-
lowing sources. For H. sapiens and M. musculus, Affymetrix
array data analyzed by Su et al. (2004) was obtained from
BioGPS (http://biogps.org, last accessed November 21, 2013).
For H. sapiens, we obtained the expression of 11,449 genes
across 28 tissues. We summarized gcRMA (GC robust
multiarray average) normalized probe intensity levels to
Ensembl IDs corresponding to protein coding genes. All
probes matching to more than one Ensembl gene ID were

removed. Expression values were then normalized against the
total signal level in each tissue. For M. musculus, we obtained
9,825 genes with one-to-one orthologs in the human across
79 different tissues and cell types. Where more than one array
exists for a given tissue, data were averaged. The per probe
expression signal was summarized to Ensembl gene IDs using
the average expression of all the probe sets matching a single
Ensembl ID. All probes matching to more than one Ensembl
gene ID were removed. Expression values were then normal-
ized against the total signal level in each tissue. For A. thaliana,
data were obtained from the Arabidopsis Development Atlas,
as generated by the AtGenExpress Consortium (Schmid et al.
2005) (NASCARRAYS reference numbers 149–154, together
representing 79 tissues, were downloaded from NASC
AffyWatch [http://affymetrix.arabidopsis.info/, last accessed
November 7, 2011]). Expression level was then quantified as
the average gcRMA across all 79 tissues (with each value itself
the mean of triplets) (Yang and Gaut 2011). For C. elegans,
tissue-specific expression for 13 tissues (germline, hypodermis,
intestine, muscle, neurons, pharynx, coelomocytes, distal tip,
excretory cells, spermatheca, spermatheca uterine valve,
uterus, and vulva) was obtained from Chikina et al. (2009)
(http://worm-tissue.princeton.edu, last accessed November
28, 2013), who analyzed a compendium of 916 microarray
experiments from 53 data sets. Expression values in this data
set are already normalized to have mean 0 and variance 1.
Expression level is taken as the mean across all tissues.

Supplementary Material
Supplementary tables S1–S14 and figures S1–S5 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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