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Abstract

Most phenotypic traits are controlled by many genes, but a global picture of the genotype–phenotype map (GPM) is
lacking. For example, in no species do we know generally how many genes affect a trait and how large these effects are. It
is also unclear to what extent GPMs are shaped by natural selection. Here we address these fundamental questions using
the reverse genetic data of 220 morphological traits in 4,718 budding yeast strains, each of which lacks a nonessential
gene. We show that 1) the proportion of genes affecting a trait varies from<1% to>30%, averaging 6%, 2) most traits are
impacted by many more small-effect genes than large-effect genes, and 3) the mean effect of all nonessential genes on a
trait decreases precipitously as the estimated importance of the trait to fitness increases. An analysis of 3,116 yeast gene
expression traits in 754 gene-deletion strains reveals a similar pattern. These findings illustrate the power of genome-wide
reverse genetics in genotype–phenotype mapping, uncover an enormous range of genetic complexity of phenotypic traits,
and suggest that the GPM of cellular organisms has been shaped by natural selection for mutational robustness.
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Introduction
Describing, understanding, and utilizing the relationship be-
tween genotypes and phenotypes, or the genotype–pheno-
type map (GPM), are major goals of genetics (Wagner and
Zhang 2011). Because most phenotypic traits, including those
relevant to human diseases, are controlled by multiple genes
(Falconer and Mackay 1996) and because most genes affect
more than one trait (Wang et al. 2010), the GPM is a dense
bipartite network of genes and traits, where an edge between
a gene and a trait indicates that the gene affects the trait, with
the width of the edge representing the effect size (Wang et al.
2010). Traditionally, the GPM is constructed by forward ge-
netics, which uses linkage or association studies to identify the
genetic variants underlying particular phenotypic variations
among individuals of the same species (Mackay et al. 2009).
Due to the limited power and efficiency of such analyses, the
GPMs of human and most model organisms remain highly
incomplete and uninformative (Mackay et al. 2009; Manolio
et al. 2009). For example, a recent large-scale linkage analysis
estimated the number of genes affecting each of 18 yeast
traits (Ehrenreich et al. 2010). However, because only two
strains were compared in the study, only those genetic vari-
ants that cause the phenotypic differences between these two
strains were revealed. Consequently, neither the distribution
of the number of genes that could affect a trait nor the dis-
tribution of the effect sizes of these genes on a trait is known.
Estimating these fundamental parameters of the GPM is of
vital importance, because they impact how variable a partic-
ular trait is in a population, determine the best strategy to
identify the underlying genetic variants of phenotypic varia-
tions, and predict how robust and adaptable a population is
to environmental challenges.

In contrast to forward genetics, reverse genetics identifies
phenotypic differences among individuals of known genetic
differences. If empowered by high-throughput phenotyping
of systematically generated mutants, reverse genetics can be
an effective approach to the GPM. For example, the fraction
of genes that affect each of the 12 physiological and behav-
ioral traits in the mouse Mus musculus has been estimated
using 250 gene-knockout lines (Flint and Mackay 2009)
(fig. 1a). Similar estimates have been made for eight morpho-
logical, physiological, and behavioral traits in the fruit fly
Drosophila melanogaster based on P-element insertion muta-
genesis (Mackay 2010) (fig. 1b). These and a few other studies
(Winzeler et al. 1999; Ramani et al. 2012) showed that the
proportion of genes impacting a trait can reach 10–40% of all
genes in a genome. But how general these results are is
unclear because the numbers of traits and species examined
are small. Regarding the size distribution of the genic effects
on a trait, two competing hypotheses exist. Mather’s infini-
tesimal model (Mather 1941; Mackay 2001) asserts that nu-
merous loci have small and similar effects, while Robertson
(1967) posits that the distribution is approximately exponen-
tial, with a few large-effect and many small-effect loci. The
effect size distributions of P-element insertions on the ab-
dominal and sternopleural bristle numbers in Drosophila sup-
port Robertson’s model (Lyman et al. 1996), but the generality
of this conclusion is unknown. Although forward genetic
studies from several species also support Robertson’s
model, definitive conclusions are hindered by the inherent
biases and limitations of the method (Mackay 2001).

A deeper question about the GPM is why it looks the way
it does. In principle, the GPM can evolve under mutation,
drift, and selection, but the relative contributions of these
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forces are elusive. Waddington and others proposed that the
GPM has been shaped by natural selection for mutational
robustness, resulting in genetic canalization (Waddington
1942; de Visser et al. 2003). Similarly, natural selection may
have led to organismal robustness to environmental pertur-
bations, or environmental canalization. These two forms of
canalization, if true, would explain the surprising tolerance of
living organisms to genetic and environmental disturbances,
which are quite common in nature (Scharloo 1991; Flatt 2005;
Wagner 2005b; Alon 2007). They also impact how adaptable
and evolvable a population is in the face of mutations and
environmental changes (Gibson and Wagner 2000; de Visser
et al. 2003; Wagner 2005b; Draghi et al. 2010). Although se-
lection for environmental robustness is commonly agreed
upon (Gibson and Wagner 2000), direct selection for genetic
robustness is controversial (Gibson and Wagner 2000; de
Visser et al. 2003), except when the deleterious mutation
rate is exceedingly high and/or population size is huge (e.g.,
in viruses) (Wilke et al. 2001; Ciliberti et al. 2007; Sanjuan et al.
2007), because for cellular organisms such selection is ex-
pected to be weak (Wagner et al. 1997; Gibson and Wagner
2000), and previous tests with relatively small data yielded
ambiguous results (Stearns and Kawecki 1994; Stearns et al.
1995; Houle 1998; Gibson and Wagner 2000; de Visser et al.
2003; Proulx et al. 2007). Apparently, larger and better data
are needed to evaluate it critically.

To address these fundamental questions on the basic pa-
rameters of the GPM and the role of natural selection in
shaping the GPM, we use the budding yeast Saccharomyces
cerevisiae, in which 220 morphological traits have been quan-
titatively measured by analyzing fluorescent microscopic
images of triple-stained cells of the wild-type strain and
4,718 mutant strains that each of which lacks a nonessential
gene (Ohya et al. 2005). The generality of the findings from
the morphological traits is then verified by analyzing 3,116
gene expression traits in the wild-type and 754 gene-deletion
strains of S. cerevisiae.

Results

Fraction of Genes Affecting a Morphological Trait

In the yeast phenotyping experiment, 220 morphological
traits were measured in multiple wild-type cells from each
of 123 replicate populations (Ohya et al. 2005). In addition, for
each of the 4,718 mutant strains, multiple isogenic cells from
one population were measured for the 220 traits (Ohya et al.
2005). To determine whether deleting a gene affects a trait, we
used the Mann–Whitney U test to compare the trait values of
multiple cells of the gene-deletion strain and those of the wild
type from an arbitrary replicate population. A gene deletion is
tentatively considered to affect the trait if the P value is lower
than 0.05. The distribution of the fraction of genes affecting a

Fig. 1. Fraction of genes affecting a trait, with the mean and median values indicated. (a) Patterns emerging from 12 traits examined in 250 lines of
knockout mice. (b) Patterns emerging from eight traits examined in various P-element insertion lines of fruit flies. In (a) and (b), each arrow represents
one trait. (c) Frequency distribution of the fraction of genes affecting a trait, derived from 220 morphological traits examined in 4,718 nonessential gene
deletion lines of yeast.
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trait (fmt) is shown in supplementary figure S1a,
Supplementary Material online. The mean and median of
fmt are 0.37 and 0.38, respectively. To remove the confounding
factor of potential environmental differences between the
mutant and wild-type strains in the experiment and to con-
trol for multiple testing, for each trait, we estimated the frac-
tion (fwt) of the other 122 wild-type populations in which the
trait value differs significantly from that of the arbitrary wild-
type population used. We found fwt to be substantial (sup-
plementary fig. S1b, Supplementary Material online).
Subtracting fwt from fmt, we obtained fgenes, the true fraction
of genes that, when deleted, significantly impact the trait. We
found that fgenes varies greatly among traits (fig. 1c) and that
this variation significantly exceeds the random expectation
under homogenous fgenes (P< 0.01; permutation test).
Specifically, 37.7%, 39.6%, 20.0%, and 2.7% of traits are each
affected by<1%, 1–10%, 10–30%, and>30% of all nonessen-
tial genes in the yeast genome, respectively. The mean and
median of fgenes are 0.06 and 0.04, respectively (fig. 1c). These
results remain similar regardless of the P-value cutoff used
(supplementary fig. S1c–d, Supplementary Material online).
Use of another arbitrary replicate population of the wild-type
strain yielded similar results. For each trait, we also estimated
fgenes by examining whether the mean trait value of a mutant
would be an outlier in the distribution of the 123 means of
the wild-type replicate populations, but the results were sim-
ilar (supplementary fig. S1e, Supplementary Material online).
Because some of the 220 traits are highly correlated, we re-
moved those traits whose genetic correlation coefficients
exceed 0.7, resulting in a data set with 54 traits. But, the
mean and median values of fgenes are virtually unchanged
(supplementary fig. S2, Supplementary Material online).

Whether a genic effect is detectable depends on the sta-
tistical power of the experiment, which is determined by the
precision of the phenotypic measurement, the sample size,
and the constancy of the environment in which different
strains are phenotyped. In the present case, the number of
cells measured varied among traits and strains. On average, 91
and 95 cells were measured in the wild-type (per replicate
population) and deletion strains, respectively. The effect of
environmental variation is clearly seen in the 123 wild-type
populations, because the standard deviation of the mean
phenotypic value among the 123 populations is on average
2.48 times the mean strand error calculated from individual
populations (supplementary fig. S3, Supplementary Material
online). This observation suggests that environmental fluctu-
ation rather than sample size or measurement error is the
dominant factor limiting the detection of genic effects in the
present study.

Mean Effect Size of Gene Deletion on a
Morphological Trait

We define the raw effect size (ES) of deleting a gene on a trait
as the difference between the mean trait value of the deletion
strain and the average of the mean trait values of the 123
replicate populations of the wild-type strain, divided by the
average of the mean trait values of the 123 populations of the

wild type. The cumulative probability distribution of j ES j , or
the absolute value of ES, of 4,718 genes on each of the 220
traits is depicted by a curve in figure 2a. This distribution
shows that, in most cases, a trait is affected by more genes
of small effects than those of large effects, as proposed by
Robertson (1967). Considering only statistically significant
genic effects does not alter this conclusion. The mean j ES j
of all nonessential genes on a trait varies substantially among
traits, with an average value of 0.098 (fig. 2b).

Due to inevitable environmental fluctuations among pop-
ulations of cells that were phenotyped, we computed net
j ES j by subtracting from raw j ES j a term called pseudo
j ES j , which is the absolute ES expected from environmental
variation and sampling error arising from a limited sample size
(see Materials and Methods). The cumulative probability dis-
tribution of net j ES j of 4,718 genes on each of the 220 traits
is depicted by a curve in figure 2c. Again, this distribution
supports Robertson’s model (1967). The mean net j ES j of all
nonessential genes on a trait also varies substantially among
traits, with an average value of 0.035 (fig. 2d).

For each trait, the phenotypic variation among isogenic
cells includes variations originating from stochastic noise of
the trait, random measurement error, and environmental
variation. We quantified the phenotypic variation among iso-
genic wild-type cells by the coefficient of variation
(CV = standard deviation/mean), including both the variation
among cells in a population and the variation among replicate
populations (see Materials and Methods). The mean CV of
the 220 traits examined is 0.41 (fig. 2e).

More Important Morphological Traits Are More
Robust to Various Perturbations

After describing the basic parameters of the GPM for yeast
morphologies, we explore the potential role of natural selec-
tion in shaping the GPM. The hypothesis of natural selection
for environmental robustness predicts that traits that are
more important to organismal survival and reproduction
have smaller CV, because natural selection for the environ-
mental robustness of a trait intensifies with the importance of
the trait. Similarly, the hypothesis of natural selection for ge-
netic robustness predicts that, under certain conditions, traits
that are more important to organismal survival and repro-
duction have smaller net j ES j , because such a GPM mini-
mizes the deleterious effects of random mutations (Wagner
et al. 1997) (see Materials and Methods). To test these hy-
potheses, we define trait importance (TI) by 100 times the
reduction in fitness caused by 1% change in the phenotypic
value of the trait concerned, and estimated it using the net
j ES j estimates and the fitness values of the gene deletion
strains in the medium where the morphological data were
collected (Qian et al. 2012) (see Materials and Methods).
When estimating TI, we used 2,779 gene deletion strains
whose fitness values relative to the wild type are smaller
than 1 (see Materials and Methods). As a result, 210 traits
(out of 220) have TI> 0, 197 of which significantly exceed 0
(nominal P< 0.05). These 210 traits were subject to further
analysis.
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We found the CV of a trait to decrease with the rise of TI
(�=�0.692, P< 10�300; fig. 3a). Because the phenotypic
measurements of the wild type and mutants were used in
estimating TI, the correlation between CV and TI could be
artifactual. To exclude this possibility, we estimated 1,000 sets
of pseudo TI values by randomly shuffling the fitness values
among the gene deletion strains. In each set, negative TI
values are ignored because they are biologically meaningless.
We calculated the 1,000 rank correlations between CV and

the 1,000 sets of positive pseudo TI. Because these rank cor-
relations are not directly comparable due to different sample
sizes, we converted the correlations (�) to Fisher’s z scores by
z ¼ 0:5 ln½ð1 + �Þ=ð1� �Þ�. We found the true z score (con-
verted from �=�0.692) to be more negative than all 1,000
pseudo z scores (P< 0.001; fig. 3b), suggesting that the neg-
ative correlation between CV and TI is genuine. Because the
same phenotypic data were used in calculating the true z and
the pseudo z scores, their disparity cannot be caused by

Fig. 2. Distributions of the absolute values of the raw and net effect sizes ( j ES j ) of 4,718 nonessential gene deletions on 220 morphological traits in
yeast. (a) Cumulative probability distributions of raw j ES j of 4,718 gene deletions on 220 traits. Each curve represents a trait and is colored according to
trait importance (TI). The distributions are shown only in the range of 0< j ES j < 1 to better distinguish among different curves. (b) Distribution of the
mean raw j ES j among the 220 traits. (c) Cumulative probability distributions of net j ES j of 4,718 gene deletions on 220 traits. (d) Distribution of the
mean net j ES j among the 220 traits. (e) Distribution of the wild-type phenotypic variation (CV) among the 220 traits.
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measurement errors in phenotyping. Rather, it reveals smaller
stochastic noise and environmental variation for more impor-
tant traits, consistent with the hypothesis that natural selec-
tion has increased the phenotypic robustness of organisms to
stochastic noise (Batada and Hurst 2007; Lehner 2008; Wang
and Zhang 2011) and environmental perturbation (Gibson
and Wagner 2000).

We also observed a negative correlation between mean net
j ES j across all deletion lines and TI (�=�0.793, P< 10�300;
fig. 3c), indicating that the mean effect size of all nonessential
genes on a trait decreases as the trait becomes more impor-
tant, supporting the hypothesis of natural selection for mu-
tational robustness. This result was verified by comparing the
observed z (converted from �=�0.793) with 1,000 pseudo z
scores converted from the correlations between mean net
j ES j and the 1,000 sets of positive pseudo TI (P< 0.001;
fig. 3d).

Interestingly, we found no significant correlation between
the TI of a trait and the number of genes affecting the
trait (fgenes) (simulated P = 0.07; supplementary fig. S4,
Supplementary Material online). Hence, the lower mean net
j ES j of important traits is not because there are fewer genes
impacting important traits but because the individual im-
pacts are smaller.

Because genetic robustness may be a byproduct of natural
selection for environmental/stochastic robustness or vice
versa (the congruence hypothesis) (Gibson and Wagner
2000; de Visser et al. 2003), it is important to examine whether
the two types of robustness have independent origins. We
found that the partial correlation between CV and TI after the
control of mean net j ES j is �=�0.532 (P = 1.1� 10�16),
while the partial correlation between mean net j ES j and
TI after the control of CV is �=�0.700 (P = 4.7� 10�32).
Hence, the environmental/stochastic robustness and genetic
robustness are not entirely attributable to each other and
must have their separate origins. These results were further
confirmed by comparing with the random expectations from
the 1,000 sets of pseudo TI (fig. 3e and f). Due to the potential
difference in the fitness effects of positive and negative genic
effects on a trait, we also reanalyzed the data using positive (or
negative) effects only, but found the results to be qualitatively
unaltered (supplementary table S1, Supplementary Material
online; see Materials and Methods).

To confirm that the significant correlations among CV,
mean net j ES j , and TI are not due to high genetic correla-
tions among some traits, we used two approaches to generate
less correlated traits. First, we removed highly correlated traits
as was done for supplementary figure S2, but the negative
correlation between CV and TI and that between mean net
j ES j and TI still exist, so do the partial correlations (supple-
mentary fig. S5, Supplementary Material online). Second, we
performed a principal component analysis using the net
j ES j matrix (see Materials and Methods). Using the principal
component traits, we confirmed the negative correlation be-
tween mean net j ES j and TI (supplementary fig. S6,
Supplementary Material online).

The negative correlation between mean net j ES j and TI
could mean a decrease in net j ES j for important traits or an
increase in net j ES j for unimportant traits; only the former
supports natural selection for genetic robustness. To distin-
guish between these two possibilities, we analyzed the 4,718
genes separately. For each gene, we estimated the rank cor-
relation (�TI- j ES j ) between the importance of a trait and the
net j ES j of the gene on the trait among the 210 traits with
estimated TI. We found �TI- j ES j to vary greatly among genes,
although most (64.8%) genes have negative �TI- j ES j values
(fig. 4a). We halved the 210 traits into a group of less impor-
tant and a group of more important traits. We then, respec-
tively, calculated the mean net j ES j of the 20% most robust
genes (i.e., with the most negative �TI- j ES j values) and 20%
least robust genes (i.e., with the smallest j �TI- j ES j j values)
on each group of traits. Natural selection for mutational ro-
bustness should intensify at more important traits. Thus, for
the group of less important traits, we expect net j ES j to be
similar between the least robust and most robust genes; but

Fig. 3. Environmental/stochastic robustness and genetic robustness of
yeast morphological traits. (a) The CV of a trait among isogenic wild-
type cells decreases with the rise of TI. Each dot is a trait. (b) Distribution
of Fisher’s z derived from the rank correlation between CV and pseudo
TI. (c) The mean net j ES j of gene deletion on a trait decreases with the
rise of TI, demonstrating genetic robustness. Each dot is a trait. (d)
Distribution of Fisher’s z derived from the rank correlation between
mean net j ES j and pseudo TI. (e) Distribution of Fisher’s z derived
from the partial rank correlation between CV and pseudo TI, after the
control of mean net j ES j . (f) Distribution of Fisher’s z derived from the
partial rank correlation between mean net j ES j and pseudo TI, after
the control of CV. In (b), (d), (e), and (f), the real z observed from the
actual data is indicated by an arrowhead, and the P value is the prob-
ability that a randomly picked pseudo z is more negative than the real z.
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for the group of more important traits, net j ES j should be
smaller for the most robust genes than for the least robust
genes. An opposite pattern would be inconsistent with selec-
tion for mutational robustness. We found that, for the less
important traits, the mean net j ES j is similar between the
most robust and least robust genes (P = 0.21, Wilcoxon
signed-rank test; fig. 4b). But, for the more important traits,
the mean net j ES j of the most robust genes becomes sig-
nificantly smaller than that of the least robust genes
(P = 3.8� 10�22, Wilcoxon signed-rank test; fig. 4b). These
findings demonstrate that the negative correlation between
TI and mean net j ES j is caused by the reduction of mean net
j ES j of a large fraction of genes on important traits, sup-
porting natural selection for genetic robustness.

Fitness Advantage of Genetic Robustness

One primary reason why natural selection for genetic robust-
ness is controversial for cellular organisms is that its selection
coefficient is expected to be small (Gibson and Wagner 2000).
Below, we show that the selection coefficient in the present
case is large enough for the effect of natural selection to
surpass that of genetic drift.

If we consider only null mutations but not other deleteri-
ous mutations, the fitness advantage (g) of a robustness mod-
ifier equals

P
(�i�si/si), where�i is the null mutation rate at

gene i and is on average 2.15� 10�6 per gene per generation
in yeast (see Materials and Methods), si and si��si are the
selection coefficients against the null mutation of gene i in
the absence and presence of the modifier, respectively, andP

indicates summation over all genes considered (see
Materials and Methods). The modifier is strongly selected,
for when S = 2Neg = 2� 107

� 2.15� 10�6
�
P

(�si/si) =
43
P

(�si/si) greatly exceeds 1, where Ne is the effective

population size and equals ~107 in yeast (Wagner 2005a).
For example, g = 2.15� 10�5 and S = 430 if the modifier buf-
fers the null mutations of 20 genes with a mean �si/si = 0.5.

With the above consideration, let us estimate the fitness
advantage to yeast conferred by the observed genetic robust-
ness. This advantage can be partitioned into two parts: 1) a
reduction of the averaged mean effect size of all genes on all
traits and 2) a greater reduction of mean effect sizes on more
important traits. Ideally, we should compare the organismal
fitness resulting from the real GPM in the presence of muta-
tion and the fitness resulting from the ancestral GPM in
which the effect sizes had not been reduced by selection.
This comparison, however, is infeasible, because of the diffi-
culty in inferring ancestral effect sizes. Instead, we estimated
the fitness resulting from a hypothetical GPM in which the
effect sizes of a gene on various traits are randomly sampled
(without replacement) from the observed net effect sizes of
the gene on these traits. This procedure yields a conservative
estimate of the fitness advantage of genetic robustness, be-
cause only part 2) is estimated. Employing this approach, we
created 1,000 hypothetical GPMs.

We built a multivariate linear model in which the fitness
values of 2,779 gene deletion strains that are less fit than the
wild type are explained by the phenotypes of the 220 traits
(see Materials and Methods). This model explains 45% of
fitness variance among the deletion strains used. Using this
model and a GPM, we can predict the fitness upon the de-
letion of a gene. For example, the predicted expected fitness
upon the deletion of one of the 2,779 nonessential genes from
the real GPM is 0.9443, which is essentially identical to the
experimentally determined mean fitness (differs by
4� 10�16) of the 2,779 nonessential gene deletion strains.
For the 1,000 hypothetical GPMs, the fitness is predicted to

Fig. 4. Among-gene variation in contribution to genetic robustness. (a) Frequency distribution of a gene’s rank correlation (�) between its absolute net
effect size ( j ES j ) on a trait and the TI. Most genes show negative correlations. (b) Effect size differences between the 20% most robust (having the most
negative � values in a) and 20% least robust (having the smallest j� j values) genes on traits of different importance. Traits are divided into two equal-
size bins based on TI: less-important traits and more important traits. In the box plot (see the scale marked on the y-axis), the lower edge and upper
edge of a box represent the 25% quartile (q1) and 75% quartile (q3), respectively. The horizontal line inside a box indicates the median (md). The
whiskers extend to the most extreme values inside inner fences, md ± 1.5(q3� q1). The values outside the inner fences (outliers) are plotted by plus
signs.
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drop to 0.8956, with a standard deviation of 0.0091, when a
randomly picked nonessential gene is deleted. Thus, the del-
eterious effect of deleting an average nonessential gene from
the real GPM has been reduced by an impressive fraction of
�s/s = (0.9443� 0.8956)/(1� 0.8956) = 46.6%, compared
with the GPMs with randomized effect sizes. Consequently,
the yeast fitness upon a gene deletion has risen by
(0.9443� 0.8956)/0.8956 = 5.4%. The total fitness improve-
ment conferred by robustness to null mutations is
G =

P
(�i�si/si) = 2,779� 2.15� 10�6

� 46.6% = 2.8� 10�3.
Here we use G instead of g to denote the combined effect of
multiple modifiers. Because deleterious mutations that do not
completely abolish the function of a gene were not considered
in the above calculation, the total fitness gain from mutational
robustness should be greater than 2.8� 10�3. Of course, as
deleterious mutations become less severe after the canaliza-
tion, their equilibrium frequencies in the population will in-
crease. Consequently, the mean fitness of the population will
return to the previous value (Wagner et al. 1997).

Genetic Robustness of Gene Expression Traits

To examine whether the genetic robustness observed from
the morphological traits can be generalized to other traits, we
turn to another large set of traits where the expression level of
each of 3,116 yeast genes is considered a trait. The genetic
robustness of yeast expression traits was previously assessed
by calculating how much the expression of each gene varies
among gene deletion lines and testing if the degree of varia-
tion is correlated with the importance of the gene, but the
results were mixed (Proulx et al. 2007). We expanded the
analysis from considering the effects of 276 gene deletions
(Proulx et al. 2007) to 754 by combining several microarray
experiments performed in rich media (see Materials and
Methods). We define the raw ES of deleting gene 1 on the
expression level of gene 2 by the difference in the expression
level of gene 2 between the deletion strain and the wild-type
strain, divided by the expression level of gene 2 in the wild
type. Because the expression levels were measured in several
different microarray experiments, it is difficult to assess
whether an effect is statistically significant. But if we use
raw j ES j of 0.2, 0.3, 0.4, and 0.5 as potential cutoffs, the
average proportion of gene deletions that affect the expres-
sion level of a gene is 20%, 10%, 5.5%, and 3.3%, respectively.
Thus, the expression traits are of comparable complexity as
the 220 morphological traits.

In principle, we should estimate the importance of gene
expression traits by the approach used for estimating the TI of
morphological traits. However, this would require direct com-
parison of gene expression levels across different microarray
data, which is unlikely to be reliable. Instead, we followed a
previous study (Proulx et al. 2007) to use the fitness effect of
deleting a gene as a proxy for the TI of the expression trait of
the gene. That is, the expression of a gene is more important if
the fitness effect of deleting the gene is larger. This proxy for TI
is reasonable because the fitness effect caused by a small
expression change of a gene is highly correlated with that
caused by deleting the gene (Wang and Zhang 2011). We

found that, regardless of whether TI is measured by gene
essentiality (i.e., categorical) or the fitness effect of gene dele-
tion (i.e., continuous), there is a significant negative correla-
tion between the importance of a trait (TI) and the mean
absolute ES of gene deletion on the trait ( j ESG j , the subscript
G indicates genetic perturbation) (table 1). Here, ESG is de-
fined in the same way as ES for morphological traits. We also
found a negative correlation between TI and the mean abso-
lute ES of environmental changes ( j ESE j , the subscript E
indicates environmental perturbation; see Materials and
Methods). Similar to the results for the morphological
traits, the correlation between TI and j ESG j remains signif-
icant after the control of j ESE j , and the correlation between
TI and j ESE j remains significant after the control of j ESG j

(table 1), suggesting that neither the genetic nor environmen-
tal robustness of gene expression is entirely caused by the
other. Similar results were obtained when the wild-type gene
expression level is controlled (supplementary table S2,
Supplementary Material online). We also analyzed an ex-
panded set of environmental perturbations, and the results
were similar (supplementary table S3, Supplementary
Material online). After removing highly correlated expression
traits (see Materials and Methods), we still observed qualita-
tively similar results for the 54 remaining traits (supplemen-
tary table S4, Supplementary Material online).

Because essential genes tend not to have a canonical TATA
box in their promoters (Han et al. 2013) and because the
expression levels of TATA-less genes are less noisy, less sensi-
tive to environmental changes, and more conserved among
species than those of TATA-containing genes (Newman et al.
2006; Tirosh et al. 2006), one wonders whether the above
findings are artifacts caused by covariations of both gene es-
sentiality and expression insensitivity with the absence of
TATA boxes. In other words, we may observe a negative
correlation between TI and j ESE j and/or that between TI
and j ESG j if certain genes must use TATA-less promoters for
reasons other than environmental/genetic robustness. To ex-
clude this possibility, we analyzed TATA-containing and
TATA-less genes (Rhee and Pugh 2012) separately. We
found that the hypothesis of adaptive origin of genetic ro-
bustness is supported for both TATA-containing and TATA-
less genes (supplementary table S5, Supplementary Material
online). The evidence for an independent adaptive origin of
environmental robustness is weakened for TATA-containing
genes, but remains strong for TATA-less genes (supplemen-
tary table S5, Supplementary Material online). Taken together,
these analyses support that the signals for adaptive genetic
and environmental robustness of gene expression traits are
genuine.

Discussion
Using genome-wide reverse genetics, we estimated the frac-
tion of nonessential genes affecting a trait for a large
number of traits for the first time in any organism. We
discovered that this fraction is on average 6% for the 220
yeast morphological traits examined. An analysis of 3,116
yeast gene expression traits revealed a comparable degree
of genetic complexity. It is interesting to note that the
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fraction of genes affecting a trait is similar among yeast, fly,
and mouse (P> 0.05 in all pairwise comparisons; Mann–
Whitney U test; fig. 1), despite the rather small data from
the latter two species and multiple differences in pheno-
typing, sample size, and type of traits examined. It is
tempting to suggest that our observation from yeast, a
unicellular eukaryote, may be widely applicable to other
organisms, including mammals. More studies, however,
are needed to verify this observation.

Although the fraction of genes affecting a yeast trait ap-
pears intermediate on average (6% or ~300 nonessential
genes), the among-trait variation of this quantity is huge.
Nearly two-fifths of traits are relatively simple, each affected
by <1% of genes (i.e., ~50 genes). Two-fifths of traits are of
medium complexity, each affected by 1–10% of genes (i.e.,
50–500 genes). Over one-fifth of traits are highly complex,
each affected by >10% of genes (i.e., >500 genes), including
those impacted by >30% of genes (i.e., >1,500 genes). A
systems approach (Mackay et al. 2009) is not only preferred
but also necessary for understanding why and how so many
genes affect each of these highly complex traits. Theoretical
studies are needed to understand how the discovered distri-
bution of genetic complexity of phenotypic traits impacts
phenotypic variation and evolution.

Our findings partially explain why forward genetics is inef-
ficient in genotype–phenotype mapping. Among the large
number of genes that potentially affect a complex trait, typ-
ically only a few are variable in the mapping population of
each linkage analysis. In association studies, although the
number of variable causal genes may be high when the map-
ping population is large, the statistical power is generally low
because most causal genes are not highly polymorphic. If one
is interested in the actual mutations causing a particular trait
variation in a population, using forward genetics seems nec-
essary. But if one is interested in the molecular genetic net-
work responsible for and potentially impacting a trait, reverse
genetics offers a more complete and unbiased view. Although
only gene deletions are considered here, genome-wide reverse
genetics is applicable to other types of mutants when they
become available, including gain-of-function mutants.

A common approach to verifying a candidate causal gene
identified by forward genetics is to examine the phenotypic
effect of deleting the gene from a wild-type strain. However,
the validation can only prove that the gene affects the trait
but cannot vindicate that the gene causes the trait variation
seen in the mapping population. This is especially so for highly
complex traits, where a randomly picked gene has a >10%
chance to affect the trait. Additional tests, such as allelic re-
placement, will be necessary to reduce the false-positive rate.

We showed that the phenotypic variation (CV) of a trait
among isogenic wild-type individuals decreases with the rise
of TI, consistent with the hypothesis of natural selection for
environmental/stochastic robustness. We also showed that
the mean effect size of gene deletion decreases as the trait
becomes more important, consistent with the hypothesis of
natural selection for genetic robustness. We found that the
environmental/stochastic robustness and the genetic robust-
ness cannot fully explain each other, rejecting the congruence
hypothesis (de Visser et al. 2003) and suggesting separate
origins of the two types of robustness. One rationale of the
congruence hypothesis is that some genes underlying envi-
ronmental robustness are also used for genetic robustness
(Lehner 2010). An often-cited example is the heat shock pro-
tein Hsp90 in Drosophila (Meiklejohn and Hartl 2002). But
more recent work found that Hsp90 buffering of genetic per-
turbation is independent of environmental/stochastic robust-
ness (Milton et al. 2003). Furthermore, mapping data from
mouse, Arabidopsis, and yeast suggested that genetic robust-
ness and environmental robustness are often controlled by
different loci (Fraser and Schadt 2010). Although genetic ro-
bustness may also originate from some intrinsic properties of
the gene interaction networks without direct selection for
robustness (Siegal and Bergman 2002; Hermisson and
Wagner 2004), this hypothesis cannot explain why the ob-
served genetic robustness is greater for more important traits.
Taken together, our results provide strong evidence for the
action of natural selection in shaping the GPM and in im-
proving the mutational robustness of relatively important
traits in yeast.

Three reasons may explain why several earlier studies did
not find clear evidence of natural selection for genetic robust-
ness. First, natural selection for genetic robustness is expected
to be weak unless the population size is large and the dele-
terious mutation rate is high (Wagner et al. 1997). The pre-
vious ambiguous results in fly (Stearns and Kawecki 1994;
Stearns et al. 1995; Houle 1998) may reflect weaker selection
for genetic robustness in fly than in yeast due to their differ-
ence in effective population size. In the light of this compar-
ison, it is interesting to ask if genetic robustness potentially
exists in humans, which have an effective population size of
104 and a null mutation rate of 1.5� 10�5 per gene per
generation (see Materials and Methods). We calculated that
S = 2Ne

P
(�i�si/si) = 0.3

P
(�si/si) for a modifier buffering

deleterious mutations in humans. Assuming an average
�si/si of 0.5, S will exceed 1 if a modifier simultaneously affects
>6 genes. Because the total number of genes in humans is
about four times that in yeast, if fgenes in human is not lower
than that in yeast, it is possible that a modifier affects much

Table 1. Spearman’s Rank Correlation between the Importance of a
Gene Expression Trait to Fitness and the Mean Effect Size of Gene
Deletion (jESGj) or Environmental Perturbation (jESEj).

Variables Correlated Variables
Controlled

Spearman’s q P Value

Fitness effecta, jESEj �0.146 2.1e�16

Fitness effecta, jESGj �0.180 3.7e�24

Fitness effecta, jESEj jESGj �0.094 1.3e�07

Fitness effecta, jESGj jESEj �0.141 1.9e�15

Essentialityb, jESEj �0.088 8.1e�07

Essentialityb, jESGj �0.125 2.2e�12

Essentialityb, jESEj jESGj �0.051 4.8e�03

Essentialityb, jESGj jESEj �0.103 9.6e�09

aTrait importance is measured by the fitness defect caused by deleting the gene.
bEssentiality = 0 for nonessential traits and 1 for essential traits.
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more than six genes. Nonetheless, it is clear from this calcu-
lation that selection for genetic robustness is ~100-fold
weaker in humans than in yeast. Second, TI is quantitatively
estimated in our analysis but not in many previous studies,
rendering our analysis more powerful and objective than
those earlier analyses. But, it should be noted that we esti-
mated morphological TI by the slope in the correlation be-
tween trait values and fitness values among 2,779 gene
deletion strains. As such, our estimates may not accurately
reflect causal relationships between the variation of a trait
and fitness. However, it is virtually impossible to establish
causal relationships between traits and fitness, because no
trait is independent of all other traits such that one can ma-
nipulate a trait without affecting all other traits. The fact that
our use of the inaccurate TI estimates still yields significant
evidence supporting natural selection for genetic robustness
suggests that the true signal is even stronger. In other words,
our results are likely to be conservative. Note that in some
earlier studies, TI was named or defined differently. For ex-
ample, some researchers used the term “sensitivity,” defined
by the percentage of fitness change associated with a 1% or
10% phenotypic change (Stearns and Kawecki 1994; Stearns
et al. 1995; Houle 1998), while Proulx et al. (2007) measured
the “importance” of a gene expression trait by the growth
defect caused by deleting the gene. Finally and probably most
importantly, our data are much larger than those used in all
previous studies, allowing detecting selection for genetic ro-
bustness and excluding the congruence hypothesis.

Our analysis has three caveats. First, the morphological
variations of the wild-type yeast cells were measured in the
same gross environment, which may underestimate CV,
which in turn may lead to an overestimation of genetic ro-
bustness unexplainable by environmental robustness. But this
criticism does not apply to the gene expression data analyzed
here, because they include gross environmental variations.
Although these environments do not resemble the historical
natural environments of yeast, they include important envi-
ronmental variables that yeast faces in nature, such as tem-
perature, osmotic pressure, and amino acid concentrations.
The overall similar findings of genetic robustness between the
morphological and expression traits suggest that the lack of
gross environmental variation has a minimal impact on the
result of morphological traits, but this conclusion requires
further confirmation.

Second, our measurement of effect size is limited to null
mutations, while in nature there are also abundant mutations
that impact the function of a gene only slightly or moderately;
their effect size would be smaller. If the effects of a genic
mutation on various traits are proportionally smaller when
the mutation reduces but not abolishes the gene function, all
of our empirical results should still hold. Our calculation of
the fitness advantage of genetic robustness is conservative,
because considering additional deleterious (but not null) mu-
tations will increase the benefit of genetic robustness. For
obvious reasons, our analysis is limited to the deletions of
~80% of yeast genes that are nonessential. Although we do
not expect essential genes to behavior qualitatively differently

from nonessential genes, future studies are required to vali-
date this expectation.

Third, our study focused on lab strains of yeast because the
deletion lines were all constructed in the genetic background
of a lab strain. Whether our results apply to natural strains of
yeast requires future research. Recent studies have revealed
substantial genomic (Bergstrom et al. 2014) and morpholog-
ical (Yvert et al. 2013) variations among yeast strains. Our
analysis can be applied to strains of different genetic back-
grounds when gene deletion lines in these backgrounds as
well as their morphological data become available.

It is unknown what molecular genetic mechanisms are
responsible for the observed reductions in the effect sizes of
environmental and genetic perturbations on important traits.
Previous yeast studies identified so-called capacitor genes,
which could buffer phenotypic variations upon environmen-
tal perturbations. For example, it was found that genes with
larger fitness effects upon deletion are more likely to be ex-
pression capacitors (Bergman and Siegal 2003) and genes with
more genetic interactions are likely to be morphology capac-
itors (Levy and Siegal 2008). However, these studies did not
examine whether the buffering effects on a trait varies de-
pending on TI. Consequently, the roles of these capacitors in
the adaptive genetic and environmental robustness revealed
here is unclear.

The observed mutational robustness of the GPM is a
double-edged sword. On the one hand, it reduces the dele-
terious effects of mutations on important traits such that the
severity of the associated defects is lessened. On the other
hand, because of the reduction in effect size, the defects are
less harmful and hence tend to spread more widely in a
population. The full ramifications of a GPM that is robust
to mutation await further study, so do the molecular mech-
anisms conferring the robustness.

Materials and Methods

Morphological and Fitness Data

The phenotypic data of 501 morphological traits measured in
the wild-type (123 replicate populations) and 4,718 nones-
sential gene deletion yeast strains (each with one population)
in the rich medium YPD (yeast extract, peptone, and dex-
trose) were generated by Ohya et al. (2005). We focused on
220 of the 501 traits, because these 220 traits were measured
in individual cells whereas the other traits were measured
for populations of cells. Using single-cell measurements is
necessary for our analysis. Supplementary data set S1,
Supplementary Material online, lists these 220 traits as well
as their CV, fgenes, mean j ES j , mean net j ES j , and TI values.
The YPD fitness values of the deletion strains, relative to the
wild type, were recently measured by Qian et al. (2012).

Fraction of Genes Affecting a Trait

The mouse results (fig. 1a) were from a summary of gene
knockout studies (Flint and Mackay 2009). The fruit fly results
(fig. 1b) were based on previously published data of P-element
insertion lines (Mackay 2010). Because each line typically con-
tains multiple P-element insertions, we calculated the fraction
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of single P-element insertions that affect a trait using the
mean number of insertions per line (Mackay et al. 1992)
under the assumption of no epistasis.

In the statistical analysis of yeast data, a gene is said to
affect a trait when the gene deletion strain and the wild-type
strain have a significant difference in the median trait value.
We first calculated the P value by comparing multiple cells of
each deletion line and those of an arbitrarily selected wild-
type replicate population (04his3-1) by the Mann–Whitney U
test. A P value of <5% was used to establish statistical signif-
icance. We thus obtained the faction of mutants in which the
trait is affected (fmt). To control for false positives, we similarly
performed the Mann–Whitney U test between 04his3-1 and
each of the other 122 wild-type populations and calculated
the fraction (fwt) of the 122 wild-type populations in which
the trait deviates significantly from 04his3-1. The estimate of
the fraction of genes affecting a trait (fgenes) equals fmt� fwt if
fmt> fwt; otherwise, we set fgenes = 0.

Less Correlated Morphological Traits

To examine whether some of our results were generated by
highly correlated traits, we attempted to remove genetically
highly correlated traits. We measured the genetic correlation
between a pair of traits by correlating their trait values across
the 4,718 gene deletion strains. We then removed traits one
by one from those with the highest absolute correlations until
no two traits have a Pearson correlation whose absolute value
is greater than 0.7. The final data set has 54 traits, and the
distribution of fgenes is shown in supplementary figure S2,
Supplementary Material online. Because morphological
traits are naturally correlated to some extent, it remains to
be determined whether the original 220 traits or the 54 less
correlated traits better represent randomly sampled traits.
The 54 less correlated traits were also used in supplementary
figure S5, Supplementary Material online.

Raw ES and Net ES

The raw ES (ESij) of deleting gene i on trait j is defined as
(xij�wj)/wj, where xij is the mean phenotypic value of trait j in
the deletion strain i, and wj is the corresponding value in the
wild type (averaged across all replicate populations).
Conventionally, ESij is defined by (xij�wj)/SDj, where SDj is
the standard deviation of the trait in the wild type (Mackay
et al. 2009). We avoided using the conventional definition
because the expected value of SDj is in a large part determined
by the precision of the trait measurement, rendering the
comparison of mean j ES j among traits primarily a compar-
ison of the measurement quality rather than the biology of
the traits. By contrast, the expected value of wj is not affected
by the imprecision of the measurement.

To estimate the net j ES j of gene deletion on a trait, we
generated 1,000 pseudo phenotypic data sets. To generate a
pseudo data set, we randomly chose one wild-type replicate
population and pick (with replacement) from this population
the same number of cells as in the actual gene-deletion data.
We then calculated pseudo j ES j for each of these pseudo
data sets and computed its mean value. Because 1,000 pseudo

data sets were generated, effectively all 123 wild-type popu-
lations were used. Net j ES j equals raw j ES j minus mean
pseudo j ES j if raw j ES j > mean pseudo j ES j ; otherwise,
net j ES j = 0.

Phenotypic Variation

The phenotypic variation in the wild type was measured by
CV. We calculated the variance among cells within each rep-
licate population and averaged it across the 123 populations
(Vwithin). We then calculated the variance among the mean
phenotypic values of the 123 populations (Vbetween).
CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vwithin + Vbetween

p
=m, where m is the average of the

mean phenotypic values of the 123 populations.

Relative TI

For trait j, we conducted a linear regression Fi = aj� bj (net
j ESij j ) for all i, where net j ESij j is the absolute value of the
net ES of deleting gene i on trait j and Fi is the YPD fitness of
the strain lacking gene i relative to the wild type (Qian et al.
2012). The intercept aj is the expected fitness when net
j ESij j = 0, whereas the slope bj> 0 is 100 times the reduction
in fitness caused by 1% change in the phenotypic value of trait
j. Thus, bj is a measure of the relative importance of trait j to
fitness, or TI. Because we focused on deleterious mutations in
this model, we used only those genes that decrease fitness
when deleted. We also tried the log model logFi = aj� bj (net
j ESij j ) and found the results to be similar (supplementary
fig. S7, Supplementary Material online).

In the above estimation of TI, we assumed that, to a trait, a
positive effect and a negative effect of the same size have the
same fitness effect, which may not be true to all traits. Because
positive and negative effects are arbitrarily defined, we also
considered only positive (or only negative) raw effects in sub-
sequent analysis (supplementary table S1, Supplementary
Material online).

Principal Component Analysis of the Net j ES j
Matrix

To examine whether the nonindependence among traits af-
fects our results, we followed a previous study (Wang et al.
2010) to perform a principal component analysis to trans-
form the net j ES j matrix M (4,718 genes � 220 traits). The
principal component analysis was done by the “princomp”
function in MATLAB. After this function returned a coeffi-
cient matrix C (220� 220), we calculated M0 = MC (4718
transformed effects� 220 principal traits), which provides
the net effect size of each gene on each of the 220 orthogonal
principal component traits. We then used M0 to estimate TI.

Predicting the Fitness of a Mutant Strain Given the
GPM

We built a multivariate linear model of yeast fitness that
includes all 220 traits and 2,779 gene deletion strains that
are less fit than the wild type: Fi ¼ ��

P
j �j net j ESij j
� �

,
where � is a constant. We estimated � and �j for all 220 traits
using the “glmfit” function in MATLAB. Based on the above
formula and the estimated � and �j values, we predicted Fi
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upon the deletion of gene i when either the original or ran-
domly shuffled net j ESij j values were used.

Null Mutation Rate Per Gene Per Generation

Based on the genome sequences of mutation accumulation
yeast strains (Lynch et al. 2008), the point mutation rate in
yeast is 3.3� 10� 10 per site per generation; the small (1–
3 bp) indel mutation rate is 2� 10�11 per site per generation;
and the gene loss mutation rate is 2.1� 10�6 per gene per
generation. Taken together, we estimated the null mutation
rate per gene per generation to be approximately
[3.3� 10�10

� (3/63) + 2� 10�11
� 0.83]� 1,419 + 2.1�

10�6 = 2.146� 10�6. Here, 3/63 is the average probability that
a random point mutation in a coding region is nonsense, 0.83
is the fraction of small indels that are not multiples of three
nucleotides (Zhang and Webb 2003), and 1,419 is the mean
number of coding nucleotides per yeast protein-coding gene
(Zhang 2000).

In humans, the point mutation rate is 1.25� 10�9 per site
per year and the indel mutation rate is 1� 10�10 per site per
year (Zhang and Webb 2003). Based on copy number varia-
tions in humans, it has been estimated that the gene loss rate
is ~10�5 per gene per generation (Zhang et al. 2009). Thus,
the total null mutation rate per gene per generation is
[1.25� 10�9

� (3/63) + 1� 10�10
� 0.83]� 1,341� 25 +

1� 10�5 = 1.48� 10�5. Here, 1,341 is the mean number of
coding nucleotides per human protein-coding gene (Zhang
2000) and 25 is the approximate number of years per human
generation.

Fitness Advantages of Robustness Modifiers

In a diploid population, let A be the wild-type allele at gene i
and a represent all null alleles, which are assumed to be
completely recessive to A. The fitness values of AA, Aa, and
aa are 1, 1, and 1� si, respectively, where si> 0. Let the mu-
tation rate from A to a be�i and the back mutation rate be 0.
Under the mutation-selection balance (Hartl and Clark 1997),
the equilibrium frequency of aa individuals is �i/si and the
expected fitness of a randomly picked individual in the pop-
ulation is 1� (1��i/si) + (1� si)� (�i/si) = 1��i. Let us
consider a robustness modifier that masks the deleterious
effect of a such that aa individuals now have a fitness of
1� si + �si (0<�si< si). The expected fitness of an indi-
vidual with the modifier is 1� (1��i/si) + (1� si + �si)�
(�i/si) = 1��i + �i�si/si. Thus, the mean fitness advantage
of the robustness modifier is g =�i�si/si. If gene i affects
multiple traits, �si/si is determined by the fractional change
in its combined fitness effect on these traits. Because reducing
the genic effect on a trait of large fitness contribution is ex-
pected to contribute more to �si than reducing the same
amount of effect on a trait of small fitness contribution, mod-
ifiers that preferentially reduce the mutational effects on im-
portant traits are more advantageous than those that have no
such preference. As a result, natural selection is expected to
preferentially enhance the mutational robustness of impor-
tant traits. If the modifier buffers the null mutations of mul-
tiple genes, its fitness advantage is

P
(�i�si/si), where

P
indicates summation over the multiple buffered genes.

The above formula also works for deleterious mutations in
general when ui is the total deleterious mutation rate at gene
i, as long as all the mutations considered are completely re-
cessive to the wild-type allele.

When a is not completely recessive to A, the fitness is 1,
1� hisi, and 1� si for AA, Aa, and aa, respectively, where
0< h< 1 is the dominance of a, relative to A. Under muta-
tion-selection balance (Hartl and Clark 1997), the equilibrium
frequency of the a allele is�i/(sihi) and the expected fitness of
a randomly picked individual in the population is approxi-
mately 1� 2�i. Let us consider a robustness modifier that
masks the deleterious effect of a such that Aa individuals now
have a fitness of 1� hisi + hi�si (0<�si< si) and aa indi-
viduals have a fitness of 1� si + �si. The expected fitness of
an individual with the modifier will be 1� 2�i + 2�i�si/si.
Thus, the mean fitness advantage of the robustness modifier
equals 2�i�si/si. If the modifier buffers the deleterious
mutations of multiple genes, its fitness advantage is
2
P

(�i�si/si), where
P

indicates summation over the mul-
tiple buffered genes.

Gene Expression Data and Analysis

The genome-wide gene expression data of yeast single-gene
deletion lines were compiled from four studies (Hughes et al.
2000; Hu et al. 2007; van Wageningen et al. 2010; Lenstra et al.
2011). In each study, the wild-type and gene-deletion strains
were grown in YPD or synthetic complete (SC) medium. The
microarray expression level of gene j in the strain lacking gene
i was compared with that in the wild type under the same
medium to measure the effect of deleting gene i on the ex-
pression level of gene j. Strains lacking more than one gene
were not considered. If a deletion line was analyzed in mul-
tiple studies, we used the data from the most recent study. In
the end, the data contained expression changes of 4,399 genes
in 754 gene deletion lines (supplementary data set S2,
Supplementary Material online). We then limited our analysis
to the expression levels of 3,116 (out of 4,399) genes because
these genes reduce fitness when deleted (i.e., fitness � 1 re-
gardless of statistical significance) (Qian et al. 2012).

The effect size of deleting gene i on the expression level of
gene j was defined by (xij�wj)/wj = xij/wj� 1, where xij is the
expression level of gene j in the strain lacking gene i and wj is
the expression level of gene j in the wild type. The xij/wj value
used was available from each data set. Because the expression
data were obtained for populations of cells rather than indi-
vidual cells, net j ES j cannot be estimated. The measurement
error of the expression level of a gene in microarray is mainly
determined by the expression level of the gene. Thus, con-
trolling the expression level (supplementary tables S2–S5,
Supplementary Material online) largely controls the measure-
ment error. For these analyses, the expression levels from the
wild-type strain in YPD (Nagalakshmi et al. 2008) were used.
We quantified the effect sizes of 35 highly different environ-
mental changes on the wild-type gene expression levels
(Proulx et al. 2007) using the same formula, where xij/wj

is the fold change in the expression of gene j induced by
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the ith environmental change. These 35 environments were
previously chosen from a total of 162 environments to rep-
resent the least correlated environmental challenges (Proulx
et al. 2007). We performed a similar analysis using all 162
environmental challenges under which the wild-type gene
expression changes were previously measured (Gasch et al.
2000) (supplementary table S3, Supplementary Material
online).

When examining the potential impact of highly correlated
traits, we measured the genetic correlation between a pair of
expression traits by correlating their expression levels across
mutant strains. We then removed expression traits one by
one from those with the highest correlations until no two
traits have a Pearson correlation greater than 0.7. The final
data set included 2,223 expression traits (supplementary table
S4, Supplementary Material online).

Supplementary Material
Supplementary figures S1–S7, data sets S1, S2, and tables
S1–S5 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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